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Abstract
Trace amine-associated receptor 1 is one of the best-characterized receptors of trace amines. Growing evidence shows that 
TAAR1 negatively regulates the monoaminergic activity, including dopamine transmission in the mesocorticolimbic system. 
Neurochemical assays demonstrated that selective TAAR1 full and partial agonists were effective to prevent psychostimu-
lants-induced dopamine transmission in vitro and in vivo. In the last decade, many preclinical models of psychostimulant 
addiction such as drug-induced behavioral sensitization, drug-induced conditioned place preference, drug self-administration, 
drug discrimination, and relapse models were used to assess the effects of TAAR1 agonists on psychostimulants’ behavioral 
effects. In general, activation of TAAR1 attenuated while knockout of TAAR1 potentiated psychostimulant abuse-related 
behaviors. Here, we review the advances in TAAR1 and its agonists in modulating psychostimulant addiction. We discuss 
the similarities and differences between the neurochemical and behavioral effects of TAAR1 full and partial agonists. We 
also discuss several concerns including the abuse liability, sleep reduction, and species-dependent effects that might affect 
the successful translation of TAAR1 agonists from preclinical studies to clinical application. In conclusion, although further 
investigations are in need to address certain concerns and the underlying neural mechanisms, TAAR1 agonists appear to be 
a promising pharmacotherapy to treat psychostimulant addiction and prevent relapse.
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Introduction

Drug addiction is a chronic relapse disorder character-
ized by compulsive drug taking and drug-seeking (Nestler 
2001). Psychostimulants/stimulants are a group of drugs that 
increase the activity of the central nervous system and the 
body. Indeed, some psychostimulants are prescribed as legal 
medications to treat disorders such as ADHD in the clini-
cal setting because at appropriate doses, psychostimulants 
can increase the ability to focus and promote sociability 
and vigor (Moriyama et al. 2013). However, due to the high 
pleasurable and reinforcing properties of psychostimulants, 
they are used globally as creational drugs and become major 
drugs of abuse (Badiani et al. 2011).

Nevertheless, there is currently no FDA-approved medi-
cine to treat psychostimulant addiction. Therefore, discov-
ering potential targets and developing effective pharmaco-
therapies for treating psychostimulant addiction have been 
dire clinical needs (Badiani et al. 2011; Oliere et al. 2013). 
Recent studies from our laboratory and that of others dem-
onstrated that trace amine-associated receptor 1 (TAAR1) 
is a promising druggable target for treating psychostimu-
lant addiction. Here, we review recent advances of TAAR1 
in addiction to psychostimulants, including amphetamines, 
cocaine, and nicotine. We also discuss the potential and our 
concerns for TAAR1 agonists as pharmacotherapies for 
treating psychostimulant addiction and relapse.

TAAR1 and Its Downstream Signaling 
Pathways

In 2001, two independent groups cloned a novel GPCR using 
primers designed based on transmembrane domains of a sub-
set of 5-HT receptors and the G protein-coupled catechola-
mine receptor gene family (Bunzow et al. 2001; Borowsky 
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et  al. 2001). It was demonstrated that trace amines, a 
group of amines structurally similar to classic amines but 
expressed at a relatively low level in the mammalian brain, 
such as p-tyramine, β-phenylethylamine (PEA), and octo-
pamine, can fully activate this novel receptor. Therefore, 
it was identified as a receptor of trace amines and initially 
named as  TA1 or TAR1 (Borowsky et al. 2001; Bunzow 
et al. 2001). However, the nomenclature of “trace amine-
associated receptor 1” (TAAR1) has been adopted in most 
of the later studies partially because it was found that not 
all members of TAARs have a high affinity for trace amines 
(Lindemann et al. 2005).

TAAR1 in the mammalian brain is expressed in the 
monoamine systems including the substantial niagra, 
ventral tegmental area (VTA), locus correlates, prefron-
tal cortex (PFC), dorsal striatum, and nucleus accumbens 
(NAc). Based on the anatomical pattern of TAAR1 expres-
sion, studies on TAAR1 have been focusing on monoamine 
transmissions and behavioral pharmacology. It has been 
shown that activation of TAAR1 reduces while knockout of 
TAAR1 potentiates dopamine transmission (Leo et al. 2014; 
Pei et al. 2014; Liu et al. 2018). Although the exact neural 
mechanism of TAAR1 in dopamine transmission remains 
unclear, many studies have provided some clues about the 
TAAR1-mediated signaling transduction. In vitro studies 
showed that TAAR was a Gs- and Gq-coupled receptor, 
and activation of TAAR1 could activate PKA- and PKC-
dependent signaling pathways. However, the PKA or PKC 
pathways may not account for TAAR1-mediated decrease of 
dopamine transmission, because subeffective doses of PKA 
or PKC inhibitors did not block the effects of the TAAR1 
full agonist RO5256390 (Asif-Malik et al. 2017). In the 
HEK-293 cells only transferred with TAAR1, activation of 
TAAR1 increased phosphorylation levels of ERK and CREB 
(PMID: 29,977,204). However, when TAAR1 was co-trans-
fected with D2 receptors in the HEK293 cells, activation 
of TAAR1 did not alter the activities of ERK or CREB but 
inhibited the PI3K/AKT/GSK3 pathway instead. Presum-
ably, the signaling transduction that mediates the effects of 
TAAR1 agonist could be more complicated in the in vivo 
conditions. First, there are potentially unknown receptors 
or molecules that can interact with TAAR1 and change the 
balance of downstream signaling. Second, TAAR1 could 
be under tonic activation in some brain regions. Thus, a 
TAAR1 agonist in the cultured cell studies could become 
an antagonist-like agent when applied to brain tissues or 
in vivo. More about this can be seen in the “TAAR1 full 
agonists vs. partial agonists” section below.

Interactions between TAAR1 and D2 receptors might be 
an important mechanism that mediates the inhibitory effect 
of TAAR1 activation on dopamine transmission. Although 
the TAAR1-dopamine transporter (DAT) interaction plays 
a role in the in vitro studies, DAT may not be necessary for 

the effects of TAAR1 in the in vivo context since TAAR1 
agonists reduced the hyperactivity in DAT knockout mice 
(Revel et al. 2011). Evidence shows that TAAR1 could 
form a heterodimer with dopamine D2 receptors and inter-
act with the presynaptic D2 receptors to negatively regu-
late dopamine transmission. A recent study showed that D2 
antagonist blocked the activation of TAAR1-induced cAMP 
accumulation and reduction in dopamine accumulation, 
suggesting that the role of TAAR1 was dependent on D2 
receptors (Xie and Miller 2007). On the other hand, TAAR1 
may also interact with postsynaptic D2 receptors. TAAR1 
knockout (TAAR1-KO) mice have an increase in D2High 
receptors (Wolinsky et al. 2007). It was also demonstrated 
that the D2/AKT/GSK3β signaling in the striatum was acti-
vated in TAAR1-KO mice, demonstrating a supersensitiv-
ity of postsynaptic D2 receptors (Espinoza et al. 2015a). 
More details regarding TAAR1 signaling can be found in 
our recent review paper and that of others (Liu and Li 2018; 
Gainetdinov et al. 2018; Pei et al. 2016).

TAAR1 Negatively Modulates 
Psychostimulants‑Induced Neurochemical 
Alterations and Regulates Behaviors 
Associated with Psychostimulant Addiction

In the last two decades, the function of TAAR1 has been 
studied in different diseases, including cancer, diabetes, 
brain disorders such as schizophrenia, narcolepsy, and drug 
addiction (Grandy 2007; Liu and Li 2018; Tremmel et al. 
2019; Raab et al. 2016; Michael et al. 2019). In particular, 
TAAR1 has been demonstrated to regulate the addiction-
related behaviors to a broad range of drugs such as cocaine, 
caffeine, and alcohol, and palatable food addiction (Liu and 
Li 2018). Here, we focus on the role of TAAR1 in regulating 
the neurochemical and behavioral effects of psychostimu-
lants that have been extensively examined so far, which pri-
mairly include amphetamines, cocaine, and nicotine.

Amphetamines

Amphetamine-like compounds, including amphetamine 
(AMPH), methamphetamine (METH), MDMA, 4-OH-
amphetamine, and 4-Cl-amphetamine, could induce cAMP 
accumulation in the HEK-293 cells expressing TAAR1, 
indicating that amphetamines are potent agonists of 
TAAR1 (Bunzow et al. 2001; Miller et al. 2005). Impor-
tantly, it was shown that METH-induced dopamine efflux 
was dependent on TAAR1 and its downstream cascades, 
suggesting that TAAR1 is an essential mediator of the 
actions of METH (Xie and Miller 2009). Studies inves-
tigating the underlying mechanism consistently showed 
that the amphetamines-induced activation of TAAR1 was 
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dependent on the interaction between TAAR1 and DAT. 
For example, co-transfection with TAAR1 and DAT-
enhanced AMPH- and MDMA-induced cAMP accumu-
lation (Miller et al. 2005). METH-induced inhibition of 
dopamine uptake was displaced in cells co-transfected 
with TAAR1 and DAT and in the striatal synaptosomes 
of wild-type mice and rhesus monkeys, but not in DAT-
only transfected cells or TAAR1 knockout mice (Xie and 
Miller 2009). A recent study showed that TAAR1 mediates 
AMPH-induced activation of the downstream RhoA and 
cAMP signaling in HEK293 cells expressing DAT but not 
cells without DAT (Underhill et al. 2019). Interestingly, 
two different G proteins G13 and Gs-regulated TAAR1 
activation (Underhill et al. 2019). It was further shown 
that AMPH-induced activation of both TAAR1-G13-RhoA 
and TAAR1-Gs-PKA signaling were dependent on DAT 
(Underhill et al. 2019). However, the TAAR1 agonist octo-
pamine, which is not a substrate of DAT, did not acti-
vate RhoA signaling. Accordingly, it was suggested that 
these TAAR1/RhoA and TAAR1/PKA-signaling pathways 
might be particular cascades that mediate the effects of 
amphetamines and could not generalize to other TAAR1 
agonists (Underhill et al. 2019).

Consistent with the in vitro studies, AMPH-induced 
locomotor activity and dopamine accumulation in the stria-
tum in TAAR1 knockout (TAAR1-KO) mice was enhanced 
compared to their wild-type littermates (Wolinsky et al. 
2007). The TAAR1-KO mice also showed an elevated level 
of context-dependent sensitization to AMPH (Miner et al. 
2017). The effects of METH in the TAAR1-KO mice have 
also been reported (Achat-Mendes et al. 2012). Knockout 
of TAAR1-enhanced METH-induced hyperactivity and pro-
moted the formation and retention of METH-induced condi-
tioned place preference (CPP) (Achat-Mendes et al. 2012). 
In addition, TAAR1-KO mice and the DBA/2 J mice that 
have a non-functional allele of Taar1 consumed more METH 
compared to WT C57BL/6 J mice (Harkness et al. 2015).

Beside the TAAR1-KO mice, animals that overexpress 
taar1 in the brain were also generated, which was named as 
taar1 Tg mice (Revel et al. 2012a). Before discussing the 
behaviors of this line of taar1 Tg mice, it should be kept 
in mind that taar1 was expressed in all types of neurons in 
the whole brain of this mice strain, which is in contrast with 
the specific expression pattern of that in the wildtype ani-
mals (Revel et al. 2012a). The electrophysiological results 
showed that excitatory and inhibitory inputs into the VTA 
were altered in the taar1 Tg mice (Revel et al. 2012a). Inter-
estingly, although the basal levels of dopamine and norepi-
nephrine in the nucleus accumbens (NAc) were elevated, 
amphetamine did not alter dopamine levels in the taar1 
Tg mice (Revel et al. 2012a). Consistently, behavioral test 
showed that AMPH led to hyperactivity in WT but not in 
taar1 Tg mice (Revel et al. 2012a).

Several selective TAAR1 agonists have been developed 
and tested with amphetamines. In one study that systemically 
assessed the behavioral effects of TAAR1 agonist in METH 
addiction, the selective TAAR1 partial agonist RO5263397 
attenuated METH-induced behavioral sensitization, METH 
self-administration, and cue- and drug-induced reinstate-
ment of METH-seeking (Jing et al. 2014). A more recent 
study showed that RO5263397 also decreased the break-
point for METH self-administration in a progressive ratio 
schedule of reinforcement and METH-induced dopamine 
overflow in the NAc (Pei et al. 2017). The inhibitory effects 
of RO5263397 on METH-associated behaviors were not due 
to a non-specific behavioral inhibition since the same dose of 
RO5263397 had no effect on cue-induced reinstatement of 
sucrose-seeking (Jing et al. 2014). In addition, RO5263397 
was not self-administered by rats (Pei et al. 2017). In another 
study, the TAAR1 partial agonist RO5203648 also decreased 
METH-induced sensitization, METH self-administration, 
and dopamine overflow in the NAc but not striatum synap-
tosomes (Cotter et al. 2015).

Psychostimulants-induced impulsivity is also critical 
for the development of addiction. In a fixed interval sched-
ule of reinforcement paradigm, the TAAR1 full agonist 
RO5166017 and partial agonist RO5203648 reduced impul-
sivity in mice (Espinoza et al. 2015b). Furthermore, TAAR1 
KO mice showed a high level of perseverative and impul-
sive behaviors in a fixed interval-peak interval test (Espinoza 
et al. 2015b). A recent study from our lab used the five-
choice serial reaction time task (5-CSRTT) and the delay-
discounting task to evaluate the effects of TAAR1 agonist 
RO5263397 on attention and impulsivity in rats (Xue et al. 
2018). In the 5-CSRTT task, accuracy and omissions are 
parameters to evaluate attention, while premature responses 
are indice of impulsive control. The curve of delayed dis-
counting was used to evaluate impulsive choice. RO5263397 
significantly attenuated acute METH-induced omissions and 
premature responses but did not affect delay discounting, 
suggesting that TAAR1 agonists regulate METH-induced 
attention deficit and impulsive control but not impulsive 
choice (Xue et al. 2018).

Cocaine

Cocaine is not a ligand of TAAR1 since cocaine did not 
induce cAMP accumulation in cells expressing TAAR1 
(Miller et al. 2005). However, TAAR1 negatively modu-
lates cocaine-induced dopamine accumulation. It demon-
strated that the TAAR1 full-agonist RO5256390 prevented 
cocaine-induced inhibition of DA clearance in the NAc of 
brain slices (Asif-Malik et al. 2017). The same study showed 
that a subeffective dose of D2 receptor antagonist L-741626 
but not PKC or PKA inhibitors prevented the effects of 
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RO5256390 on cocaine-induced dopamine release (Asif-
Malik et al. 2017). Activation of D2/TAAR1 heterodimers 
induces inhibition of its effector glycogen synthase kinase-3 
(GSK3). Thus, the GSK3 inhibitor SB216763 reproduced 
the inhibitory effects of RO5256390 on cocaine-induced 
DA transmission (Asif-Malik et al. 2017). These results 
indicated that D2 receptors but not PKA or PKC-dependent 
pathways mediated the effects of RO5256390 on cocaine-
induced dopamine accumulation (Asif-Malik et al. 2017).

Growing evidence shows that TAAR1 regulates a broad 
range of cocaine abuse-associated behaviors. The TAAR1 
partial agonist RO5263397 inhibited cocaine-induced hyper-
activity in mice (Revel et al. 2011). Our study also showed 
that RO5263397 attenuated the induction and expression 
of cocaine-induced sensitization, expression of cocaine-
induced CPP, and cue- and drug-induced reinstatement 
of cocaine-seeking (Thorn et al. 2014a). RO5263397 also 
increased the elasticity of cocaine demand curve, suggesting 
that RO5263397 decreased the motivation to take cocaine 
when the availability of cocaine was reduced (Thorn et al. 
2014a). Furthermore, it is demonstrated that RO5256397 
dose-dependently attenuated cocaine self-administration 
and prevented cocaine-induced decrease in intracranial self-
stimulation (ICSS) (Pei et al. 2015).

The TAAR1 full agonists RO5256390 and RO5166017 
blocked cocaine-induced hyperactivity (Revel et al. 2011). 
The lack of RO5166017′s effects in the TAAR1-KO 
mice indicates that the inhibitory effects of RO5166017 
on cocaine in WT mice was mediated by TAAR1 (Revel 
et al. 2011). Similar to the effect of the TAAR1 partial 
agonist RO5263397, Pei et al. showed that the full agonist 
RO5256390 also attenuated cocaine self-administration 
and reduced the ICSS-lowering effect of cocaine (Pei et al. 
2015). By using the cocaine-induced CPP paradigm, our 
study showed that RO5166017 attenuated the expression 
of cocaine reward memory but did not disrupt the memory 
reconsolidation or retention (Liu et al. 2016).

The role of TAAR1 in cocaine relapse is anatomically 
distinct (Liu et al. 2017). Activation of TAAR1 in the VTA 
and the prelimbic area of the mPFC attenuated both cue- 
and drug-induced reinstatement of cocaine-seeking (Liu 
et al. 2017). Activation of TAAR1 in the NAc shell reduced 
drug- but not cue-induced reinstatement, while in the NAc 
core reduced cue- but not drug-induced reinstatement of 
cocaine-seeking. Furthermore, activation of TAAR1 in the 
infralimbic area of the mPFC did not affect either cue- or 
drug-induced reinstatement of cocaine-seeking (Liu et al. 
2017).

Nicotine

A recent study from our group demonstrated that TAAR1 
also negatively regulates nicotine addiction (Liu et al. 2018). 

Chronic treatment of nicotine reduced the expression of 
TAAR1 in NAc but not the dorsal striatum or PFC (Liu et al. 
2018). The full agonist RO5166017 attenuated nicotine-
induced neural activation, indicated by the marker of neural 
activation, c-Fos, in the NAc (Liu et al. 2018). In addition, 
using in vivo Fast-scan Cyclic Voltammetry technique, 
we showed that RO5166017-attenuated nicotine-induced 
dopamine release in the NAc (Liu et al. 2018). Consist-
ent with the neurochemical results, TAAR1 partial agonist 
RO5263397 dose-dependently attenuated nicotine-induced 
behavioral sensitization, nicotine discrimination, and moti-
vation to nicotine intake assessed by nicotine demand 
curve (Liu et al. 2018). Both RO5263397 and RO5166017 
decreased nicotine intake (Liu et al. 2018). In the extinction-
reinstatement model, RO5166017 reduced cue- and drug-
induced reinstatement of nicotine-seeking, while knockout 
of TAAR1 augmented the reinstatement. Furthermore, 
microinjection of RO5166017 into the NAc attenuated the 
reinstatement of nicotine-seeking without causing locomo-
tor deficit, indicating that the NAc was one of the critical 
brain areas where TAAR1 regulates nicotine addiction (Liu 
et al. 2018). Consistently, Sukhanov et al. also showed that 
RO5263397 prevented nicotine-induced hyperactivity in 
nicotine-naïve and nicotine-sensitized mice (Sukhanov et al. 
2018). Together, these results indicate that TAAR1 agonists 
are promising agents to treat nicotine addiction.

Figure 1 demonstrates a schematic summary of how 
TAAR1 agonists modulate the addiction-related effects 
based on the current mechanistic understanding of the 
interaction between TAAR1 and the dopaminergic system. 
Table 1 provides a summary of the pharmacological studies 
using TAAR1 agonists in animal models of drug abuse and 
addiction.

TAAR1 Full Agonist Versus Partial Agonists

As mentioned above, several full and partial agonists of 
TAAR1 were developed in the last decade (Revel et al. 
2011, 2012b,2013). The major difference between full and 
partial agonists is that the maximal levels of TAAR1 activa-
tion induced by full agonists are similar to the endogenous 
TAAR1 agonist PEA while the partial agonists showed 
lower efficacy. For example, compared to PEA, the full ago-
nist RO5256390 and partial agonist RO5263397 induced 
107% and 76% cAMP accumulation in HEK-293 cells 
transfected with TAAR1, respectively (Revel et al. 2012b, 
2013). Despite the different efficacies, behavioral studies 
demonstrated high similarities between TAAR1 full and 
partial agonists. For example, our study showed that both 
RO5166017 and RO5263397 were effective in attenuating 
nicotine-associated addictive behaviors (Liu et al. 2018, 
2017, 2016). Based on the behavioral tests, it seems that 
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the potency of the partial agonist RO5263397 is higher than 
the full agonist RO5166017. Studies showed that 3.2 mg/kg 
RO5263397 (i.p.) was effective to attenuate addictive behav-
iors of cocaine, METH and nicotine, whereas the minimal 
dose of RO5166017 that produced similar behavioral effects 
was 10 mg/kg (i.p.) in rats (Liu et al. 2018, 2017, 2016; Jing 
et al. 2014; Thorn et al. 2014a). It also showed that the same 
doses of the full agonist RO5256390 yielded less brain expo-
sure than the partial agonist RO5263397 in rats (Revel et al. 
2013). However, these do not prove that partial activation 
of TAAR1 is more effective than full activation of TAAR1 
in reducing psychostimulant addiction. The TAAR1 partial 
agonist RO5203648 and the full agonist RO5256390 showed 
similar potency in the cocaine self-administration (Pei 
et al. 2015). The TAAR1 full agonist RO5256390 revealed 
higher potency than the TAAR1 partial agonist RO5263397 
in preventing the cocaine-induced decrease in intracranial 
self-stimulation in rats (Asif-Malik et al. 2017). Besides, 
the behavioral effects of these TAAR1 agonists depend on 
their potencies on TAAR1 activation as well as other fac-
tors such as the distribution of these compounds in the key 
brain regions that regulate psychostimulant addiction (Revel 
et al. 2013).

Unlike the similarities in behavioral properties, the 
TAAR1 partial and full agonists produced distinct effects in 
the electrophysiological assays. The full agonist RO5166017 
and RO5256390-attenuated firing rates of dopaminer-
gic neurons in the VTA and 5-HT neurons in the DRN 
(Revel et al. 2011, 2013). In contrast, the partial agonist 

RO5263397 and RO5203648 increased the firing rates of 
these neurons, similar to the TAAR1 antagonist EPPTB 
(Revel et al. 2013, 2011; Bradaia et al. 2009). A hypothesis 
is that the TAAR1 partial agonists cannot overcome tonic 
activation of TAAR1 by endogenous trace amines in the 
VTA, thus TAAR1 in the VTA neurons could only be acti-
vated at lower level when exogenous partial agonists were 
present due to competitive inhibition. As a consequence, 
the partial TAAR1 agonists would inhibit TAAR1 activa-
tion in vivo, which in turn reduce the firing rates of VTA 
neurons. However, although the partial agonist RO5203648 
increased firing rate of dopaminergic neurons in the VTA, 
which presumably would increase the dopamine release in 
the dopaminergic-projecting areas such as the NAc, the par-
tial agonist RO5203648 prevented cocaine-induced dopa-
mine release in the NAc of rat brain slice (Pei et al. 2014). 
Based on these similarities and differences of chemical and 
electrophysiological properties of TAAR1 partial and full 
agonists, we hypothesize that different neural mechanisms 
may account for the different behavioral effects. Alterna-
tively, the dopaminergic neuron-projecting areas such as the 
NAc rather than the VTA where the bodies of dopaminergic 
neurons reside in are the common neuroanatomical sites of 
TAAR1 in regulating psychostimulant addiction.

Epidemic surveys demonstrated a high rate of co-occur-
rence/comorbidity between drug addictions and other men-
tal disorders, including anxiety, depression, and schizo-
phrenia (Compton et al. 2007; Ross and Peselow 2012). 
Evidence shows that TAAR1 agonists have antipsychotic, 

Fig. 1  A schematic diagram 
of the mechanism underlying 
the role of TAAR1 in regulat-
ing psychostimulant addiction
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antidepressant-like, and pro-cognitive properties (Revel et al. 
2013). The partial agonists RO5203648 and RO5263397 and 
full agonist RO5256390 improved performance of monkey 
in the object retrieval task, suggesting these compounds 
improved cognition (Revel et al. 2013, 2012b). RO5203648 
and RO5263397 but not RO5256390 reduced immobil-
ity time in the forced swimming test. RO5263397 and 
RO5256390 showed antidepressant-like properties in the 
differential reinforcement of low-rate behavior paradigm in 
the monkey (Revel et al. 2012b, 2013). Taken together, both 
the full and partial TAAR1 agonists are potentially effective 
to treat comorbidity of psychostimulant addiction and other 
mental disorders.

Concerns on TAAR1 Agonists for Treating 
Psychostimulant Addiction

The Abuse Potential of TAAR1 Agonists

Before concluding that TAAR1 agonists are promising 
therapeutic candidates for treating psychostimulant addic-
tion, the addictive properties of TAAR1 agonists should be 
addressed. TAAR1 agonist RO5263397 alone did not induce 
CPP or conditioned place aversion in rats (Thorn et al. 
2014a). Rats did not self-administer RO5263397 when sub-
stituting RO5263397 for METH in the self-administration 
task (Pei et al. 2017). In addition, RO5262297 and TAAR1 
agonist RO5256390 did not decrease the responding in the 
intracranial self-stimulation (Pei et al. 2015). Taken together, 
current data suggest that RO5263397 has no abuse poten-
tial in the examined preclinical models. It should be noted 
that using preclinical models to assess the abuse potential 
of compounds in humans have its limitations and their true 
abuse liability can only be determined in humans.

TAAR1 Agonists Promote Wakefulness and Reduce 
Sleep

The TAAR1 partial agonists RO5263397 and RO5203648 
dose-dependently increased the latency to sleep onset and 
promoted wakefulness without affecting locomotor activity 
in rats and mice (Pei et al. 2017; Revel et al. 2012b, 2013). 
RO5263397 also promoted wakefulness without affecting 
the locomotor activity or producing a cognitive deficit in 
Cynomolgus macaques (Goonawardena et al. 2019). In con-
trast to TAAR1 partial agonists, the full-agonist RO5256390 
did not affect the amount of wakefulness or architectures 
of sleep components (Revel et al. 2013). RO5256390 and 
RO263397 showed therapeutic effects in reduction of cata-
plexy in the Alm-pretreated Atax mice and DTA Dox(−) 
mice, two different mouse models of narcolepsy (Black et al. 
2017). It should be noted that RO5256390 is a full agonist M
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in rats, monkeys, and humans, but may be likely a partial 
agonist in mice, since the intrinsic activity of RO5226390 in 
mice is relatively low (79%) (Revel et al. 2013). These stud-
ies strongly suggested that TAAR1 agonists, especially the 
partial agonists, are promising wake-promoting therapeutics.

However, although the wake-promoting properties 
of TAAR1 agonists would benefit patients with narcotic, 
it could be a serious problem when applying the TAAR1 
agonists to treat psychostimulant addiction. It is common 
that patients abusing drugs have sleep problems and suffer 
insomnia, especially in the abstinence period (Grau-Lopez 
et al. 2016; Chakravorty et al. 2018). The TAAR1 agonists 
that increase waking and reduce sleep could worsen sleep 
problems of patients with psychostimulant addiction. Since 
the TAAR1 full agonists showed little or no effects on wake-
fulness, we suggested that TAAR1 full agonists are more 
appropriate than partial agonists to treat psychostimulant 
addiction in patients suffering insomnia.

Species‑Dependent Stereoselectivity of TAAR1

The role of TAAR1 in the development of psychostimulant 
addiction and relapse may be species-dependent. Evidence 
showed that the TAAR1 shows species-dependent stereose-
lectivity for its ligands (Reese et al. 2007). For example, 
the isomers of AMPH, METH, and hydroxyamphetamine 
induced different levels of cAMP accumulation in HEK293 
cells expressing mTAAR1, rTAAR1, and hTAAR1 (Reese 
et al. 2007). Presumably, less potent the isomers of ampheta-
mines on TAAR1, more dependent on their other targets to 
produce their effects. Furthermore, dopamine is also an ago-
nist of TAAR1 (Bunzow et al. 2001). Therefore, the species-
dependent stereoselectivity of TAAR1 may affect the role of 
dopamine and the development of amphetamines addition. 
Accordingly, the different potencies of amphetamines on 
TAAR1 across species may cause slight different functions 
of TAAR1 in amphetamines addiction.

This species-dependent stereoselectivity may also be 
important for developing TAAR1 agonists to treat psycho-
stimulant addiction. Espinoza et al. showed that RO5263397 
shows 392-fold higher potency at the mTAAR1 compared 
to hTAAR1 in vitro (Espinoza et al. 2018). As mentioned 
above, the TAAR1 full-agonist RO5256390 may not always 
be a full agonist across species (Revel et al. 2013). Thus, the 
species-dependent stereoselectivity of TAAR1 might result 
in translational discrepancies from preclinical studies to 
clinical application. Based on this consideration, future stud-
ies are required to clarify the correlation between TAAR1 
activation and psychostimulant addiction in humans. Moreo-
ver, other species such as rhesus monkeys that is genetically 
close to human could be considered in assessing the efficacy 
of TAAR1 agonist in the future.

In Conclusion

Growing evidence strongly shows that TAAR1 plays an 
important neurophysiological role in regulating monoam-
inergic activity and psychostimulant addiction. Although the 
detailed mechanisms of TAAR1 and its agonists’ actions 
remain unclear, considerable preclinical studies have demon-
strated the effectiveness of TAAR1 agonists in treating psy-
chostimulant addiction. Although there is currently no clini-
cal trial to test the potential of TAAR1 agonist in treating 
psychostimulant addiction, the TAAR1 agonist SEP363856 
(Sunovion) and RO6889450 (Hoffmann-La Roche) are 
under phase 2 clinical trials for the treatment of patients 
with schizophrenia. It is predicted that a great deal of criti-
cal information could be obtained from these clinical trials 
for the translation of TAAR1 agonists to treat psychostimu-
lant addiction. It should also be noted that there are several 
potential concerns such as species-dependent effects, abuse 
liability, and potential sleep deprivation about the clinical 
use of TAAR1 agonists.
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