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Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily 
conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant 
trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Acti-
vation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have 
revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. 
In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists 
are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal 
innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis 
pathways, and functions.

Keywords Trace amine-associated receptor (TAAR) · G protein-coupled receptor (GPCR) · Olfactory receptor · Agonist · 
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Introduction

Trace amine-associated receptors (TAARs) constitute a 
distinct subfamily of class A G protein-coupled receptors 
(GPCRs) (Lindemann and Hoener 2005). There are six 
functional TAARs in human, 15 in mouse, 17 in rat, and 
112 in zebrafish (Hussain et al. 2009; Lindemann et al. 
2005). The number of Taar genes varies in other vertebrate 
species revealed by genome-wide search, showing a rela-
tively large expansion in teleosts (Azzouzi et al. 2015; Eyun 
et al. 2016; Gao et al. 2017; Hashiguchi and Nishida 2007; 
Hussain et al. 2009; Tessarolo et al. 2014). Among all the 

TAARs, TAAR1 is mainly expressed in different regions of 
the brain, while low expression of TAAR1 is also observed 
in other tissues (stomach, intestines, testes, leukocytes, et al.) 
(Rutigliano et al. 2017). In contrast, all other TAARs are 
highly expressed in the olfactory system and function as 
olfactory receptors. Thus, all the TAARs except TAAR1 are 
also referred to as olfactory TAARs.

Since the discovery of TAARs, researchers have made 
great progress in identifying the agonists for both non-olfac-
tory and olfactory TAARs. Trace amines are the first com-
pounds characterized as ligands for non-olfactory TAAR1. 
Common trace amines include β-phenylethylamine, para-
tyramine, meta-tyramine, tryptamine, para-octopamine, and 
meta-octopamine (Berry 2004). TAAR1 can also recognize 
other endogenous ligands such as dopamine, serotonin, 
thyroid hormone-derivative 3-iodothyronamine  (T1AM, or 
3IT), and catechol-O-methyl transferase products 3-meth-
oxytyramine (3-MT) (Panas et  al. 2010; Scanlan et  al. 
2004; Sotnikova et al. 2010). In addition, plenty of amine 
derivatives, synthetic compounds, and psychostimulant 
drugs act as TAAR1 agonists. On the other hand, olfac-
tory TAARs specifically recognize amines in vertebrates, 
including monoamines, diamines, and polyamines (Hussain 
et al. 2013; Li et al. 2015; Liberles and Buck 2006; Saraiva 
et al. 2016). Those olfactory TAAR agonists identified by 
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in vitro and in vivo assays are mostly consistent. Olfactory 
TAARs detect their specific agonists with distinct recogni-
tion motifs. In addition, some olfactory TAAR agonists are 
enriched in natural animal specimens, and can elicit distinct 
animal behaviors.

In this review, we aim to comprehensively summarize the 
known agonists for TAARs. We start with a brief summary 
of TAAR evolution and TAAR signaling pathways. Next, the 
agonists for non-olfactory TAAR1 and olfactory TAARs are 
discussed in details. We further provide the current knowl-
edge on the physiological effects of those agonists. We also 
discuss about the biosynthesis pathways of TAAR agonists, 
and the structural basis of TAARs for agonist recognition.

History and Evolution of TAARs

TAARs were initially discovered by two groups in 2001 
(Borowsky et al. 2001; Bunzow et al. 2001). Using a degen-
erate PCR approach, Borowsky et al. identified TAARs in 
mouse, rat, and human with broad tissue expression pat-
terns (Borowsky et al. 2001). The authors originally named 
TAARs as trace amine receptors (short for  TAX) based on 
the fact that two TAAR members  (TA1/TAAR1 and  TA2/
TAAR4) detect a number of trace amines. It is the first time 
to identify a vertebrate GPCR family as receptors detect-
ing trace amines. And this receptor family is distinct from 
trace amine receptor families found in invertebrates (Zucchi 
et al. 2006). In another independent study, Bunzow and col-
leagues performed RT-PCR in multiple cell lines to search 
for catecholamine receptors, leading to the discovery of the 
rat trace amine receptor 1 (rTAR1/TAAR1) (Bunzow et al. 
2001). Similar trace amine agonists as reported by Borowsky 
et al. were identified for rTAR1. In addition, Bunzow et al. 
extended the findings of rTAR1 agonists to psychostimulant 
and hallucinogenic amphetamine, numerous ergoline deriva-
tives, adrenergic ligands, and 3-methylated metabolites of 
the catecholamine neurotransmitters. The following stud-
ies have shown that all the mammalian Taar genes form a 
single cluster in the genome. Therefore, the nomenclature 
of mammalian TAARs was proposed in 2005 based on their 
chromosomal positions, and has been well accepted (Lin-
demann and Hoener 2005). However, Taar genes may be 
located in two or more chromosomes in other vertebrates, 
especially in teleosts. Those Taar genes were named accord-
ing to the evolutionary relationships with mammalian Taar 
genes (Hussain et al. 2009).

Evolutionary studies suggest that Taar genes are distantly 
related to biogenic amine receptors and are most likely 
evolved from 5-hydroxytryptamine receptor 4 (Htr4) (Hashi-
guchi and Nishida 2007; Li and Liberles 2016). However, 
there are still debates about the birth of Taar genes. Some 
researchers believed that the Taar gene family emerged early 

in jawless vertebrates such as sea lamprey (Hashiguchi and 
Nishida 2007; Libants et al. 2009). While others suggested 
that Taar genes originated after the emergence of jawed fish, 
as all the homologous genes in sea lamprey formed a mono-
phyletic clade in the Taar phylogenetic tree. Furthermore, 
those homologous genes lack the canonical TAAR motif 
in the transmembrane α-helix VII, and were named Taar-
like genes (Eyun et al. 2016; Hussain et al. 2009; Li and 
Liberles 2016; Scott et al. 2019). The most ancestral Taar 
genes containing the TAAR motif are uncovered in carti-
laginous fishes, including elephant shark, catshark, white 
shark, whale shark, which are basal to all jawed vertebrates 
(Hussain et al. 2009; Marra et al. 2019; Sharma et al. 2019). 
Nevertheless, the evolutionary relationship of Taar-like, 
Taar, and Htr4 genes still requires further investigation.

The number of functional Taar genes varies among spe-
cies, with 6 in human, 15 in mouse, and 17 in rat. Taar 
genes are largely expanded in teleosts including zebrafish 
(112 Taar genes), suggesting an important role of TAARs 
in aquatic chemosensation. In primates, Taar genes undergo 
accelerated pseudogenization likely associated with their 
arboreal inhabitants (Eyun 2019). Phylogenetic tree con-
struction classified Taar genes into three clades (Ferrero 
et al. 2012; Hussain et al. 2009; Li et al. 2015). Mammalian 
Taar genes are only found in clade I and II, while clade III 
is teleost-specific. In mammals, TAAR1-4 belong to clade I 
receptors and TAAR5-9 belong to clade II receptors. Inter-
estingly, their phylogenetic separation is correlated with the 
distinct agonist preferences for primary or tertiary amines 
(Ferrero et al. 2012). In teleosts, the large expansion of clade 
III TAARs could be resulted from the fish-specific third 
round whole-genome duplication (3R-WGD) and subsequent 
gene duplications and mutations.

TAAR Signaling Pathways

The mRNA of TAAR1 can be detected in a variety of tis-
sues, including brain, kidney, lung and small intestines. In 
the brain, TAAR1 is expressed in several different regions 
such as amygdala, cerebellum, hippocampus, hypothalamus, 
dorsal raphe nucleus, and the nucleus of the solitary tract 
(Borowsky et al. 2001; Lindemann et al. 2008). In contrast, 
all the other TAARs except TAAR1 are highly expressed 
in the main olfactory epithelium (Liberles and Buck 2006). 
Further studies strongly suggest that those TAARs func-
tion as a distinct subfamily of olfactory receptors, which is 
evolutionarily distinct from the classical odorant receptor 
(OR) family (Grus and Zhang 2008). Thus, TAAR1 and all 
the other TAARs are referred to as non-olfactory TAAR 
and olfactory TAARs, respectively. It is worth noting that 
the olfactory TAARs are also found in other tissues, albeit 
with much lower expression levels (Babusyte et al. 2013; 
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Chiellini et al. 2012; Ito et al. 2009; Kubo et al. 2015; Nel-
son et al. 2007).

Due to the different expression patterns, the non-olfactory 
TAAR1 and olfactory TAARs utilize different signaling 
pathways (Fig. 1). TAAR1 is commonly coupled to Gαs, 
which increases the intracellular concentration of cyclic 
adenosine monophosphate (cAMP) and further activates 
downstream signaling molecules (Bunzow et  al. 2001). 
Besides, TAAR1 can also recruit Gαq and Gα13 (Lewin 
et al. 2009; Underhill et al. 2019). On the other side, TAAR1 
activates Gβγ proteins and eventually leads to outward  K+ 
current through G protein-coupled inwardly rectifying potas-
sium (GIRK) channels, reducing the basal firing frequency 

of dopaminergic and serotonergic neurons (Bradaia et al. 
2009; Revel et al. 2011). G protein-independent β-arrestin 
2 cascade is also involved in TAAR1 signaling pathway 
(Fig. 1b) (Harmeier et al. 2015). In the olfactory system, 
TAARs are coupled to the olfactory type Gα proteins 
(Gαolf) that activate adenylyl cyclase type III (ACIII) and 
increase the cAMP production (Liberles and Buck 2006). 
cAMP directly activates the cyclic nucleotide-gated channels 
(CNG channels) to permit  Na+ and  Ca2+ entry, which depo-
larizes olfactory sensory neurons (OSNs). This depolariza-
tion is further amplified by  Cl− efflux through opening of 
calcium-gated chloride channels (CaCCs) (Fig. 1a) (Kaupp 
2010). Extraolfactory signaling pathways of the olfactory 
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Fig. 1  TAAR signal transduction pathways. a The odor-induced 
signaling pathway in OSNs. The binding of odorant agonist to the 
olfactory TAARs activates Gαolf, ACIII, CNG channel, and CaCC, 
resulting in neuron depolarization. b Other signaling pathways of 
non-olfactory TAAR1 and ectopically expressed olfactory TAARs. 
There are G protein-dependent (Gα- and Gβγ-dependent) and G 
protein-independent pathways. Left, almost all TAARs activate Gαs 
and AC to increase cAMP levels. Some TAARs are coupled to Gαi, 

Gαq/11, Gα12/13 cascades. Middle, TAAR1 can also active GIRK chan-
nels through Gβγ proteins. Right, activation of TAAR1 is able to 
recruit G protein-independent pathways that signal through β-arrestin. 
Gαolf olfactory-specific guanosine triphosphate (GTP)-binding pro-
tein α subunit, ACIII adenylyl cyclase type III, CNG channels cyclic 
nucleotide-gated ion channels, CaCC calcium-activated chloride 
channels, GIRK channels G protein-coupled inwardly rectifying 
potassium channels
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TAARs are slightly different from those in the olfactory 
system (Fig. 1b). In the other tissues, majority of the olfac-
tory TAARs are coupled to Gαs. However, there are reports 
showing that some olfactory TAARs are coupled to different 
Gα proteins. For instance, basal activity of TAAR8 might be 
mediated by Gαi to reduce the cAMP levels in heterologous 
cells (Muhlhaus et al. 2014). Activation of TAAR5 could 
also lead to Gαq/11- and Gα12/13-dependent MAP kinase 
cascades (Dinter et al. 2015c). Interestingly, TAAR2 can 
form heterodimer with TAAR1 in polymorphonuclear neu-
trophils (PMN) that is required for the chemotactic response 
(Babusyte et al. 2013). The signaling of TAAR1–TAAR2 
heterodimer may be switched to Gαi cascade (Malki et al. 
2015). In a word, the signaling pathways of TAARs are more 
complicated than previously thought and acquire careful 
investigation in different systems.

Agonists of Non‑olfactory TAAR1

The agonists of TAARs were mainly identified in the heter-
ologous cell lines based on the Gαs-coupled signaling path-
ways (Li 2018). Among all the TAARs, TAAR1 is the first 
subtype whose agonists have been thoroughly investigated. 
TAAR1 has a broadly tuned agonist profile that includes 
trace amines, classical biogenic amines, thyronamines, psy-
chostimulant drugs, and synthetic amine derivatives. So 
far, more than 50 agonists have been identified or synthe-
sized for TAAR1 (Fig. 2). The affinities and efficacies of 
different agonists for TAAR1 from different species vary 

tremendously, with  EC50 ranging from 5 nM to 50 μM. For 
a more detailed discussion of TAAR1 agonists, we recom-
mend several recently published excellent reviews (Berry 
et al. 2017; Cichero and Tonelli 2017b; Gainetdinov et al. 
2018; Rutigliano et al. 2017; Schwartz et al. 2018). In this 
study, we only select some high-affinity TAAR1 agonists 
for brief discussion.

Trace Amines

Trace amines are the first endogenous products character-
ized as TAAR1 agonists (Borowsky et  al. 2001). Trace 
amines were named because of their much lower concen-
tration (< 10 ng/g tissue) that are at least 100-fold lower 
than canonical biogenic amines like dopamine, epineph-
rine, norepinephrine, and serotonin in the brain (Berry 
2004; Boulton 1974). Trace amines and classical biogenic 
amines have similar structures and pharmacologic proper-
ties. Their biosynthesis and metabolism pathways are also 
very alike, utilizing the same aromatic l-amino acid decar-
boxylase (AADC) and Monoamine oxidase (MAO) enzymes 
(Cichero and Tonelli 2017b). Since the two groups inde-
pendently discovered TAAR1 in 2001, people have real-
ized that trace amines are high-affinity TAAR1 agonists 
(Borowsky et al. 2001; Bunzow et al. 2001). Those trace 
amines consist of β-phenylethylamine, para-tyramine, 
tryptamine, and para-octopamine. In the heterologous 
cell lines, β-phenylethylamine and para-tyramine activate 
TAAR1 from different species (mouse, rat, and human) with 
the lowest  EC50 in the range of 0.1–1 μM (Fig. 2). However, 
 EC50 values for tryptamine and para-octopamine are 0.4–21 
μM and 2–20 μM, respectively (Fig. 2). Trace amines can 
regulate the dopaminergic, serotoninergic, and adrenergic 
systems in the brain (Berry 2004). In addition, trace amines 
can function in the peripheral organs to regulate vasocon-
strictor and vasodilator responses (Anwar et al. 2012; Broad-
ley et al. 2013), induce gastrin release (Dial et al. 1991), and 
enhance the ability of microbiota to adhere to epithelial cells 
(Fernandez de Palencia et al. 2011; Luqman et al. 2018). 
However, it is still unclear if those effects of trace amines 
are mediated by TAAR1.

Other Endogenous Ligands

Apart from trace amines, TAAR1 can also be activated by a 
range of endogenous molecules including thyroid hormone-
derivative  T1AM and 3-MT (Panas et al. 2010; Scanlan et al. 
2004; Sotnikova et al. 2010). Besides, classical biogenic 
amines such as dopamine and serotonin are able to activate 
TAAR1, although in a much less potent manner (Fig. 2) 
(Borowsky et al. 2001).

Like trace amines,  T1AM is present in many rodent tis-
sues (heart, liver, kidney, white adipose, skeletal muscle, 

Fig. 2  Summary of agonists for TAAR1 in rat, mouse, and human. 
TAAR1 agonists are categorized into endogenous ligands, selected 
psychoactive ligands, and selective synthetic compounds. A selective 
inverse agonist EPPTB for TAAR1 is also included. Data are modi-
fied from Gainetdinov et al. (2018).  EC50 and  Ki are shown in micro-
molar, and the values for efficacy are calculated using the maximal 
cAMP levels of rat TAAR1 response to β-phenylethylamine as 100. 
 IC50 values of EPPTB are presented in lieu of  EC50 values. Blue, 
red, and green colors represent rat, mouse, and human, respectively. 
Circle and triangle denote  EC50 and  Ki values. MDMA 3,4-methyl 
enedioxy methamphetamine, MDA 3,4-methylene dioxy ampheta-
mine, 4-APB 4-(2-aminopropyl)benzofuran, 5-APB 5-(2-amino-
propyl)benzofuran, 6-APB 6-(2-aminopropyl)benzofuran, 7-APB 
7-(2-aminopropyl)benzofuran, 6-APDB 6-aminopropyl-2,3-dihy-
drobenzofuran, 2C-B 2,5-dimethoxy-4-bromo-phenethylamine, 
2C-B-Fly 8-bromo-2,3,6,7-benzo-dihydro-difuranethylamine, 2C-
E 4-ethyl-2,5-dimethoxyphenethylamine, 2C-H 2,5-dimethoxy-
phenethylamine, 2C-P 2,5-dimethoxy-4-propyl-phenethylamine, 
DMT N,N-dimethyltryptamine, LSD lysergic acid diethylamide, 
2C-T-3 2,5-dimethoxy-4-(beta-methallyl)thiophenethylamine, 
2C-T-7 2,5-dimethoxy-4-(n)-propylthiophenethylamin, 2C-T-19 
2,5-dimethoxy-4-n-butylthiophenethylamine, 2C-T-31 2,5-dimeth-
oxy-4-(4-trifluoromethylbenzylthio)phenethylamine, m-CPP m-chlo-
rophenylpiperazine, TFMPP trifluoromethylphenylpiperazine, 2-AI 
2-aminoindane, N-methyl-2-AI N-methyl-2-aminoindane, 5-IAI 
5-iodo-2-aminoindane, MDAI 5,6-methylenedioxy-2-aminoindane

◂
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stomach, lung, and brain) as well as human blood at nanomo-
lar levels (Assadi-Porter et al. 2018; Hoefig et al. 2011; Saba 
et al. 2010; Zucchi et al. 2014). It can affect learning, mem-
ory, pain perception, sleep, thermoregulation, energy metab-
olism, neuroprotection, and neuromodulation (Kohrle and 
Biebermann 2019).  T1AM is high-affinity agonist of TAAR1 
with  EC50 range from 0.01 to 1.7 μM (Fig. 2) (Scanlan et al. 
2004). However, TAAR1 is not the sole target of  T1AM. 
It has been reported that  T1AM acts as an inverse agonist 
for human TAAR5 (Dinter et al. 2015c). It also activates 
TAAR2 (Babusyte et al. 2013; Cichero and Tonelli 2017a), 
and other transmembrane receptors, such as α2A adrenergic 
receptors (Dinter et al. 2015a, b), β-adrenergic receptors 
(Dinter et al. 2015a; Kleinau et al. 2011), and muscarinic 
acetylcholine receptors (Laurino et al. 2016). Thus, the pro-
miscuous nature of  T1AM calls for further careful investiga-
tion into the involvement of its targets including TAAR1.

Psychostimulant Drugs

Psychostimulant drugs like amphetamines, metham-
phetamine (METH), and numerous ergoline derivatives 
are also potent agonists for TAAR1 (Bunzow et al. 2001; 
Simmler et al. 2016). Amphetamine, i.e., alpha-methyl-
phenethylamine, has an extra methyl group compared to 
β-phenylethylamine. It has been used for treatment of atten-
tion deficit hyperactivity disorder (ADHD) and narcolepsy 
(Heal et al. 2013). The primary actions of amphetamine are 
to promote monoamine release, inhibit monoamine reup-
take, and probably inhibit MAO, which in turn increase the 
synaptic concentrations of catecholamines including nor-
epinephrine and dopamine (Heal et al. 2013). The effects 
of amphetamine on reward, cognition, and physical perfor-
mance result in amphetamine abuse and addiction (Clemow 
and Walker 2014; Rickli et al. 2019). Amphetamine might 
act on TAAR1 to activate Gαs pathway and phosphorylate 
monoamine transporter such as dopamine transporter (DAT), 
leading to its internalization and ceased transport (Bun-
zow et al. 2001; Miller 2011). Behaviorally, knockout of 
TAAR1 in mice leads to locomotor supersensitivity induced 
by amphetamine, although the connection to regulation of 
monoamine system is undetermined and needs further inves-
tigation (Achat-Mendes et al. 2012; Lindemann et al. 2008).

Synthetic TAAR1 Agonists

In addition to the endogenous amines, there are plenty of 
synthetic compounds targeting TAAR1 for therapeutic appli-
cation. Considering that many of the endogenous TAAR1 
ligands have other targets, it is necessary to search and design 
specific TAAR1 agonists to decipher and specifically modu-
late the function of TAAR1. Different synthetic substances 
have been screened by F. Hoffmann-La Roche Ltd., leading 

to the identification of five selective agonists for TAAR1. 
Those agonists include RO5166017 [(S)-4-[(ethyl-phenyl-
amino)-methyl]-4,5-dihydro-oxazol-2-ylamine], RO5073012 
[(4-chloro-phenyl)-(3H-imidazol-4-ylmethyl)], RO5203648 
[(S)-4-(3,4-Dichloro-phenyl)-4,5-dihydro-oxazol-2ylamine], 
RO5256390 [(S)-4-((S)-2-phenyl-butyl)-4,5-dihydro-oxazol-
2-ylamine], and RO5263397 [(S)-4-(3-fluoro-2-methyl-
phenyl)-4,5-dihydro-oxazol-2-ylamine] (Galley et al. 2012; 
Revel et al. 2011, 2012, 2013). On the other hand, a selective 
TAAR1 antagonist, N-(3-Ethoxyphenyl)-4-pyrrolidin-1-yl-
3-trifluoromethyl-benzamide (EPPTB), was described in 
2009 (Bradaia et al. 2009).

All the selective TAAR1 agonists and antagonist have 
been used in several studies to unravel the physiological 
function of TAAR1 in the brain. TAAR1 agonists includ-
ing RO5166017, RO5256390, and RO5263397 have proven 
to prevent psychostimulant-induced hyperlocomotion and 
stress-induced hyperthermia (Revel et  al. 2011, 2013). 
Another TAAR1 partial agonist, RO5203648, showed clear 
antipsychotic- and antidepressant-like activities (Revel et al. 
2012). RO5256390 has been shown to block the compulsive, 
binge-like eating behavior in rats (Ferragud et al. 2017). In 
addition, these selective agonists have been reported to sup-
press self-stimulation and compulsive behaviors induced by 
drugs including cocaine, METH, and nicotine (Cotter et al. 
2015; Jing et al. 2014; Liu et al. 2018; Pei et al. 2014, 2015, 
2017; Revel et al. 2012; Xue et al. 2018). Collectively, the 
synthetic TAAR1 agonists and antagonists have provided 
valuable tools to investigate the function of TAAR1, and 
have shed light on targeting TAAR1 for the treatment of 
mental disorders and drug addictions.

In addition, the selective TAAR1 agonists have been 
used to investigate the role of TAAR1 in other systems. 
Activation of TAAR1 by RO5166017 and RO5256390 
promotes glucose-dependent insulin secretion in β-cells 
lines and human islets. Furthermore, treatment of the selec-
tive TAAR1 agonist in obese mice results in reduced food 
intake and body weight, suggesting the potential application 
of TAAR1 agonists for treatment of diabetes and obesity 
(Michael et al. 2019; Raab et al. 2016). Another TAAR1 
agonist RO5203548 has been shown to increase TAAR1 
expression and may be associated with miscarriages (Stav-
rou et al. 2018). Future application of the synthetic TAAR1 
agonists will help to reveal the function of TAAR1 in a vari-
ety of systems.

Olfactory TAAR Agonists

All TAARs except TAAR1 are highly expressed in OSNs 
located in the main olfactory epithelium and function as a 
distinct family of olfactory receptors (Johnson et al. 2012; 
Liberles and Buck 2006; Pacifico et al. 2012). Like the 
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classical ORs, TAARs also follow the “one-neuron-one-
receptor” rule, meaning that one and only one TAAR is 
expressed in each OSN (Liberles and Buck 2006; Serizawa 
et al. 2004). TAARs utilize the same signaling pathways as 
ORs (Fig. 1a) (Liberles and Buck 2006; Zhang et al. 2013). 
Furthermore, TAARs respond to a specialized set of chemi-
cals, instruct OSNs to dedicated olfactory bulb regions, and 
mediate distinct animal behaviors, strongly suggesting that 
they constitute a specific olfactory subsystem (Johnson et al. 
2012; Liberles and Buck 2006; Pacifico et al. 2012). As a 
note, the olfactory TAARs are also ectopically expressed in 
other tissues but with much lower expression levels, and will 
not be discussed in this review.

Olfactory TAAR Agonists Identified In Vitro

Using an in  vitro heterologous system, Liberles and 
Buck performed a high-throughput screening of structur-
ally diverse chemicals on mammalian olfactory TAARs 
and identified ligands for 4 mouse TAARs, all of which 
are volatile amines (Liberles and Buck 2006). In the fol-
lowing studies, several groups have identified ligands for 
many additional TAARs (Ferrero et al. 2012; Saraiva et al. 
2016). So far, agonists for 16 mammalian olfactory TAARs, 
including 8 mouse TAARs, 6 rat TAARs, 1 macaque TAAR, 
and 1 human TAAR, have been identified using cAMP-
based screening assays. Those TAARs recognize differ-
ent volatile amines with  EC50 values ranging from 0.032 
to 650 μM (Fig. 3a, b). The most sensitive TAAR agonists 
include isoamylamine/isobutylamine (mouse TAAR3), 
β-phenylethylamine (mouse and rat TAAR4), trimethyl-
amine (mouse, rat, macaque, and human TAAR5), N,N-
dimethyloctylamine (mouse TAAR7b), N,N-dimethylcy-
clohexylamine (mouse TAAR7f), and N-methylpiperidine 
(rat TAAR8c) (Fig. 3a, b). In zebrafish, agonists for 12 out 
of 112 TAAR members have been discovered. As previously 
stated, zebrafish TAARs are phylogenetically clustered into 
clade I and clade III. Deorphaned clade I olfactory TAARs 
include TAAR10a, TAAR10b, TAAR12h, and TAAR12i 
that detect serotonin, tryptamine, β-phenylethylamine, and 
3-MT. TAAR16c, TAAR16e, and TAAR16f belong to clade 
III TAARs and are able to detect N-methylpiperidine, N,N-
dimethylcyclohexylamine, and isoamylamine, respectively. 
Other clade III TAARs, such as TAAR13a, TAAR13c, 
TAAR13d, TAAR13e, and TAAR14d recognize diamines 
including putrescine, cadaverine, histamine, and agmatine 
(Figs. 3, 4c) (Hussain et al. 2013; Li et al. 2015). Interest-
ingly, a recent paper showed that a TAAR-like receptor, 
TAAR348 in sea lamprey, can be activated by spermine and 
its structural analog 1-naphthylacetyl spermine (nap-sper-
mine). The authors also reported that another sea lamprey 
TAAR-like receptor, TAAR346a, responds to cadaverine 
(Scott et al. 2019). 

In Vivo Responses of Olfactory TAAR Agonists

The in vivo recordings of TAAR OSNs and their corre-
sponding glomeruli validated TAAR ligands discovered 
in vitro, although they are more sensitive and more broadly 
tuned to different amines, especially at high concentrations 
(Zhang et al. 2013). TAAR OSNs are preferentially respon-
sive to amine mixtures rather than other odorant mixtures, 
such as acids, aldehydes, and ketones. Further analysis on 
the responses of TAAR OSNs to different amines showed 
that they are very broadly tuned to amines. For example, the 
most effective stimuli for TAAR3 OSNs are isoamylamine 
and cyclohexylamine. But TAAR3 OSNs also responded to 
β-phenylethylamine, the most sensitive TAAR4 agonist, as 
well as trimethylamine, the most sensitive TAAR5 agonist 
(Zhang et al. 2013). The same phenomenon was observed 
using the in vivo imaging and behavioral assays. Low con-
centrations of isoamylamine, β-phenylethylamine, and tri-
methylamine specifically activate the TAAR3, TAAR4, and 
TAAR5 glomeruli, respectively. In contrast, the same ligands 
elicit responses in a number of distinct TAAR glomeruli 
with increasing concentrations (Dewan et al. 2018). Consist-
ent with this finding, deletion of the Taar cluster (Taar2-9) 
causes more severe deficits in amine detection than loss of 
the most sensitive TAAR. However, knockout of the most 
sensitive TAAR does reduce the behavioral sensitivity to its 
ligand. Those results strongly suggest that although olfactory 
TAARs are broadly tuned; the ligand detection threshold is 
set by the single highest affinity TAAR (Dewan et al. 2018).

The detection thresholds for TAAR agonists in  vivo 
are much lower than those in cultured cells (Table 1). For 
instance, TAAR4 OSNs recognize β-phenylethylamine 
with  EC50 at 1  pM, while TAAR4 is activated by 
β-phenylethylamine with  EC50 at 0.7 μM in vitro (Zhang 
et al. 2013). Similar findings were observed in TAAR-like 
receptors. Spermine activates sea lamprey TAAR348, the 
TAAR-like receptor, at concentrations higher than 1 μM, but 
attracts females at concentrations as low as 0.01 pM (Scott 
et al. 2019). The differences in specificity and sensitivity 
of TAAR ligands between the in vitro and in vivo assays 
may be partly due to lack of endogenous OSN proteins in 
the cultured cells. It is also possible that immature TAAR 
OSNs co-expressing multiple TAARs can recognize differ-
ent ligands and were included in the analyses (Tan et al. 
2015). Nevertheless, the most sensitive ligands identified 
are consistent across different experimental paradigms, and 
are validated in the knockout animals that will be discussed 
in the sections below.

Recognition Motifs of Olfactory TAAR Agonists

As previously mentioned, TAARs can be classified into 
three clades. Both clade I and II TAARs contain an aspartic 
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human, and zebrafish. The table shows the names (a) and structures 
(b) of agonists for TAARs from different species. The numbers in 
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acid on the third transmembrane α-helix  (Asp3.32; Balles-
teros–Weinstein indexing) forming a salt bridge with the 
ligand amino group, which is also highly conserved in bio-
genic amine receptors, while almost all of the teleost-spe-
cific clade III TAARs lack the  Asp3.32 residue and evolve a 
non-canonical ligand recognition motif on the fifth trans-
membrane α-helix  (Asp5.42). As a result, clade III TAARs 
can also recognize monoamines similar to clade I and II 
TAARs, but with an inverted recognition manner. In addi-
tion, there are several clade III TAARs that have both  Asp3.32 
and  Asp5.42, and acquire the ability to detect diamines con-
taining two amino groups (Li et  al. 2015). Mammalian 
TAAR6 and TAAR8 family members also have a similar 
diamine binding site,  Asp3.32 and  Asp5.43 (Li et al. 2015). 
Consistent with this observation, a study based on homol-
ogy modeling and molecular docking showed that diamines 
(putrescine and cadaverine) could bind to human TAAR6 
and TAAR8 (Izquierdo et al. 2018). However, the exper-
imental evidence is still lacking. It is not clear if  Asp5.43 
in TAAR6 and TAAR8 is involved in interacting with the 
ligand amino group similar to  Asp5.42 in clade III TAARs. 
On the other side, TAAR9 is able to detect monoamines 
(N,N-dimethylcyclohexylamine, N-methylpiperidine, and 
triethylamine), diamines (cadaverine), and polyamines (sper-
midine and spermine) (Fig. 3) (Saraiva et al. 2016). TAAR9 
retains the canonical  Asp3.32, but lacks either  Asp5.42 or 
 Asp5.43. It would be interesting to reveal the structural basis 
of TAAR9 that stabilizes multiple amino groups. A TAAR-
like receptor in sea lamprey can also recognize polyamines 
(spermine, nap-spermine) and diamines (cadaverine) (Scott 

et al. 2019). Again, this receptor only has  Asp3.32, and other 
recognition motifs for the amino group are unknown.

Aside from the key acidic amino acids that form salt 
bridge with the ligand amino group, there are various impor-
tant residues in the transmembrane domains of TAARs that 
constitute the ligand binding pockets. Combining homol-
ogy modeling and mutagenesis experiments, Ferrero et al. 
found that the amino acid at 3.37 is another ligand contact 
site functioning as a selectivity filter. Swapping the corre-
sponding amino acids at 3.37 together with 3.38 dramati-
cally reversed the ligand responsiveness of TAAR7e and 
TAAR7f (Ferrero et al. 2012). In addition, a ligand-gating 
residue,  Asp6.58, has been reported to function as the key 
allosteric binding site in zebrafish TAAR13c. Single muta-
tions from  Asp6.58 to other residues (Glu, Ala, and Asn) con-
vert TAAR13c to supersensitive receptors with increased 
affinity to cadaverine. Surprisingly, those mutations could 
rescue the response of a  Asp3.32 mutant to cadaverine, sug-
gesting the concomitant effect of orthostatic and allosteric 
binding sites (Sharma et al. 2016, 2018).

Animal Behaviors Elicited by Olfactory TAAR 
Agonists

Some olfactory TAAR ligands are volatile amines that 
are formed by decarboxylation of amino acids (Fig. 4). 
They can be found in decaying foods and animal body 
fluids. For instance, urine samples from many species 
can active a number of TAARs, such as TAAR3, TAAR4, 
TAAR5, TAAR7f, TAAR8c, and TAAR9 (Dewan et al. 

Table 1  Comparison of  EC50 
values for recognition of TAAR/
TAAR-like agonists determined 
in cell cultures, in TAAR OSNs, 
in TAAR glomeruli, and in 
behavior tests

The TAAR agonists solely determined by in vitro assays are not listed in the table. Agonists with the most 
high-affinity are given in italics. Data are taken from these papers (Dewan et al. 2018; Saraiva et al. 2016; 
Scott et al. 2019; Zhang et al. 2013)
nr no response

Receptor Ligands In vitro EC50 (M)

Electrophysiological 
recordings of OSNs

TAAR 
glomeruli 
imaging

Behavior test

Mouse TAAR3 Isoamylamine 1.0 × 10−5 1.5 × 10−8 4.1 × 10−10 5.9 × 10−10

Cyclohexylamine 7.0 × 10−6 2.7 × 10−7

β-phenylethylamine 4.0 × 10−5 1.9 × 10−10

Trimethylamine n.r. 7.9 × 10−7

Mouse TAAR4 β-phenylethylamine 7.0 × 10−7 1.0 × 10−12 1.4 × 10−11 5.0 × 10−12

Cyclohexylamine n.r. 7.7 × 10−10

N-methylpiperidine n.r. 5.1 × 10−10

Isoamylamine n.r. 9.9 × 10−9

Trimethylamine n.r. 4.7 × 10−7

Mouse TAAR5 Trimethylamine 7.0 × 10−7 3.1 × 10−8 2.6 × 10−8

Sea lamprey 
TAAR348 
(TAAR-like)

Spermine 3.4 × 10−5 < 10−14
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2013; Ferrero et al. 2011; Li et al. 2013; Liberles and Buck 
2006). Therefore, it is conceivable that those amines may 
mediate animal social communications through the TAAR 
olfactory subsystem. Indeed, several TAAR agonists can 
mediate instinctive animal behaviors, including sexual 
attraction, predator avoidance, and aversive response, 
which are critical for animal survival and reproduction. 
Furthermore, the TAAR olfactory system has been pro-
posed to regulate migratory and homing behaviors in 
teleost fish, as the expression levels of teleost TAARs 
and projection patterns of TAAR-expressing neurons are 
developmentally and environmentally regulated (Churcher 
et al. 2015; Fatsini et al. 2016; Shao et al. 2017; Tessarolo 
et al. 2014). Intriguingly, some of the TAAR agonists even 
evoke species-specific behaviors. In this study, we will 
summarize the endogenous sources of different TAAR 
agonists and their induced animal behaviors.

Isoamylamine, the selective TAAR3 agonist, can be 
detected in male mouse urine and putrid meat (Barger and 
Walpole 1909; Nishimura et al. 1989). It is produced from 
leucine by leucine decarboxylase in commensal microbi-
ota (Fig. 4a) (Haughton and King 1961). Another TAAR3 
agonist, isobutylamine, is also found in male mouse urine 
(Nishimura et al. 1989). In female mice, the production of 
isobutylamine varies during the estrus cycle with a peak 
during estrus (Harmeier et al. 2018). Fish spoilage also 
produces isobutylamine, which may act as a key spoilage 
indicator (Bai et al. 2019). It can be produced from valine 
by valine decarboxylase and further metabolized to other 
derivatives such as isobutylhydroxylamine and valanimycin 
(Fig. 4a) (Garg et al. 2002, 2008). Isoamylamine and isobu-
tylamine were reported to induce puberty in female mice, 
although this effect is still in debate (Nishimura et al. 1989; 
Price and Vandenbergh 1992). In the behavioral experi-
ments, mice display avoidance to isoamylamine, which is 
abolished in the Taar cluster knockout mice (Dewan et al. 
2013). Interestingly, the mouse behavior toward isoamyla-
mine is concentration-dependent, showing attraction at 
lower concentrations less than 1 mM (Saraiva et al. 2016). 
Isobutylamine attracts male mice, and the attraction behavior 
is abolished in the Taar cluster knockout mice (Harmeier 
et al. 2018). A recent study showed that deletion of TAAR3 
causes 6.3-fold decrease in detection sensitivity to isoamyla-
mine in mice (Dewan et al. 2018). Unfortunately, the authors 
did not perform the valence behavioral tests on the TAAR3 
knockout mice, so it is still unclear if the attraction/aver-
sion behaviors induced by isoamylamine and isobutylamine 
are mediated by TAAR3. Interestingly, a study found that 
MHC-dependent mate choice for males is likely associated 
with TAAR3 genotype in female bats (Santos et al. 2016). 
And the same group reported that MHC-dependent mate 
choice in raccoons is also linked to the TAAR loci (Santos 
et al. 2018). However, it requires further studies to validate 

the casualty of mate choice behaviors and TAARs in differ-
ent species.

β-phenylethylamine, the high-affinity TAAR4 ago-
nist, is enriched in the urine of numerous carnivores with 
concentrations varying from 2 to 340 μM. The average 
β-phenylethylamine levels in urine samples from carni-
vores are > 500-fold higher than those from herbivores 
(Ferrero et al. 2011). β-phenylethylamine is synthesized 
from phenylalanine decarboxylation, which is catalyzed by 
enzymes involving AADC in animals, phenylalanine decar-
boxylase, and tyrosine decarboxylase in microbes (Fig. 4a) 
(Marcobal et al. 2012; Sim et al. 2015). Phenylalanine is 
an essential amino acid that is not synthesized de novo 
and can only be supplied in diet. Thus, the difference of 
β-phenylethylamine levels in the urine samples could be 
explained by the difference in diet and/or phenylalanine 
metabolism (Ferrero et al. 2011). Behaviorally, rodents avoid 
β-phenylethylamine to a similar extent as predator urine, and 
depletion of β-phenylethylamine from predator urine dimin-
ished the avoidance behavior (Dewan et al. 2013; Ferrero 
et al. 2011). Although β-phenylethylamine activates both 
TAAR1 and TAAR4, knockout of TAAR4 in mouse greatly 
decreases the detection sensitivity of β-phenylethylamine 
and is sufficient to eliminate the aversive behavioral response 
(Dewan et al. 2013, 2018). These data strongly suggest that 
β-phenylethylamine is a predator-associated odor activating 
TAAR4-expressing neurons to repel rodents. Interestingly, 
β-phenylethylamine has been proposed as a tiger pheromone 
(Brahmachary and Dutta 1979). However, it is unknown if 
β-phenylethylamine is indeed an agonist for tiger TAAR4 
and could induce tiger social behaviors.

Trimethylamine, the most sensitive TAAR5 agonist, 
is secreted into the animal urine in a species- and sex-
dependent manner. The levels of trimethylamine are more 
than 1000-fold higher in mouse than in rat and human. In 
addition, male mice produce about 30-fold higher levels 
of trimethylamine than female mice (Li et al. 2013). The 
trimethylamine biosynthesis pathway involves a two-step 
route. Trimethylamine is initially derived via metabolism 
of dietary choline, L-carnitine, and betaine by gut flora 
(Chhibber-Goel et al. 2016; Janeiro et al. 2018). Flavin-
containing monooxygenase 3 (FMO3) expressed in the liver 
and kidney further oxidizes trimethylamine into the odorless 
trimethylamine oxide (Fig. 4b) (Cashman 2002; Fennema 
et al. 2016; Li et al. 2013). The species- and sex-dependent 
trimethylamine production can be explained by the varied 
expression levels of FMO3 in different species and sexes. In 
mouse, FMO3 is expressed at > 1000-fold higher levels in 
female than male, producing male-enriched trimethylamine 
and female-enriched trimethylamine oxide. In contrast, 
FMO3 is expressed at high levels in rat without sex differ-
ence. Humans normally produce very low or undetectable 
levels of trimethylamine. However, patients with the genetic 
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disease trimethylaminuria (also known as ‘fish malodor syn-
drome’) have an abnormally large quantities of trimethyl-
amine excreted in urine, sweat, and breath, which strongly 
impacts the quality of their social life (Fennema et al. 2016). 
The underlying basis for this disease is a missense muta-
tion in the catalytic domain of FMO3 (Dolphin et al. 1997). 
Coincident with its biosynthesis, trimethylamine evokes 
species-specific behaviors (Li et al. 2013). Trimethylamine 
is attractive to mice at physiological concentrations, but 
is aversive to mice at higher concentrations. Interestingly, 
deletion of TAAR5 decreases the detection sensitivity of 
trimethylamine and abolishes the attraction behavior in mice 
(Dewan et al. 2018; Li et al. 2013). However, the avoidance 
behavior to trimethylamine at high concentrations is retained 
in TAAR5 knockout mice. Collectively, those data suggest 
that TAAR5 is required for mouse attraction for trimethyl-
amine and another unknown olfactory receptor (possibly a 
TAAR) may mediate mouse aversion for high concentra-
tions of trimethylamine. On the other hand, trimethylamine 
is highly aversive to humans and rats. Human TAAR5 also 
recognizes trimethylamine, yet with much lower affinity than 
rodent TAAR5 (Horowitz et al. 2014; Wallrabenstein et al. 
2013). The pairing between trimethylamine and TAAR5 
might be the molecular basis for human avoidance behav-
ior to trimethylaminuria patients. Therefore, identification 
of a specific high-affinity human TAAR5 antagonist would 
greatly benefit the patients. One such effort identified Tim-
berol®, an amber-woody fragrance, that inhibits TAAR5 
activation by trimethylamine and increases the detection 
threshold for trimethylamine in human by almost one order 
of magnitude (Wallrabenstein et al. 2015).

Diamines containing two amino groups include cadav-
erine, putrescine, and agmatine. Cadaverine and putrescine 
are death-associated odors enriched in decaying carcasses. 
Cadaverine is decarboxylated from lysine mainly by lysine 
decarboxylase, and putrescine can be derived from l-orni-
thine by ornithine decarboxylase. Agmatine is formed by 
decarboxylation of arginine via arginine decarboxylase. 
Agmatine is also a precursor of putrescine, and can be 
converted into putrescine by agmatinase (Fig. 4c) (Kusano 
et al. 2008; Rhee et al. 2007). Adult zebrafish show innate 
avoidance behavior to cadaverine and putrescine (Hussain 
et al. 2013). However, cadaverine and putrescine can acti-
vate both TAAR13c and TAAR13d (Li et al. 2015). How-
ever, it is unknown if either of the two zebrafish TAARs is 
required for the avoidance behavior. Interestingly, cadaver-
ine also elicits species-specific behaviors: it is aversive to 
zebrafish and mice, while it is attractive to goldfish (Dewan 
et al. 2013; Rolen et al. 2003). In mouse, TAAR9 can rec-
ognize cadaverine in vitro, and could act as the functional 
receptor to mediate aversion to cadaverine (Saraiva et al. 
2016). Agmatine is the agonist for several zebrafish TAARs 
including TAAR13c, TAAR13d, TAAR13e, and TAAR14d 

(Li et al. 2015). Unfortunately, the behavioral response to 
agmatine has not been characterized.

Polyamines have more than two amino groups and gen-
erally consist of spermine and spermidine. Spermine and 
spermidine are ubiquitously produced in all species. They 
are found in semen of many vertebrates from jawless fish, 
bony fish to mammals (Lefèvre et al. 2011; Scott et al. 2019; 
Tsilioni et al. 2019). Spermidine can be synthesized from 
putrescine by spermidine synthase and further converted into 
spermine by spermine synthase. In reverse, conversion of 
spermine to spermidine, and spermidine to putrescine can 
be achieved by acetylation through spermidine/spermine 
acetyltransferase and by subsequent oxidization through 
polyamine oxidase (Fig. 4c) (Miller-Fleming et al. 2015; 
Rhee et al. 2007). Mouse TAAR9 can be activated by sper-
mine and spermidine, but only the latter could trigger attrac-
tion behavior (Saraiva et al. 2016). This raises an interesting 
question about the role of TAAR9 in mouse valence behav-
ior. In sea lamprey, spermine activates the TAAR-like recep-
tor, TAAR348, that is specifically expressed in the olfactory 
epithelium. It attracts ovulatory female lampreys and may 
function as a sex pheromone (Scott et al. 2019).

Although the TAAR agonists mainly elicit innate behav-
iors, the induced behaviors can be context-dependent. When 
presented together, the attractive and aversive TAAR ago-
nists block one another’s behavioral effects, resulting a com-
binatorial behavioral output. The attractive TAAR5 agonist, 
trimethylamine, can block aversion to the aversive TAAR3 
and TAAR4 ligands, isoamylamine and β-phenylethylamine 
(Saraiva et al. 2016). This may be due to the combination 
of distinct olfactory inputs from different activated TAARs, 
since it occurs without receptor antagonism. Consistent 
with this model, different agonists for the same TAAR 
could evoke varied behaviors because of unknown activated 
receptors. For instance, both trimethylamine and pyrroli-
dine active TAAR5; however, trimethylamine is attractive 
to mice and pyrrolidine elicits a neutral response (Saraiva 
et al. 2016). Those results suggest that the instinctive olfac-
tory behaviors induced by the TAAR agonists are context-
dependent and modulated by the combination of inputs from 
different receptors.

Conclusion and Future Perspectives

The discovery of TAAR1 and its ligands has provided a unique 
avenue to study the monoaminergic system and its related dis-
orders. The in vitro heterologous cellular work has identified 
trace amines,  T1AM, amphetamines, and monoamine metabo-
lites as potent TAAR1 agonists. Recent studies also success-
fully designed specific agonists and antagonists for TAAR1. 
Future research should focus on the therapeutic potential of 
TAAR1 agonists and antagonists in different diseases caused 



269Cellular and Molecular Neurobiology (2020) 40:257–272 

1 3

by dysregulation of monoaminergic systems. A thorough 
analysis of animal behavioral phenotypes after application of 
TAAR1 agonists and antagonists in a variety of contexts will 
further provide valuable insights into the physiological func-
tion of TAAR1.

Mammalian olfactory TAARs detect volatile amines 
and teleost TAARs detect water-soluble amine compounds. 
Although significant progress on deorphanization of olfactory 
TAARs has been achieved since the finding of TAARs in the 
olfactory system, many basic questions remain to be answered. 
Besides  Asp3.32 and  Asp5.42, what are other key residues in 
the transmembrane α-helices or extracellular loops that may 
constitute the agonist entry tunnel or agonist binding pocket? 
In addition, agonists for majority of TAARs from different 
species are still unknown. What is the physiological relevance 
of those TAAR agonists? What are the roles of the identified 
agonists and the corresponding TAARs in animal olfaction 
and social behaviors? Considering that some TAAR agonists 
could potentially cross cell membrane and circulate around the 
body, conditional knockout of TAARs in the olfactory epithe-
lium might be necessary to elucidate their roles in olfactory 
behaviors. Also TAAR OSNs have been shown to project a 
distinct dorsal domain in the olfactory bulb, but the dedicated 
olfactory circuits beyond the bulb for the TAAR subsystem 
are largely unknown. Understanding the nature and feature of 
TAAR agonists will provide invaluable tools for us to explore 
the physiological roles of both non-olfactory and olfactory 
TAARs.
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