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Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involve-
ment in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. 
With the emergence of the “brain-gut-microbiome axis,” we take the opportunity to review what is known about trace amines 
in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in vari-
ous gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 
may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastro-
intestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia 
(Roche) and Parkinson’s related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical 
trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis 
to modulate symptoms of neuropsychiatric disease.
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Introduction

The brain-gut-microbiome axis is an emerging area of 
research highlighting the involvement of gastrointestinal 
microbes with the comorbidities of several neuropsychiatric 

disorders. The intestinal tract harbors the most abundant 
ecosystem of bacteria with concentrations ranging from  103 
to  1014 bacteria depending on tissue localization (Hillman 
et al. 2017). The idea that microbes have a beneficial impact 
on human health predates our current understanding of the 
microbiome by 100 years, as E. Metchnikoff associated fer-
mented food products with longevity in a rural population, 
and suggested that lactobacilli could counteract the effects 
of illness and aging (Metchnikoff and Mitchell 1908). In 
2007, the United States National Institutes of Health estab-
lished the “Human Microbiome Project” to improve the 
understanding of the microbial flora in human health. The 
collective genome of the microbial species living on our 
body, termed metagenome, outnumbers the human genome 
by a factor of 200 (Qin et al. 2010; Ray et al. 2019). Thus, it 
is not surprising that the metagenome and its encoded meta-
bolic activities play a crucial role in all aspects of human 
health and disease (Marcobal et al. 2012). As such there has 
been a focus on the role of bacterial metabolic byproducts 
in human health (Jacobs et al. 2016; Santoru et al. 2017; 
Smith and Macfarlane 1997; Vandenberg et al. 2003; Kisuse 
et al. 2018). Meanwhile, advances have been made in animal 
studies using germ-free mice, suggesting that disturbances 
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in the intestinal microbial flora can alter brain chemistry 
and behavior (Park et al. 2013). About 60% of anxiety and 
depression patients are described to have intestinal func-
tion disturbance, such as in irritable bowel syndrome (Gupta 
et al. 1997). Recently, irritable bowel syndrome has also 
been related to changes in intestinal microbiota, including 
disruption of the intestinal microflora. While there has been 
a focus on the role of complex carbohydrates and neuroac-
tive short-chain fatty acids (e.g. butyrate, acetate and propi-
onate) in the brain-gut-microbiome axis, some of these same 
studies provide evidence that trace amine levels are altered 
in gastrointestinal disorders and neuropsychiatric disorders. 
Here, we propose the novel hypothesis, that the putative 
trace amine receptor, Trace Amine-Associated Receptor-1 
(TAAR1) can augment gastrointestinal illness and neuropsy-
chiatric disorders as a result of a dysregulated intestinal 
microbial flora. This review discusses several elements of 
the brain-gut-microbiome axis as it relates to trace amines, 
TAAR1, and the role they may play in both neuropsychiatric 
and comorbid gastrointestinal disorders.

TAAR1 is a G protein-coupled receptor that was deor-
phanized in 2001 (Borowsky et al. 2001; Bunzow et al. 
2001) and has been widely studied as a major regulator of 
dopamine in neuropsychiatric disorders and in acute and 
neuroadaptive responses to drugs of abuse; and extensively 
reviewed (Berry et al. 2017; Christian and Berry 2018; 
Grandy et al. 2016; Schwartz et al. 2018). Currently, spe-
cific TAAR1 compounds are nearing completion of clinical 
trials for treatment of schizophrenia and Parkinson’s related 
psychoses (Roche, Sunovion). The predominant endog-
enous ligands for TAAR1 are classified as ‘trace amines’ 
and include p-tyramine, β-phenylethylamine, tryptamine, 
3-iodothyronamine, and octopamine as well as ‘classical’ 
monoamine neurotransmitters including histamine, seroto-
nin, and dopamine (Borowsky et al. 2001; Chiellini et al. 
2012; Hoefig et al. 2015; Pugin et al. 2017; Sotnikova et al. 
2010; van Kessel et al. 2019). Trace amines activate TAAR1 
at nanomolar affinities, whereas classical monoamine neu-
rotransmitters activate the receptor at or near micromolar 
concentrations (Panas et al. 2012; Xie et al. 2007).

The term trace amine was adopted by a study group at 
the 1975 meeting of the American College of Neuropsy-
chopharmacology (Usdin and Sandler 1976), and it is now 
often mentioned that the levels of trace amines are < 10 ng/g 
(Berry 2004; Gainetdinov et al. 2018). trace amines are clas-
sically defined as any monoamine with a physiological level 
less than 1–100 ng/g of tissue weight (Boulton 1974) though 
oftentimes higher levels are subsequently identified in new 
tissue assessments of particular amines. Historical studies 
of trace amines in the body have correlated imbalances in 
trace amine levels to neuropsychiatric disorders includ-
ing schizophrenia, substance abuse, depression, attention-
deficit hyperactive disorder, and Parkinson’s, and has been 

extensively reviewed (e.g. Gainetdinov et al. 2018). A role of 
trace amines in the gut has not been systematically studied, 
likely because the identification of trace amines and their 
hypothesized role in neuropsychiatric disorders was decades 
before the understanding of the microbiome and metabo-
lome. Perhaps because of the focus of trace amines in psy-
chiatric illness over prior decades, the discovery of TAAR1 
in 2001 led to a body of research studying the effects of 
TAAR1 in modulating monoaminergic signaling in the 
brain. The proposed and known functions of TAAR1 in neu-
ropsychiatric disorders have been extensively reviewed and 
as such will only be briefly described here when relevant.

Recent research has increasingly drawn connections 
between perturbations to the gut microbiota and both gastro-
intestinal and psychiatric conditions (Felice and O’mahony 
2017). The gastrointestinal tract is a heterogeneous layer of 
tissue comprised of smooth muscle, neuronal cells, immune 
cells, and epithelial cells. Maintenance of gastrointestinal 
homeostasis is dynamic and involves the regulation of the 
epithelial cell monolayer to protect the underlying immune 
cells and neurons to prevent excessive inflammation (Rao 
and Wang 2010). There are billions of neurons intercon-
nected via trillions of synapses in the gut and brain, all of 
which are primarily governed by communication mediated 
by neuromodulators. One way these modulators are hypoth-
esized to link the gut and brain is by production of aminergic 
compounds from the gut microbiota—a diverse collection 
of microbial communities that are thought to influence a 
wide array of biological processes. Within the realm of 
neuromodulators originating from the microbiota exist the 
trace amines (Pugin et al. 2017). Several enteric and food-
borne microorganisms are known to produce tyramine and 
β-phenylethylamine, as listed in Table 1. In fact, around 3 g 
of un-degraded proteins and peptides enter the human intes-
tine every day from diet, as well as from endogenous sources 
such as host tissues, pancreatic enzymes and other secre-
tions (Chacko and Cummings 1988). Such large amounts 
of organic nitrogen-containing compounds are available for 
catabolism to amino acids, providing essential amino acids 
to the host (e.g. phenylalanine) and further metabolic degra-
dation by intestinal microorganisms (Fig. 1a) (Rasnik et al. 
2017). It has been suggested that in response to an acidifi-
cation of the environment, microorganisms, such as those 
listed in Table 1, upregulate several transporters includ-
ing the tyrosine transporter and a tyrosine decarboxylase 
(Wolken et al. 2006). Once transported intracellularly, tyros-
ine is rapidly decarboxylated to tyramine by the bacterial 
tyrosine decarboxylase (TyrDC), where it is then exported 
from the microorganism by the tyrosine transporter (TyrP), 
mechanistically described in Fig. 1b (Wolken et al. 2006). 
When produced in adequate amounts, gut bacterial-produced 
trace amines have been shown to have differing effects for 
the host. For example, β-phenylethylamine is reported as an 
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Table 1  Enteric and/or food-borne bacterial species able to synthesize trace amines and subsequent levels in the gastrointestinal tract

Trace amine Trace amine concentrations in or 
transiting human gut

Trace amine-producing enteric/food-
borne microbes

References

Tyramine 400–750 (mg/L) Pugin et al. (2017) A. haemolyticus, A. hydrophila, A. faeca-
lis, B. cereus, B. subtilis C. braaki, C. 
freundii, C. gallinarum, C. piscicola, 
C. maltaromaticum, C. divergens, 
C. freundii, E. faecalis, E. faecium, 
Enterococcus

sp., E. coli, E.durans, E. hirae, E. cas-
seliflavus, E. mundtii, E. aerogenes, 
E. cloacae, K. pneumoniae, L. brevis, 
Lactobacillus

sp., L. curvatus, L. plantarum, L. 
buchneri, L.casei, L. paracasei, L. 
reuteri, L. hilgardii, L. homohiochii, 
L. delbruecki, L. lactis, L. alimenta-
rius, L.curvatus, L. mesenteroides, M. 
morganii, P. mirabilis, P. vulgaris, P. 
aerugina, R. ornithinolytica, S. thermo-
philus, S. faecalis,

S. macedonicus, Sporolactobacillus sp.,
T. halophilus, W. cibaria,
W. confusa,
W. paramesenteroides,
W. viridiscens

Barbieri et al. (2019), Bonnin-Jusserand 
et al. (2012), Borresen et al. (1989), 
Buňková et al. (2009), Coton and Coton 
(2009), Coton et al. (2004), Coton et al. 
(2011), La Gioia et al. (2011), Ladero 
et al. (2012), Ladero et al. (2013), Leis-
ner et al. (2007), Linares et al. (2011), 
Maifreni et al. (2013), Marcobal et al. 
(2012), Marcobal et al. (2006), Min 
et al. (2004), Moreno-Arribas et al. 
(2001), Pessione et al. (2005), Pessione 
et al. (2009), Pircher et al. (2007), 
Pugin et al. (2017), van Kessel et al. 
(2019) and Zhu et al. (2016)

β-Phenylethylamine 10 nmol/g Turroni et al. (2016) B. cereus, C. divergens, C. carnosus, 
E. faecium, E. faecalis, E. casselifla-
vus, E. durans, E. mundtii, E. hirae, 
L. lactis, L. brevis, L. mesenteroides, 
Staphylococcus

sp.,  P. aerugina

Bargossi et al. (2015), de Las Rivas et al. 
(2008), Landete et al. (2005), Linares 
et al. (2011), Min et al. (2004), Perin 
et al. (2017) and Pessione et al. (2009)

Fig. 1  a 2 Metabolic byproducts of dietary amino acid metabolism 
by mammalian and microbial enzymatic systems. Phenylalanine and 
tyrosine are decarboxylated by the microbial TyrDC & TyrP system 
and mammalian aromatic amino acid decarboxylases (AADC) to 
phenylethylamine and tyramine respectively. b Microbial transport 
and decarboxylation of tyrosine. Tyrosine is taken in by the tyrosine 
transporter (tyrP) into microbes where the enzymatic decarboxylation 

of tyrosine to tyramine occurs by the tyrosine decarboxylase (TyrDC) 
enzyme. Tyramine is then transported to the extracellular space of the 
microbe by tyrP (Bargossi et al. 2017; Bargossi et al. 2015; Pessione 
et  al. 2009; Wolken et  al. 2006). A similar mechanism occurs for 
decarboxylation of phenylalanine to β-phenylethylamine by tyrosine 
decarboxylase
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antimicrobial against pathogenic E. coli (Lynnes et al. 2014), 
and tyramine has been shown to stimulate fast ileal contrac-
tions and neuropeptide Y release (Broadley et al. 2009), as 
well as increasing synthesis and secretion into circulation of 
monoamine neurotransmitters (Yano et al. 2015). Modula-
tion of intestinal motility and secretion can have profound 
effects on luminal pH, mucosal immune response, and 
delivery of important nutrients to the host cells and enteric 
microbiota.

TAAR1 localization has been identified in both the stom-
ach and the intestine in mouse and human (Chiellini et al. 
2012; Adriaenssens et al. 2015; Ito et al. 2009; Kidd et al. 
2008; Ohta et al. 2017; Raab et al. 2015; Revel et al. 2013), 
but the exact function in the polarized gastrointestinal epi-
thelium remains largely unexplored. Here, it is worth noting 
that despite no definitive function being identified in the 
polarized epithelium of the stomach and intestine, TAAR1 
functionality has been described in the beta-cells of the pan-
creas, co-localized with PYY and GLP-1 in duodenal cells, 
and selective TAAR1 agonists resulted in elevated plasma 
levels of PYY and GLP-1 (Raab et al. 2015), though these 
studies are not relevant to our discussion the brain-gut-
microbiome axis. Functional TAAR1 was found in almost all 
peripheral immune cells (Babusyte et al. 2013; Panas et al. 
2012; Sriram et al. 2016; Wasik et al. 2012), with evidence 
that TAAR1 can modulate not only intracellular signaling 
(Panas et al. 2012), but also immune cell functions such as 
chemotaxis (Babusyte et al. 2013), phagocytosis [unpub-
lished abstract, Miller Lab (Gwilt et al. 2018)] and altered 
expression of cytokines (Bugda Gwilt et al. 2019a; Babusyte 
et al. 2013). Immune cells are known to infiltrate the gastro-
intestinal tract with epithelial damage and inflammation, and 
given the reported chemotactic capacity of TAAR1 positive 
cells towards trace amines, TAAR1 positive immune cells 
should be noted in the gastrointestinal microenvironment 
given the propensity of patients with neuropsychiatric dis-
orders to also present with peripheral inflammation.

Our lab has identified TAAR1 expression in the gastroin-
testinal tract of C57BL/6 mice, summarized in Fig. 2 (Bugda 
Gwilt et al. 2019b; Ito et al. 2009), in human intestinal epi-
thelial cell lines (unpublished data), as well as enteric glia 
(Fig. 2c). Interestingly, TAAR1 localization is primarily 
intracellularly in colonic epithelium (Fig. 2a) whereas in the 
small intestine it is predominantly found on epithelial mem-
branes (Fig. 2b). The dynamic expression and localization of 
TAAR1 has been previously described (Bugda Gwilt et al. 
2019a; Sriram et al. 2016; Stavrou et al. 2018) and the pro-
duction of trace amines by several species in the microbiome 
(e.g. Bargossi et al. 2015; Pessione et al. 2009; van Kessel 
et al. 2019) may account for the predominant membranous 
localization of TAAR1 compared to colonic tissue. In the 
brain-gut-microbiome axis, gut microbes are able to signal 
by the vagal nerve, mediating behavioral effects in animals 

(Forsythe et al. 2014). While vagal nerve signaling is dem-
onstrated to have roles in these effects, studies are lacking 
that investigate the role of non-neuronal-like tissues in the 
brain-gut-microbiome axis. Given evidence for the localiza-
tion of TAAR1 in the gastrointestinal epithelium (Fig. 2a), 
enteric glia (Fig. 2c) and all peripheral immune cells, it is 
important to understand the role that these tissues have in 
mediating gut health and modulation of inflammation by the 
varied sources of trace amines in the gut. Perhaps, TAAR1 
activation in these tissues can be damaging, exposing the 
sensitive underlying tissue to pathogenic microbes, provid-
ing a mechanism of exposure of the vagal nerve pathways 
to microorganism, or food byproducts.

In addition to bacterial origins, another prominent source 
of trace amines in the human body is through consumption 
of fermented food like cheese, pickles, and wine, where the 
lactic acid bacteria are responsible for production of trace 
amines in these food products (Marcobal et al. 2012). While 
the entire Lactobacillus species are considered producers of 
tyramine (Pessione et al. 2009), only specific Lactobacil-
lus species are found in food products, and some have been 
found to survive transit through the gastrointestinal tract 
(Pugin et al. 2017). Bacterial jejunal contents were found 
to coincide with production of tyramine in the presence 
of tyrosine decarboxylase ex vivo (Fernandez De Palencia 
et al. 2011; Van Kessel et al. 2019). When fermented food 
products are ingested, levels of trace amines in the gut can 
be raised to undesirable levels (Pugin et al. 2017). As previ-
ously discussed, acidification of an environment enriches 
tyramine production through the TyrP and TyrDC enzymatic 
systems. Accordingly, tyramine production by Enterococ-
cus species in food is enhanced by lowered pH in the small 
intestine that can not only simulate rapid passage through 
the gastrointestinal tract (Fernandez de Palencia et al. 2011), 
but is common in patients with inflammatory bowel disease 
(Press et al. 1998).

Dietary trace amines were first described as having a 
physiological relevance with the advent of a new class of 
antidepressants: the monoamine oxidase inhibitors. This 
phenomenon –known as “The Cheese Effect”—has been 
attributed to accumulation of very high levels of tyramine 
and β-phenylethylamine in patients being treated with mono-
amine oxidase inhibitors (Anderson et al. 1993; Price and 
Smith 1971; Shalaby 1996; Stratton et al. 1991). Patients 
suffer from severe vasoconstriction as a result of accumula-
tion of very high levels of consumed and bacterial-produced 
tyramine and phenylethylamine (Anderson et al. 1993; Price 
and Smith 1971; Shalaby 1996; Stratton et al. 1991). Though 
the mechanism of the so-called “cheese effect” is not medi-
ated by TAAR1, a similar decrease in monoamine oxidase 
activity may be present in patients with gastrointestinal ill-
ness. A hallmark of several gastrointestinal diseases leads 
to an ablation of the polarized epithelium, commonly seen 
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in inflammatory bowel diseases, or an altered microbial 
composition. In either case, it is reasonable to predict that 
monoamine oxidase enzymatic activity can be affected by 
an overabundance of aminergic compounds, or an ablation 
of the cells harboring the enzyme.

Interestingly, fecal metabolomic studies have identified a 
higher relative abundance of the TyrDC gene and its harbor-
ing bacteria Enterococcus in Parkinson’s disease patients 
who require higher frequency of the levodopa daily dosage 
regime compared to other Parkinson’s disease patients (van 
Kessel et al. 2019). TyrDC has the capacity to decarboxy-
late levodopa into dopamine, which coincides with the con-
version of tyrosine into tyramine (van Kessel et al. 2019). 
Tyramine has been recently been suggested as an early stage 
biomarker for Parkinson’s due to increased urine tyramine 
compared to healthy controls (D’andrea et al. 2019). Thus, 
higher availability of tyrosine or TyrDC in the intestinal tract 
of those patients may result in accumulation of tyramine, 
causing detrimental side effects. For example: many patients 

experience dyskinesias, which have been previously corre-
lated with modulation of the β-arrestin 2 signaling pathway, 
a pathway that has been previously linked to TAAR1 signal-
ing (Espinoza et al. 2015; Harmeier et al. 2015; Urs et al. 
2015).

Tyramine has additional known functions in human intes-
tinal epithelial cell lines (Del Rio et al. 2017), though there 
are currently no published functional links to a receptor-
mediated mechanism by TAAR1 in these epithelial cell 
models. Briefly—tyramine transiting the gut, presumably 
from consumption of tyramine rich food—can promote 
the adherence of microbes to the intestinal epithelial cells 
(Fernandez De Palencia et al. 2011; Luqman et al. 2018) 
and can modulate inflammatory cytokine signaling in intes-
tinal epithelial cells (Fernandez de Palencia et al. 2011). 
Tyramine can also increase the synthesis of serotonin by 
enteroendocrine cells in the gut, elevating its release into cir-
culation (Yano et al. 2015). Additionally, work from our lab 
has demonstrated that tyramine activation of bone marrow 

Fig. 2  Summary of TAAR1 
expression in mouse gastroin-
testinal tissue Formalin fixed 
paraffin embedded mouse tissue 
(a, b) was stained with specific 
TAAR1 antibody, “D274” 
designed and published by the 
Miller lab (Bugda Gwilt et al. 
2019a). a TAAR1 localization 
is seen in apical epithelial cells 
and is both intracellularly and 
membrane localized in colon 
tissue. Colon tissue morphol-
ogy is as expected, and crypts 
shapes are depicted by dashed 
lines for clarity. b TAAR1 
localization is seen primarily on 
membranes of the villus (finger-
like projections) and in the base 
of the crypts. c Ex vivo isolated 
enteric glial cultures were 
stained with TAAR1 (green) 
neurofilament medium (NEFM 
Red), Actin (pink) and DAPI 
(blue), demonstrating profound 
intracellular localization of 
TAAR1 in ex vivo enteric glial 
cultures
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derived macrophages from C57BL/6 mice augments secre-
tion of inflammatory cytokine gene expression, an effect 
that is attenuated by the specific TAAR1 antagonist EPPTB 
(Bugda Gwilt et al. 2019a). Based on reports that dietary 
trace amines can activate human TAAR1 in primary epithe-
lial cells (Ohta et al. 2017), these specific effects of tyramine 
in in vitro human epithelial cell models may be attributed 
to a specific receptor-mediated mechanism by TAAR1 acti-
vation. Our ongoing work is currently seeking to delineate 
this effect.

Both mouse studies and human patients present with 
elevated tyramine levels compared to healthy controls in 
gastrointestinal diseases with comorbid neuropsychiatric 
disorders including: celiac disease (De Angelis et al. 2016; 
Di Cagno et al. 2011), colorectal cancer (Goedert et al. 2014; 
Sinha et al. 2016) and inflammatory bowel disease (Santoru 
et al. 2017; Nagao-Kitamoto et al. 2016). Metabolomic stud-
ies have also identified a role of β-phenylethylamine in the 
fecal metabolome, and altered phenylalanine metabolism 
in inflammatory bowel disease (Kolho et al. 2017; Paley 
2019; Santoru et al. 2017; Yuan et al. 2018). In a human 
cohort, the fat composition of the diet can mediate the lev-
els of β-phenylethylamine in the fecal metabolome (Kisuse 
et al. 2018). No receptor-mediated mechanism has been con-
firmed for either tyramine or β-phenylethylamine to act on 
the polarized epithelia of the gut, though a recent review 
by Christian et al. suggests that TAAR1 may mediate some 
effects in inflammatory bowel diseases (Christian and Berry 
2018).

Trace amines from dietary or microbial synthetic path-
ways have many potential fates in the gut, some of which 
may be context specific. In the brain, trace amines are rap-
idly degraded by tissue monoamine oxidases of neurons 
and supportive cells, although production and circulation 
in the brain may provide a more limited source of amines 
than the plentiful sources in the gut. On a cellular level, 
trace amines can be absorbed by simple diffusion (Berry 
et al. 2013; Blakeley and Nicol 1978; Tchercansky et al. 
1994), facilitated diffusion (Blakeley and Nicol 1978) or 
by specific monoamine transporters (Xie and Miller 2008). 
In vitro studies investigating the small intestine epithelial 
cell line report β-phenylethylamine absorption to be pH 
dependent, and showing minimal degradation of luminal 
β-phenylethylamine by intestinal bacteria (Fischer et al. 
2010). Similarly, Tchercansky et al. (1994) showed tyramine 
is absorbed by rat small intestine epithelium by simple dif-
fusion (Tchercansky et al. 1994), and tyramine plasma lev-
els are reported to reach levels of 0.2 μM after ingestion 
of 200 mg of tyramine in healthy individuals (Vandenberg 
et al. 2003). Reports of absorption of trace amines in vitro 
and in ex vivo systems suggests that trace amines in the gut 
may escape the degradative effects of monoamine oxidase 
enzymes, even in healthy epithelium.

Trace amine signaling has historically been studied in 
a wide spectrum of neuropsychiatric disorders, including 
attention-deficit hyperactive disorder, major depressive dis-
order, and schizophrenia. TAAR1 is strongly implicated in 
schizophrenia diagnoses and progression. Several studies 
have found that patients with schizophrenia have increased 
levels of tyramine or β-phenylethylamine in the urine (Pot-
kin et al. 1979) and plasma (O’reilly et al. 1991; Shirkande 
et al. 1995), as well as an increase in comorbid inflamma-
tory bowel disease or irritable bowel syndrome diagnoses 
(Gupta et al. 1997; Hemmings 2004). Perturbations to the 
microbiome are reported in both inflammatory bowel disease 
(e.g. Santoru et al. 2017) and schizophrenia (Severance et al. 
2015, 2017), a phenomenon that is reversed with the suc-
cessful administration of antipsychotics.

Attention-deficit hyperactive disorder (ADHD) is com-
monly associated with a dysregulation of the trace amine 
β-phenylethylamine (Baker et al. 1991). Extensive studies 
on the comorbidities of ADHD and gastrointestinal diagno-
ses are lacking, though current studies are suggestive that 
disruption to the gut-brain axis may plays a role in ADHD. 
Children diagnosed with ADHD exhibit changes to their 
microbiome compared to healthy controls, and administra-
tion of certain strains of bacteria within the first 6 months 
of life has been shown to have protective effects against 
ADHD (Felice and O’Mahony 2017). Additionally, pre-
liminary studies indicate an increased level of pro-inflam-
matory cytokines and decreased levels of both tyramine and 
β-phenylethylamine in patients with ADHD (Baker et al. 
1991; Sandgren and Brummer 2018), indicating a potential 
connection between the psychological condition and trace 
amine levels in the body.

Major depressive symptoms are also correlated with 
decreased urinary levels of β-phenylethylamine (Wolf 
and Mosnaim 1983), and therapeutics seeking to increase 
β-phenylethylamine levels naturally with exercise (Szabo 
et al. 2001) or replacement therapy with β-phenylethylamine 
(Sabelli and Javaid 1995) both appear to provide relief of 
major depressive disorder symptoms. Conversely, elevated 
urine β-phenylethylamine levels are correlated with manic 
disorders including bipolar affective disorder (Karoum et al. 
1982; O’Reilly et al. 1991). Interestingly, there is a correla-
tion of either a diagnosis of irritable bowel syndrome or 
inflammatory bowel disease within 1 year of diagnoses of 
depression (Kurina et al. 2001).

Discussion

The recognition of TAAR1 as a mediator for trace amines 
to act as chemical modulators of the brain-gut-microbiome 
axis opens up a new avenue for investigation on psychiat-
ric and gastrointestinal disorder comorbidity as well as new 
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treatment avenues for these common disorders. The pre-
vailing hypotheses in neuropsychiatric and gastrointestinal 
disorders suggest an interplay of genetic and environmen-
tal factors in the onset and propagation of disease. Trace 
amines and their primary receptor, TAAR1, have been 
widely studied for their involvement in the pathogenesis 
of neuropsychiatric disorders, which have high comorbid-
ity with gastrointestinal disorders. With the emergence of 
greater understanding of the brain-gut-microbiome axis, it 
is now clear that both brain and gut share common commu-
nication molecules which can originate endogenously in the 
host or resident microbiome, or exogenously from ingested 
food. Here, we take the opportunity to review what is known 
about trace amines in the brain, the defined sources of trace 
amines in the gut, and our emerging understanding on the 
levels of trace amines in various gastrointestinal disorders. 
We summarize evidence that trace amines are ingested as 
well as produced by the microbiome, and that their recep-
tor, TAAR1, is present in the gastrointestinal tract. Accord-
ingly, novel TAAR1-targetted therapeutic compounds being 
advanced in clinical trials as new treatments for neuropsy-
chiatric disorders could potentially have a therapeutic benefit 
through manipulation of the brain-gut-microbiome axis to 
modulate symptoms of neuropsychiatric disease. The locali-
zation of TAAR1 expression in the gut implicates a mecha-
nism by which trace amines, as well as other endogenous or 
exogenous TAAR1 ligands, are implicated in inflammatory 
bowel diseases and the reported comorbidities of neuropsy-
chiatric disorders and gastrointestinal disorders.

Although we focused on reviewing tyramine and 
β-phenylethylamine, it is important to acknowledge that 
there are additional trace amines, e.g. tryptamine, which are 
known in the human metabolome(Jeffery et al. 2012), which 
have similar effects to tyramine and β-phenylethylamine on 
gut motility and neurons (Williams et al. 2014), promot-
ing adherence of bacteria to epithelial cells (Luqman et al. 
2018), with identified accumulation in both colon cancer 
and irritable bowel syndrome (Ahmed et al. 2016; Bearcroft 
et al. 1998; Hong et al. 2011; Ponnusamy et al. 2011). It is 
also important to recognize that the levels of trace amines 
and the expression patterns of TAAR1 are highly dynamic 
and can be affected by diet, drugs, disease and psychologi-
cal state. Likewise, the variable levels of trace amines may 
augment the secretion of neuromodulators into circulation, 
thereby modulating the levels of neurotransmitters in the 
brain (Yano et al. 2015). Both direct actions of trace amines 
on TAAR1 in the cells of the intestine and brain, as well as 
the secondary effects on neurotransmitters (e.g. serotonin, 
norepinephrine) remains to be further explored.

Localization in the intestine and luminal apical localiza-
tion (Fig. 2) of epithelial cells in the gut and other polar-
ized epithelia (thyroid) (Szumska et al. 2015) demonstrate 
a potential yet unexplored significance of TAAR1 in the 

gut. The commensal microbes of the microbiome niches 
on luminal apical membranes of the intestine. Additional 
studies are needed to understand if the effects of tyramine, 
β-phenylethylamine and other trace amines that are seen in 
in vitro epithelial cell lines are mediated by TAAR1. Simi-
larly, TAAR1 may have an unappreciated role in the regula-
tion of homeostasis in the gut, as TAAR1 may serve as a 
microbial sensor in the gastrointestinal tract mediating dif-
ferentiation of the lumen or polarization of epithelial cells. 
To understand the role of the microbiota in the regulation 
of TAAR1 expression and activation, it would be prudent 
to study TAAR1 expression in germ-free mice or specific 
pathogen free mice, as some datasets in NCBI GeoData sug-
gest a low level of TAAR1 expression in germ-free and spe-
cific pathogen free mice, though the conflicting detection of 
TAAR1 in RNA-seq data may be confounding these effects.

There is an underappreciated function and role of the so-
called ‘elusive trace amines’ and their role in normal human 
physiology. The emergence of fecal metabolomic studies has 
classified trace amine levels at micromolar concentrations in 
the body for the first time, suggesting trace amines may be 
physiologically active in the gut (Jacobs et al. 2016; Santoru 
et al. 2017; Smith and Macfarlane 1997; Vandenberg et al. 
2003; Kisuse et al. 2018). With the identification of TAAR1 
expression in myriad cells in the intestine, there presents a 
great opportunity to further study complex mechanisms of 
the brain-gut-microbiome axis as it relates to intestine devel-
opment, immune cell maturation as it relates to the ‘hygiene 
hypothesis’ for allergies and immunological disorders. Fur-
ther, TAAR1 may serve as a novel therapeutic drug target to 
be further investigated for the treatment comorbid gut and 
neuropsychiatric disorders.
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