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Abstract
Biological rhythms, especially those that last close to 24 h, better known as circadian rhythms, are highly regulated phe-
nomena, maintained throughout evolution in various organisms which allow organisms to predict, prepare for, and adapt to 
environmental changes. One of these phenomena that exhibit biological rhythms is the immune response to external agents. 
Immune cells (neutrophils, lymphocytes, macrophages, among others), as well as their mediators such as cytokines and 
chemokines, undergo variations in tissue and blood concentrations during the day. These rhythms are still being elucidated 
in microglia, the resident macrophages of the central nervous system, but since these cells share a common origin with 
peripheral macrophages, they are expected to behave similarly. In this review, we will discuss the possible differences in 
the responses between peripheral macrophages and microglia, their relationship with the circadian clock, and whether these 
rhythms can influence therapeutic choices.
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Introduction

Biological rhythms are essential properties of almost all liv-
ing organisms from bacteria and fungi to plants and animals 
(Bhadra et al. 2017). These rhythms are considered to be 
the result of evolutionary pressures and natural selection 
and enable organisms to predict, prepare for, and adapt to 
environmental changes through synchronizers, better known 
as zeitgebers (a German word meaning “time giver”). Zeit-
gebers are perceived by the organism, responding to physi-
ological and behavioral changes by altering hormone levels, 
body temperature, metabolism, and even cognitive pro-
cesses. However, it is essential to note that these rhythms 

are expressed even in the absence of environmental changes. 
The zeitgebers only synchronize the circadian clock. The 
light–dark cycle is one of the most important and best-stud-
ied zeitgeber; changes in the intensity of light are detected 
by a series of hierarchically organized structures found at the 
hypothalamus (Terzibasi-Tozzini et al. 2017). However, the 
light–dark cycle is not the only kind of zeitgeber, since the 
organism can also receive synchronization stimuli through 
food intake (Sahar and Sassone-Corsi 2012; Morton et al. 
2014), changes in temperature (Rensing and Ruoff 2002), 
and physical activity (Schibler and Sassone-Corsi 2002). 
One of the biological functions regulated by the circadian 
clock is the immune system (IS) (Scheiermann et al. 2013, 
2018). In this review, we focus on the responses of microglia 
and peripheral macrophages and their relationship with the 
circadian clock.

The Central and Peripheral Clocks

In mammals, the changes in light and darkness are detected 
in the retina, and then the retinohypothalamic tract (RHT) 
transmits this information to the “central clock”, a region 
located in the hypothalamus known as the suprachiasmatic 
nucleus (SCN). SCN is made up of about 10,000 neurons 
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in mice and up to 50,000 in humans (Videnovic et  al. 
2014). SCN neurons and virtually all cells of an organism 
have a molecular clock consisting of a mechanism of tran-
scriptional-translational retro control. The main circuit of 
such system is regulated by the transcription factors aryl 
hydrocarbon receptor nuclear translocator-like protein 1 
(ARNTL), also known as Brain and Muscle ARNT-Like 1 
(BMAL1), as well as the circadian locomotor output cycles 
kaput (CLOCK). When heterodimerized, both transcription 
factors bind to the E-box sequences found in the promot-
ers of the so-called clock-controlled genes (CCGs). Among 
these genes are the proteins period (PER) 1–3, cryptochrome 
(CRY) 1–2, and nuclear receptors Rev-Erbα and Rorα. PER 
and CRY inactivate the proteins BMAL1 and CLOCK, gen-
erating a transcriptional control cycle of 24 h. Importantly, 
CCGs also code for a large number of proteins and can gen-
erate the physiological rhythms of metabolism and behavior 
(Takahashi 2017).

On the other hand, peripheral oscillators are usually 
synchronized with the SCN and have been characterized in 
various tissues such as the liver (Lamia et al. 2008), kidney 
(Solocinski and Gumz 2015), skin (Matsui et al. 2016), heart 
(Durgan and Young 2010), and in immune system cells such 
as lymphocytes (Druzd et al. 2017) and macrophages (Keller 
et al. 2009). This synchronization of the central clock with 
the peripheral organs occurs through the hypothalamic–pitu-
itary–adrenal efferent pathways and the autonomic nervous 
system (Curtis et al. 2014).

Circadian Rhythms of the Immune System

The IS differentiates the usual from the strange and protects 
the organism from harmful agents that come from the envi-
ronment, such as pathogens (bacteria, viruses, fungi, and 
parasites) and foreign substances. The IS is divided into two 
large arms, the innate IS (IIS) and the adaptive (AIS). The 
IIS is considered the first line of defense that includes physi-
cal barriers (skin and mucous membranes), different cell 
types like nuclear polymorphs (neutrophils, eosinophils, and 
basophils), mononuclear cells (monocytes, macrophages, 
and lymphocytes), and soluble factors (complement sys-
tem and mediators of inflammation, such as cytokines and 
chemokines).

The IIS allows a rapid, non-specific defense response 
mainly directed against pathogens or necrotic cells. This is 
achieved by recognizing molecules denominated as patho-
gen-associated molecular patterns (PAMPs), such as lipopol-
ysaccharides (LPS), as well as damage-associated molecular 
patterns (DAMPs), such as the high-mobility group box 1 
(HMBG1) (Chen and Nuñez 2010).

Finally, the IIS is capable of interacting with and activat-
ing the other major branch: the AIS. This is characterized 

by a slow, antigen-specific response mediated by T and B 
lymphocytes that proliferate and differentiate into the effec-
tor population after antigen presentation. Thus, the complete 
elimination of pathogens occurs, as well as the generation of 
mechanisms of immunological memory (Parkin and Cohen 
2001; Cermakian et al. 2013; Labrecque and Cermakian 
2015).

It is currently known that the magnitude of IS response 
could be controlled by circadian signals that could influ-
ence the trafficking of immune cells, the host–pathogen 
interaction, or the activation of innate and adaptive immu-
nity. In mice, a rhythmic pattern of leukocyte recruitment 
has been described, and more significant traffic of immune 
cells to tissues was observed during the activity period (dark 
phase). For example, neutrophils, i.e., cells that are attracted 
to inflamed tissues early on in the immune reaction and act 
through phagocytosis and the secretion of antimicrobial sub-
stances, vary their concentration in the blood throughout 
the day (Scheiermann et al. 2012). In humans, this circa-
dian variation has been related to the expression of CLOCK 
molecular proteins. Although neutrophils express CLOCK 
genes such as Per1, Dbp, and Rev-erbα, the levels of PER2 
and BMAL1 were undetectable and minimal, respectively. 
Therefore, it was concluded that it might be systemic mecha-
nisms and not the autonomous self-oscillator of the cells 
that determine the diurnal changes in the effector activity of 
peripheral neutrophils (Ella et al. 2016).

However, with the administration of a pro-inflammatory 
stimuli such as LPS, the relative expression of clock mol-
ecules like Clock, Per3, Cry1, and Cry2 in peripheral blood 
leukocytes decreased by 80–90%, suggesting that endo-
toxin is a potent entrainer of the circadian clock network 
in circulating inflammatory cells (Haimovich et al. 2010). 
Furthermore, after trauma or during inflammatory disease, 
neutrophil migration to tissues is significantly influenced by 
the endogenous rhythms of endothelial cells due to the cir-
cadian expression of adhesion proteins (Scheiermann et al. 
2012). This variation may have evolved since phagocytes 
greatly improve the response to pathogens during periods of 
activity, during which injuries and infections of microorgan-
isms are more likely to occur (Casanova-Acebes et al. 2013).

Other cellular components of the IIS are macrophages, 
innate immune cells derived from monocytes, and long-term 
residents of various tissues. Although initially described as 
mainly phagocytic cells, macrophages participate in multiple 
processes and mediate inflammatory phenomena, regulate 
T lymphocyte activation through antigen presentation, and 
play a role in tissue repair and regeneration (Snyder et al. 
2016). In this manuscript, we describe the functions of these 
cells in relation to the molecular clock.

Finally, another component of the IIS that varies through 
the day is soluble factors like cytokines and chemokines. In 
healthy humans, serum levels of interleukin (IL)-1, IL-6, 
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and soluble IL-2 receptors peak at 1–4 am (rest period) and 
are lower to 8–10 am (active period) (Petrovsky 2001). In 
a cell culture of peritoneal exudate cells (PECs) of mice, 
the secretion of cytokines like IL-6 and IL-12 (p40) and 
chemokines such as CXCL1, CCL5, and CCL2 showed a 
circadian response to LPS administered in an intraperitoneal 
(i.p.) manner. The highest response to LPS was observed at 
the transition of the rest and active phases, at circadian time 
12 (CT12) (Gibbs et al. 2012).

Circadian Variation in the Immune Response 
of Macrophages

Studies in mice showed that the ability of peritoneal mac-
rophages (PM) to initiate a defense cascade is strongly regu-
lated by an intrinsic circadian clock. For example, ex vivo 
PM showed expression of canonical clock genes such as 
Bmal1, Cry1-2, Per1-3, and Rev-erbα. However, with 
the administration of LPS, specifically, pro-inflammatory 
cytokine such as TNF-α and IL-6 production is determined 
by the circadian phase of the macrophage clock rather than 
by systemic circadian modulators such as cortisol levels 
(Keller et al. 2009). Another study reported that the ability 
of PM to phagocytize is higher during the day as compared 
to the night, and the transcription of mRNA pro-inflam-
matory cytokines and chemokines on it also have the same 
rhythmicity (Hayashi et al. 2007).

The close relationship of the immune response of mac-
rophages with the circadian clock was affirmed when the 
function of the Per2 gene was shown to be linked to the 
expression of toll-like receptor-9 (TLR9) in mice. In mac-
rophages, Tlr9 mRNA expression showed a daily rhythm 
that peaked at zeitgeber time 11 (ZT11), the Per2 mutation 
causes alterations, such as a decrease in TLR9 expression 
and a lower secretion of TNF-α and IL-12 after challenge 
with a ligand for TLR9 (Silver et al. 2012). Subsequently, 
ex vivo studies of bone marrow-derived macrophages of 
mice having a complete deletion of the Arntl−/− gene (also 
known as Bmal1) showed that it plays an essential role in 
the overall control of inflammatory gene regulation. This 
occurs by presenting a more significant response and pro-
longed activation of inflammatory genes activated by TLR4 
as compared to its control group (Oishi et al. 2017). These 
data correlated with a previous study in which macrophages 
with deletion of the Arntl−/− gene displayed a higher pro-
duction of cytokines, especially of TNF-α and IL-6 (Curtis 
et al. 2015).

A study focusing on PECs, specifically macrophages 
characterized by the surface expression of F4/80 and CD11b, 
found that the nuclear receptor REV-ERBα, which plays a 
central role in the control of circadian expression of Bmal1, 
is the main one involved in the modulation of circadian 

control of the IIS. In an initial experiment, LPS i.p. induced 
an increase in the synthesis of cytokines IL-6 and IL-12 
with a peak during the transition to the active phase (CT12) 
as compared with the transition to resting phase (CT0) in 
control mice. However, in a knockout mouse with a mac-
rophage-specific Bmal1−/−, this time-dependent effect on the 
magnitude of the LPS response was lost. In another experi-
ment, WT mice exposed to LPS i.p. showed higher serum 
concentrations of IL-6 at CT12 compared to CT0. However, 
in the Rev-erb gene (rev-erbα−/−) knockout mice, this dif-
ference was lost. The marked discrepancy in the cytokine 
secretion in both experiments demonstrated the essential 
role of the molecular clock on immune response rhythmic-
ity (Gibbs et al. 2012).

Finally, in an infection model of Leishmania major, the 
authors showed for the first time that the circadian clock 
of mice bone marrow-derived macrophages is involved 
in the susceptibility of infection to this parasite. When 
Bmal1−/− knockout mice were infected, no circadian vari-
ations were observed in the parasite load or the number of 
infected macrophages. In contrast, in WT animals it was 
found that parasitic load, together with the number of 
 CD206− macrophages and  CD11b+ neutrophils, was higher 
during the active phase (CT15), (Kiessling et al. 2017).

Microglia

Microglia are the resident macrophages of the central 
nervous system (CNS) and represent near 20% of the total 
number of cells in the CNS (Lawson et al. 1990). These 
cells are distributed through all regions of the brain, and 
its density varies depending on the area, ranging from only 
5% in the corpus callosum or up to 12% in the substantia 
nigra (Lawson et al. 1990; Savchenko et al. 1997; Tremblay 
et al. 2011). For a long time, it was believed that microglia 
played a “static” role within the normal physiology of the 
CNS; however, in this apparent state of rest it plays a highly 
dynamic function by continuously sampling their microen-
vironment with long protrusions and a variety of surface 
receptors (Nimmerjahn et al. 2005). It is currently known 
that microglia maintain CNS homeostasis by regulating 
synapses depending on neuronal activity and the simulta-
neous interaction with neurons and astrocytes (Tremblay 
et al. 2011). Actually, microglial cells collaborate during 
fetal development, childhood, and puberty, thereby being 
responsible for “synaptic pruning” and the production of 
neurotrophic factors (Wu et al. 2015; Kierdorf and Prinz 
2017).

Furthermore, microglia can actively sense any possi-
ble signs of damage coming mainly from neurons and are 
responsible for initiating the innate immune response to 
aggression from either microorganism (bacteria, viruses, 
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etc.), direct acute damage (trauma or cerebral vascular 
events) or neurodegenerative mechanisms (Brown and Neher 
2014; Butovsky et al. 2016; Wolf et al. 2017). For its activa-
tion, microglia require a specific pathological stimulus that 
could generate changes in its morphology as described in 
several models, for example, in prion disease (Vincenti et al. 
2015), traumatic brain injury (TBI) (Morrison et al. 2017), 
and stroke (Heindl et al. 2018), among others. Therefore, 
microglia respond to these stimuli by synthesizing a broad 
spectrum of chemokines, pro-inflammatory and anti-inflam-
matory cytokines, and other mediators. In fact, depending 
of the activation profile, microglia can be divided into M1 
(classical profile) and M2 (alternative), the latter of which 
can be further differentiated into three subsets: (1) M2a, 
focused on repair and regeneration; (2) M2b, an immunoreg-
ulatory phenotype; and (3) M2c, an acquired-deactivating 
phenotype (Kabba et al. 2018).

Circadian Rhythms in Microglia

Although the works of this CNS resident macrophage 
regarding the presence of an intrinsic biological clock are 
recent, they have yielded exciting results (Chi-Castañeda and 
Ortega 2018). For example, Hayashi et al. (2013a) found 
that the isolated microglia of the cerebral cortex of mice 
exhibited variations throughout the day in its morphology, 
thereby finding a greater branching during the darkness, 
which subsequently decreased during the light phase; also 
these changes were associated with circadian variations 
because it was preserved in conditions of constant dark-
ness. These morphological variations were related to the 
cycles of expression of clock proteins and the induction of 
purinergic receptors, specifically the  P2Y12 type  (P2Y12R), 
a  Gi/0-coupled ATP receptor exclusively expressed in micro-
glia in CNS (Tozaki-Saitoh et al. 2012), which activate a 
downstream signaling cascade that could reorganize the 
cytoskeleton (Hristovska and Pascual 2016). Hayashi et al. 
generated clock-mutant mice and observed that diurnal mor-
phological changes of microglia and the relative mRNA lev-
els of  P2Y12R were abolished, both in normal light/dark and 
under constant-dark conditions (Hayashi et al. 2013a).

In other research, Takayama et al. reproduced the diurnal 
variation of cortical microglia, they measured the mean total 
length and the mean number of branch points and found that 
the significance of both was greater at ZT14 than ZT2. How-
ever, in a second experiment, focal administration of Porphy-
romona gingivalis to the somatosensory cortex resulted in a 
greater significant microglial process extension at ZT2 than 
at ZT14. Finally, the authors relate the microglial expres-
sion of  P2y6R, a  Gq/11 protein that regulates the intracellular 
 Ca2+ store and is activated by uridine triphosphate and UDP, 
with the diurnal variations since a pharmacological blockade 

of this receptor caused the microglial process extensions to 
be significantly attenuated. Furthermore, they showed that 
the promoter region of the gene P2ry6 of  P2y6R contains 
a RORE site, which is the target of Rev-erbα. Therefore, 
Rev-erbα could suppress the expression of P2ry6 during 
the active phase of the mouse (dark phase) (Takayama et al. 
2016).

In addition, the molecular machinery of the cortical 
microglia clock generates the circadian expression of cath-
epsin S (CatS) (a specific lysosomal cysteine protease). The 
levels of expression of CatS are low during the light period, 
correlating with a decrease in the size of the dendritic spines 
and the synaptic strength and, by elevating the expression 
of CatS during the dark phase, the dendritic spines and the 
synaptic strength increase (Hayashi et al. 2013b). Inter-
estingly, CatS has been related to the part of the adaptive 
immune response that contributes to antigenic presentation, 
for example, in the formation of specific peptides against 
foreign proteins (Hsieh et al. 2002) and in the degradation 
of the invariant chaperone chain associated with the major 
histocompatibility complex (MHC) class II (Honey and 
Rudensky 2003; Clark and Malcangio 2013).

Finally, genes of pro-inflammatory factors (IL-1β, TNF-
α, and IL-6) in rat hippocampal microglia showed rhythmic-
ity throughout the day. When LPS was administered during 
the light phase, there was a significant expression of IL-1β, 
TNF-α, and IL-6 of both, the mRNA and protein. In contrast, 
during the dark phase, the levels of these cytokines were 
lower regardless of the concentrations of LPS administered. 
This response seems to be independent of glucocorticoids, 
since, despite adrenalectomy and the absence of circulating 
corticosteroids, the circadian rhythms in the microglia were 
maintained (Fonken et al. 2015).

Summary of the articles discussed is presented in Table 1, 
and comparison throughout the day of the response of both 
microglia and macrophages is shown in Fig. 1.

Are There Different Variations in Microglia 
and Macrophages?

The immune response varies throughout the day and depends 
on the molecular machinery of the circadian clock (Schei-
ermann et al. 2013, 2018). Apparently, this physiological 
variation correlates with immune response, the susceptibility 
to different agents throughout the day, such as bacteria, and 
the prognosis after the immune challenge. Extensive reviews 
describe that the transition from the rest phase to active 
phase is associated with a higher susceptibility and induction 
of pro-inflammatory cytokines, as compared to the transi-
tion from active phase to rest phase where the susceptibility 
is lower and with a lower induction of pro-inflammatory 
cytokine synthesis (Curtis et al. 2014; Geiger et al. 2015). 
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Guerrero-Vargas et al. showed that intravenous LPS admin-
istration at ZT14 (2 h after the beginning of the active phase) 
induced a higher serum concentration of IL-6 compared to 
the group with LPS administration at ZT2 (2 h after the 
beginning of the rest phase) (Guerrero-Vargas et al. 2014). 
Therefore, it is necessary to consider factors that cause cir-
cadian variation in the organism and could influence these 
variations in immune response; for example, hormones that 
display typical circadian rhythms, such as growth hormone 
and prolactin which peak at the rest phase, catecholamines 
which peak during the active phase or, for example corticos-
teroids, that in a study with administration of dexametha-
sone in peripheral oscillators like liver and fibroblast, have 
been related to a phase-shifting in expression of Dbp and 
Rev-erbα caused a strong phase delay when it was injected 
at ZT14 and ZT21 (night phase), whereas injection at ZT1 
(light phase) resulted in a phase-advance (Balsalobre et al. 
2000). This could explain why the peak at the transition of 
rest phase to active phase of corticosteroids could be related 
to a phase-shifting in microglia and macrophages; however, 
as we previously mentioned, some studies had reported a 
corticosteroids independent mechanism. Therefore, more 
studies are necessary to elucidate these mechanisms, con-
sidering that there may be several factors that are generating 
this difference (Fig. 2).

Nevertheless, it is necessary to consider the context of 
the CNS, which presents structural features of the tissue 
that differentiate it from the response generated in the rest 

of the organism. One such example is the presence of the 
blood–brain barrier, a morpho-functional structure that sepa-
rates the CNS from blood and which also presents variations 
in permeability that depends both on sleep and circadian 
rhythms (Cuddapah et al. 2019). On the other hand, the 
glymphatic system was recently described as a glial-depend-
ent perivascular network that subserves a pseudolymphatic 
function in the brain (Iliff et al. 2012; Plog and Nedergaard 
2018). The specific response of the microglia needs to be 
considered, depending on the time in which an immune 
challenge is generated, for example, research on CNS of a 
murine model showed that a lower induction of the pro-
inflammatory response during the dark phase is observed 
compared to the light phase. For example, the hippocampal 
relative gene expression of IL-1β and TNF-α was higher 
in mice exposed to cardiac arrest 6–8 h after turning lights 
on (mid-light period) than in mice challenged 4–6 h after 
turning lights off (mid-dark period). These observations 
correlated with microglial activation that was quantified in 
different brain areas and found to be higher in the mid-light 
period compared to the mid-dark period phase (Weil et al. 
2009). These results are in agreement with the variations 
described in the production of pro-inflammatory cytokines 
(IL-1β, TNF-α, and IL-6) in the hippocampus 3 and 24 h 
after the application of LPS at two different time points (ZT6 
and ZT16), thereby showing a greater response during the 
light phase compared to the dark phase (Fonken et al. 2015). 
In rats subjected to the unavoidable shock test of the tail and 

Fig. 1  Comparative immune response between peripheral mac-
rophages and microglia through the day Several studies highlight the 
pro-inflammatory immune response of peripheral macrophages dur-
ing the light–dark transition or in darkness, while microglial studies 
show this tendency towards daylight hours. ZT is a unit of time based 

on the period of a zeitgeber, such as the 12:12 light:dark cycle. In 
free-running, constant conditions, the onset of activity of day-active 
organisms is circadian time zero (CT0) and the onset of activity of 
night-active organisms is CT12 (Karatsoreos and Silver 2017)
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subsequently exposed to LPS, the hippocampal induction of 
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) was 
higher in the subjects tested during the light period than in 
rats subjected to stress during the dark period (Fonken et al. 
2016). Finally, these works suggest that microglia could 
be generating an immune-regulatory role, by receiving the 
immune signals coming from the periphery and initiating a 
greater pro-inflammatory response in the CNS during the 
period of light compared to the dark period.

Implications and Future Perspectives

Differences between both responses, central and peripheral 
seem reasonable when considering tissue macrophages in 
different circumstances; therefore, the immune profile vari-
ation throughout the day would not seem surprising. How-
ever, the observations that the CNS presents greater sus-
ceptibility during the light period compared to the period 
of darkness due to a more pronounced pro-inflammatory 
response may be of clinical relevance since brain therapies 
should consider these circumstances. For example, in our 
laboratory, we have demonstrated that rats subjected to TBI 
during the light period present remarkable damage evalu-
ated through neurobehavioral tests and higher mortality in 
comparison with rats traumatized during the dark period 
(Estrada-Rojo et al. 2018). These data are consistent with 
the previously-mentioned studies.

Nevertheless, whether this difference is due to the varia-
tion of the immune response in CNS is open to corrobora-
tion. However, we hypothesize that it could be the sleep 
condition that could be generating a microenvironment that 
promotes the observed gap between microglia and peripheral 
macrophages, for example, in previous works it has already 

been reviewed that the neurons and astrocytes of areas that 
are involved in the regulation of sleep–wake behavior as 
hypothalamus, hippocampus, and brain stem and even cortex 
are immunoreactive for cytokines such as IL-1β and TNF-α 
(Imeri and Opp 2009). This pro-inflammatory microenviron-
ment coincides with the onset of susceptibility during the 
cycle of light in rats, and in turn would explain the works 
mentioned in this review. Finally, future experiments will 
need to consider another variable, the glymphatic system 
that has a central role in brain clearance and is functional 
during sleep (Iliff et al. 2012). Other factors to be consid-
ered are the vagus nerve regulation of peripheral immune 
response, melatonin production, and the effects of sleep dep-
rivation among others.

Although macrophage-based cell therapies are novel 
and promising in the treatment of different pathologies, 
for example, brain ischemia (Kanazawa et al. 2017), or in 
the context of an acquired infection or injury, the treatment 
should take into consideration the time of day that the event 
occurred. This is because the microenvironment generated 
by microglia or macrophages is affected by this factor when 
injury or infection occurs and could determine the levels of 
pro-inflammatory response, which might affect prognosis.

Conclusion

There is plenty of evidence in the literature suggesting a 
difference in the response between peripheral macrophages 
and microglia in CNS throughout the day. In this review, 
we presented the most representative works oriented to the 
variation of the immune response in the periphery and CNS, 
and its relation to macrophages. However, we feel that more 
studies are necessary to elucidate this hypothesis, and if this 

Fig. 2  Factors that can influence the difference in the immune 
response between macrophages and microglia The activation peak of 
macrophages agrees with several studies that indicate that the resting 
period (i.e., the dark period in humans and the light period in noc-
turnal rodents) is characterized by maximum levels of pro-inflamma-
tory hormones, such as growth hormone (GH) and prolactin, as well 
as Th1 or pro-inflammatory cytokines, such as IL-1 and TNF-α. In 
addition, the numbers of CD4+ T cells and the ability to respond to 
LPS are also higher during the rest period. While during the active 
period (i.e., the light period in humans and the dark period in noc-

turnal rodents), the hypothalamus–hypophysis–adrenal axis turns on 
and cortisol or corticosterone peaks; also, adrenaline released from 
the adrenal medulla and noradrenaline released from the sympathetic 
nerve endings increase. These hormones are anti-inflammatory and 
shut down the pro-inflammatory response induced during the rest 
period. Indeed, also IL-10, the major anti-inflammatory cytokine 
peaks in the active period. All these factors coincide with a lower 
activation of the macrophages (Besedovsky et  al. 2012; Cermakian 
et al. 2013)
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is confirmed, it could imply significant repercussions on the 
research of various diseases. On the other hand, the time of 
the day that injury or infection occurs, and whether it occurs 
in the CNS or the periphery should be considered in future 
therapies since the outcome may vary.
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