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Abstract
Neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Parkinson’s, 
Alzheimer’s, and Huntington’s disease affect a rapidly increasing population worldwide. Although common pathogenic 
mechanisms have been identified (e.g., protein aggregation or dysfunction, immune response alteration and axonal degen-
eration), the molecular events underlying timing, dosage, expression, and location of RNA molecules are still not fully 
elucidated. In particular, the alternative splicing (AS) mechanism is a crucial player in RNA processing and represents a 
fundamental determinant for brain development, as well as for the physiological functions of neuronal circuits. Although in 
recent years our knowledge of AS events has increased substantially, deciphering the molecular interconnections between 
splicing and ALS remains a complex task and still requires considerable efforts. In the present review, we will summarize 
the current scientific evidence outlining the involvement of AS in the pathogenic processes of ALS. We will also focus on 
recent insights concerning the tuning of splicing mechanisms by epigenomic and epi-transcriptomic regulation, providing 
an overview of the available genomic technologies to investigate AS drivers on a genome-wide scale, even at a single-cell 
level resolution. In the future, gene therapy strategies and RNA-based technologies may be utilized to intercept or modulate 
the splicing mechanism and produce beneficial effects against ALS.
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Background

An increasing number of debilitating human illnesses 
(cancer, muscular dystrophies, and neurodegenerative dis-
orders) are caused by RNA metabolism defects. One of the 
pivotal participants in the RNA processing is alternative 
splicing (AS) whose task is to control and diversify gene 
expression, monitoring the protein productions of more 
than 90% of the exon-coding genes (Wang and Cooper 
2007). Splicing process abnormalities (i.e., mutations in 
the intron–exon boundaries or in the exonic/intronic RNA 
regulatory silencer and enhancer elements) and defects in 
the spliceosome machinery or in the RNA-binding proteins 
(RBPs) are known to influence disease pathogenesis, and 
can represent a direct cause or possible modulators of dis-
ease susceptibility and severity (La Cognata et al. 2015; 
Nissim-Rafinia and Kerem 2005; Vanderweyde et al. 2013; 
Verma et al. 2018). Despite the considerable role of AS 
program in all aspects of neuronal development (from neu-
rogenesis to mature synaptic functions) and the remark-
able efforts of the scientific community to decipher the 
complexity of splicing regulation, our knowledge about 
AS in the ALS context is still not completely elucidated.

Herein, we summarize the AS regulation of ALS-related 
genes and highlight the contribution of splicing changes 
in pathology. We also discuss the regulation of splicing 
mechanisms by epigenomic and epi-transcriptomic events, 
introducing the new technological advances that enable to 
investigate AS isoforms at a single-cell level.

RNA-based therapeutic applications are quickly becom-
ing a reality in the treatment of complex diseases (i.e., can-
cer, ocular and cardiovascular diseases, spinal muscular 
atrophy, Duchenne’s muscular dystrophy, and Alzheimer’s 
disease) (Baralle and Buratti 2017; Jyotsana and Heuser 
2018; Sardone et al. 2017; Wasser and Herz 2016). Inves-
tigating the splicing mechanisms involved in ALS could 
pave the way to new interesting perspectives for develop-
ing novel therapeutic approaches and raising hope for this 
devastating and still incurable pathology.

The Alternative Splicing Program: Molecular 
Mechanism and Regulation

AS is the main mechanism of gene expression regula-
tion that increases transcriptomic and proteomic diversity 
in eukaryotic cells. It works through five main different 
events: exon skipping (ES), mutually exclusive exon, alter-
native 3′ splice site, alternative 5′ splice site, and intron 
retention (IR) (Tazi et al. 2009).

Splicing process is performed by the spliceosome, a 
dynamic machine able to identify the exon–intron splice 
sites and to catalyze the cut-and-paste reactions for the 
intron removal and the exon junction (Matera and Wang 
2014). This machinery is composed of a large number of 
elements, including small nuclear RNA molecules (snR-
NAs), some of which play a structural role (i.e., the small 
nuclear ribonucleoproteins, snRNPs), are regulators of the 
reaction (i.e., SR proteins, rich in Ser and Arg), or work as 
ATPasi or RNA-helicases (Matera and Wang 2014; Val-
adkhan 2010).

The splicing process is regulated by auxiliary cis-acting 
elements, named exonic or intronic splicing enhancers 
(ESEs or ISEs) and silencers (ESSs or ISSs), which guaran-
tee the correct exon/intron recognition through their bind-
ing sites for the SR proteins and operate together with their 
specific trans-acting RBPs (Fig. 1) (Kapeli et al. 2017; Ram 
and Ast 2007). Other players of splicing regulation are the 
hnRNP proteins (heterogeneous nuclear ribonucleoproteins) 
that promote skipping by binding silencers located in the 
proximity of the exon–intron junctions (Geuens et al. 2016) 
(Fig. 1). An example of hnRNPs is the PTB (polypyrimi-
dine tract-binding protein), whose spliced PTBP1 isoform 
(nPTB1) is able to suppress the neural splicing of specific 
targets, producing the stop of the neuronal differentiation 
process (Boutz et al. 2007).

Recent discoveries have shown that AS is powerfully 
conditioned by epigenomic and epi-transcriptomic regula-
tion, based on histone modifications, chromatin structure, 
and transcription rate changes (Prasad et al. 1999; Zhu et al. 
2018). The action of hnRNPs, SR proteins and the activity 
of kinase/phosphatase enzymes rely on post-translational 
modifications (phosphorylation and de-phosphorylation 
reactions) that are essential to promote splicing (Bed-
ford and Richard 2005; Blackwell and Ceman 2012). The 
advancement in the understanding of splicing regulation 
by epigenomic/epi-transcriptomic processes will provide 
new molecular insights into the function of individual RNA 
modifications.

Alternative Splicing Regulation of ALS Genes

ALS is a neurodegenerative disease characterized by the pro-
gressive degeneration of both upper and lower motor neu-
rons (MN) in spinal cord and motor cortex (Brown 1997), 
arising from the complex interaction of several molecular 
and cellular phenomena, including oxidative stress, mito-
chondrial dysfunction, axonal transport alteration, inflam-
mation, excitotoxicity, and protein aggregation (Mendonca 
et al. 2012; Rothstein 2009).

Several genes are known to play a role in ALS patho-
genesis (such as TBK1, SOD1, VCP, TARDBP, FUS, GRN, 
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MAPT, CHCHD10, and TUBA4A) [for an updated review, 
the reader is referred to (Volk et al. 2018)], and a complete 
and updated list is accessible in the Online genetic database 
of amyotrophic lateral sclerosis (ALSoD, http://alsod .iop.
kcl.ac.uk/). Among the numerous listed genes, TARDBP, 
ELP3, ANG, TAF15, and FUS deserve particular atten-
tion because they are directly involved in RNA processing 
(transport control, stability, and translocation) (Baumer et al. 
2010; Greenway et al. 2006; Kabashi et al. 2008; Mackenzie 
and Neumann 2012; Zhao et al. 2018).

A clear relationship between ALS-related genes and 
splicing factors is revealed by a bioinformatic analysis 
performed with STRING, a free web resource collecting 
known and predicted protein–protein interactions (https ://
strin g-db.org/) (Fig. 2). To build the network, we screened 
genes from both ALSoD database and SpliceAid-F database 
(http://srv00 .recas .ba.infn.it/Splic eAidF /), which collect 
experimentally validated splicing factors (many ALS genes 
are splicing factors themselves) and related binding sites. 
Among RNAs or proteins involved in the splicing machinery 
or regulation, we included those associated with neurode-
generative, neuromuscular, and neurological diseases (i.e., 
spinal muscular atrophy, frontotemporal dementia, muscular 
dystrophy, neurofibromatosis type 1, myotonic dystrophy, 
fragile X syndrome, congenital myasthenic syndrome, and 
paraneoplastic encephalomyelitis). Figure 2 shows a number 
of existing potential connections and protein–protein interac-
tions between the elements, strengthening the hypothesis of 
the AS contribution in ALS pathogenesis.

In the following sections, ALS genes (listed in Table 1) 
will be divided in two classes: we will first focus on the 
splicing regulation of those genes that have their own spe-
cific pathology and contribute to a loss-of-function mecha-
nism in ALS (TARDBP, FUS, and C9ORF72), and then we 
will discuss other susceptibility or ALS-related genes (Con-
lon and Manley 2017).

TARDBP

TAR DNA-binding protein 43 (TDP-43), encoded by TAR-
DBP localized on chromosome 1, is one of the components 
of ubiquitinated protein aggregates found in familial and 
sporadic ALS patients with different degree of severity 
(Tsuji et al. 2012). It is an essential splicing factor, since 
it is a member of the hnRNPs family and thus is involved 
in the RNA metabolism processes (splicing, transport, and 
translation) (Buratti and Baralle 2008). TDP-43 is composed 
of several functional domains: an N-terminal domain (NTD), 
two-tandem RNA recognition (RRM1-2), and a glycine-rich 
term prion-like domain located at the C-term (PrLD). This 
latter is particularly important for AS regulation, since it is 
involved in mediating the phase transitions underpinning 
RNP granule assembly (Shorter and Taylor 2013), but on 
the other hand acts as a pathogenic mutation site rendering 
TDP-43 prone to misfolding into conformers that accumu-
late in pathological inclusions (Harrison and Shorter 2017). 
The absence of PrLD domain prevent aberrant misfolding 
and toxicity events (Ash et al. 2010; Johnson et al. 2009) and 

Fig. 1  RNA-binding proteins regulating splicing events. Serine and 
Arginine-rich proteins (SR proteins) are known to bind exonic or 
intronic splicing enhancer (ESEs/ISEs), while heterogeneous nuclear 
ribonucleoproteins (hnRNPs) bind intronic or exonic splicing silenc-
ers (ISSs/ESSs). The splicing process is enhanced by SR proteins 
and repressed by hnRNPs. In the blue circles we report a small list 

of RS proteins and hnRNP while in the red circle we list RBPs that 
have been associated with various diseases, including neurological 
diseases. For further details, please refer to the databases of RNA-
binding protein specificities (RBPDB, http://rbpdb .ccbr.utoro nto.ca/), 
which collects RNA-binding proteins associated to neurological dis-
eases

http://alsod.iop.kcl.ac.uk/
http://alsod.iop.kcl.ac.uk/
https://string-db.org/
https://string-db.org/
http://srv00.recas.ba.infn.it/SpliceAidF/
http://rbpdb.ccbr.utoronto.ca/
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could be an interesting target for an oligonucleotide thera-
peutic strategy.

Several lines of evidence suggest the crucial role of TDP-
43 in splicing regulation and ALS onset, encompassing both 
mutations in the genetic sequence of TARDBP itself and the 
AS regulation of specific targets (SMN2, APOAII, CFTR 
HNRNPA1, POLDIP3, ATG4B, STMN) (Butti and Patten 
2018; Deshaies et al. 2018; Torres et al. 2018). About the 
genetic sequence, two heterozygous missense variants have 
been described in exon 6 of TARDBP that modulate AS and 
are likely involved in ALS onset or progression (Van Deer-
lin et al. 2008),. With regard to targets, TDP-43 depletion 
interfere with the AS of hnRNPA1 pre-mRNA, determining 

the inclusion of exon7B and culminating in a longer hnR-
NAP A1B isoform that is prone to aggregation and cytotoxic 
(Deshaies et al. 2018). Similarly, downregulation of TDP-43 
results in an increase of cryptic sites in ATG4B (autophagy 
related 4B cysteine peptidase) causing an impairment of 
autophagy (Torres et al. 2018). Another identified TPD-43 
downstream target is POLDIP3 (Polymerase delta-inter-
acting protein 3), which is involved in regulating splicing 
efficiency (Shiga et al. 2012). POLDIP3 isoform 2 is rarely 
expressed in healthy tissues and its concentration increases 
when TDP-43 is depleted, making it a candidate biomarker 
for TDP-43 dysfunction (Shiga et al. 2012). Furthermore, 
TDP-43 regulates the splicing of STMN2 (Stathmin-2), 

Fig. 2  Representation of 
known and predicted molecu-
lar interactions between ALS 
genes and splicing regula-
tors. A network created with 
STRING (https ://strin g-db.org/) 
shows ALS disease-causing 
or related genes with known 
or predicted interactions with 
splicing factors, as reported in 
the legend. Red circles represent 
ALS genes, while blue circles 
represent splicing factors. For 
the STRING analysis we used a 
confidence interaction score of 
0.400, focusing on specific and 
meaningful associations

https://string-db.org/


5Cellular and Molecular Neurobiology (2020) 40:1–14 

1 3

necessary for normal growth and axonal regeneration. 
TDP-43 knockdown leads to a decreased STMN2 expres-
sion, probably through splicing in a cryptic exon (Klim et al. 
2019).

Further evidence shows that TDP-43 dysfunctions alter 
the splicing efficiency by modifying U snRNP biogen-
esis and leading to neuronal death (Yahara et al. 2017). In 
addition, TDP-43 depletion leads to a co-depletion of U12 

Table 1  Human ALS genes with RefSeq number, gene locus, number of alternative transcript variants, number of exons, and biological pro-
cesses involved by the encoded protein

Gene name RefSeq Chromo-
somal 
location

Number of 
known tran-
scripts

Number 
of exons

Biological process

TARDBP NM_007375 1p36.22 32 6 RNA processing: transcriptional repressor; alternative splicing 
regulator

FUS NM_001170937
NM_004960
NM_001170634

16p11.1 13 15 RNA processing

C9ORF72 NM_001256054
NM_018325
NM_014005

9p21.2 8 11 Endosomal trafficking

OPTN NM_001008211
NM_001008213
NM_001008212
NM_021980

10p13 12 16 Cell death; autophagy

NEK1 NM_012224
NM_001199397
NM_001199398
NM_001199400
NM_001199399

4q33 9 34 Cell cycle regulation

SPG11 NM_025137
NM_001160227

9p21.2 25 40 Axon maintenance; proteins trafficking; gene expression regulation

KIF5A NM_004984 15q21.1 3 29 Intracellular transport
SETX NM_001351527

NM_015046
12q3.3 5 26 DNA/RNA processing

DCTN1 NM_004082
NM_001190837
NM_001190836
NM_023019
NM_001135040
NM_001135041

2p13.1 27 32 Retrograde transport; microtubule stability

CHCHD10 NM_001301339
NM_213720

22q11.23 5 4 Oxidative phosphorilation

VAPB NM_0011956771
NM_0047384

20q13.32 6 6 Vescicle trafficking

TAF15 NM_139215
NM_003487

17q12 15 16 RNA processing: RNA polymerase II transcription

ANXA11 NM_145869
NM_001278407
NM_001157
NM_145868
NM_001278409

10q22.3 10 17 Vesicle trafficking, apoptosis, exocytosis, and cytokinesis

EAAT2 NM_004171
NM_001252652
NM_001195728 

11p13 50 11 Glutamate reuptake

ADAR2 NM_001112
NM_001346687
NM_015833
NM_001160230
NM_001346688
NM_015834

21q22.3 15 11 A-to-I RNA editing
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snRNA, altering snRNPs assembly and providing a potential 
role for the minor spliceosome machinery in ALS (Ishihara 
et al. 2013). Taken together, all these data suggest that TDP-
43 depletion leads to the inclusion of different cryptic exons, 
and the maintenance of a homeostatic level of this protein is 
crucial for AS regulation.

FET‑Proteins: FUS, EWSR and TAF15

FUS (Fused in Sarcoma), EWSR (Ewing sarcoma breakpoint 
region), and TAF15 (TATA-Box Binding Protein Associated 
Factor 15) belong to the family of FET-proteins (Mackenzie 
and Neumann 2012). These proteins are composed of an 
N-terminal domain rich in Gln, Gly, Ser, and Tyr, a con-
served RNA-binding domain (RBD), the Arginine-Glycine-
rich (RGG) domain that may influence RNA-binding, and a 
 Cys2–Cys2 zinc finger motif binding nucleic acids (Moroho-
shi et al. 1998). Similarly to TDP-43, FUS and TAF15 aggre-
gates characterize different neurodegenerative conditions 
including ALS (Lagier-Tourenne et al. 2010). FET-proteins 
bind single or double RNA/DNA strands and many experi-
ments suggested their possible implication in transcription, 
RNA transport and pre-mRNA splicing (Lagier-Tourenne 
et al. 2010; Wu and Green 1997). Interestingly, FUS is 
enclosed in spliceosomal complex and interacts with sev-
eral SR proteins and minor splicing factors, as well as with 
the U1 snRNP (Butti and Patten 2018; Kapeli et al. 2016; 
Reber et al. 2016; Shang and Huang 2016). FUS depletion 
is known to affect the splicing of genes involved in neuro-
genesis (PPP2R2C), dendritic development (ACTL6B), and 
action potential transmission in skeletal muscles (SCN8A 
and SCN4A) (Reber et al. 2016). Moreover, FUS is able to 
interfere with the AS of genes involved in axonal growth 
and cytoskeletal organization, including MAPT, NTNG1, 
NRCAM, and ABLIM1 genes (Butti and Patten 2018).

Genomic FUS mutations determine an alternatively 
spliced exon 7, inducing a frameshift and the consequent 
splicing variants degradation (Zhou et al. 2013). Moreover, 
it is involved in some back-splicing events that regulate the 
formation of circular RNAs (circRNAs) in murine embry-
onic stem cell-derived motor neurons, causing a reduction in 
circRNA expression levels (Errichelli et al. 2017).

Differently from FUS, TAF15 plays a minimal role in AS 
altering the splicing of few known genes: GPCPD1 (glyc-
erophosphocholine phosphodiesterase 1), KCNMA1 (the 
alpha-1 gene of the calcium-activated potassium channel 
subunit), and GRIN1 (N-methyl-d-aspartate receptor subunit 
NR1) (Kapeli et al. 2016).

Given the essential role that FUS plays in splicing regula-
tion, further studies deserve to be carried out to better under-
stand the consequence of the loss of function of FUS (and 
of other FET-proteins) on RNA splicing and its potential 
contribution to ALS pathogenesis.

C9ORF72

Hexanucleotide GGG GCC   (G4C2) repeat expansion in 
C9ORF72 (C9) is the main cause of ALS and Fronto-
temporal Dementia (FTD). This  G4C2 expansion results 
in a dipeptide repeat protein (DPR), that accumulates in 
the cerebellum, cortical region and hippocampus of ALS 
patients (Gijselinck et al. 2012; Liscic 2015).

The differential use of transcription alternative start and 
termination sites in C9 is known to produce at least three 
RNA variants, encoding a long protein isoform (called 
isoform A) of approximately 54 kDa and a short isoform 
(named isoform B) of about 24 kDa (Barker et al. 2017). 
Expansion carriers exhibit a reduction in both C9ORF72 
mRNAs and protein levels, suggesting that toxicity may be 
mediated by a loss-of-function mechanism (Barker et al. 
2017).

Mis-splicing of the expanded C9 transcript may play a 
role in C9-mediated toxicity; whereas C9 is able to seques-
ter several members of the hnRNP family (such as hnRNP 
A1, hnRNP A3, hnRNP H) resulting in altered splicing 
patterns of their RNA targets (Conlon et al. 2016, 2018; 
Lee et al. 2013; Mori et al. 2013).

A number of studies described global splicing altera-
tions in C9 expansion carriers. Transcriptome analysis 
in lymphoblastoid cells and motor neurons of C9-FTD/
ALS cases revealed an increased occurrence of splicing 
errors (most evident among patients with faster disease 
progression) and an enrichment of upregulated tran-
scripts involved in RNA splicing, thus suggesting that 
such increased error rate could be a consequence of RBPs 
sequestration into foci, which in turn would contribute 
to disease progression and severity (Cooper-Knock et al. 
2015). Brain transcriptome profiling analysis showed 
extensive AS and alternative polyadenylation defects in 
the cerebellum of C9ALS subjects, involving also ALS-
associated genes (e.g., ATXN2 and FUS) (Prudencio et al. 
2015). Experiments conducted on lymphoblastoid cell 
lines revealed an increased number of aberrant splicing 
events, especially in the ALS patients with a rapid disease 
progression (Prudencio et al. 2015).

Interestingly, the G-quadruplex structure of C9 is able 
to sequester the splicing factor SRSF2 (Serine and arginine 
SF factor 2) (Conlon et al. 2016; Zhang et al. 2015), which 
in turn helps the binding of U1 snRNP to the 5′ splice 
site or other factors to the 3′ splice site of target genes 
(Mure et al. 2018). Very recently, DPRs were found to 
block spliceosome assembly associating and interfering 
with U2 snRNP, causing a global splicing alteration in 
ALS patients (Yin et al. 2017).
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Alternative Splicing Regulation 
of ALS‑Related Genes

A substantial number of other ALS-related genes are sus-
ceptible to splicing-based regulation. In the next sections, 
we will focus on SETX, OPTN, NEK1, SPG11, VAPB, 
DCTN1, CHCHD10, KIF5A, EEAT2, and ADAR2.

SETX

Senataxin (SETX) encodes for an RNA-binding protein 
with a highly conserved helicase domain involved in reg-
ulation of RNA transcription (Bennett et al. 2018) and 
associated with both ALS4 (a form of juvenile ALS) and 
AOA2 (ataxia with oculomotor apraxia type 2). Sequenc-
ing of SETX coding regions and genetic engineering exper-
iments revealed mutations correlated to an exonic cryptic 
donor site activation and an ESSs creation, resulting in 
MNs degeneration (Bennett et al. 2018; Tripolszki et al. 
2017).

OPTN

Optineurin (OPTN) is localized on chromosome 10p13 and 
encodes for a protein involved in membrane and vesicle traf-
ficking, transcription activation and cellular morphogenesis. 
This gene is mainly known to be responsible for hereditary 
primary open-angle glaucoma (POAG) and ALS, but its 
mutations were recently described to cause mRNA down-
regulation and degradation (Maruyama et al. 2010; Toth and 
Atkin 2018). In particular, an intronic mutation is known 
to activate a cryptic exonic donor site, resulting in ES of 
exon 6 (Del Bo et al. 2011); a non-sense mutation causes a 
stop codon and generates a frameshift due to exon 5 dele-
tion (Maruyama et al. 2010); additional OPTN variants were 
reported to create either an ESEs or an ESSs (Johnson et al. 
2012).

NEK Family

NIMA-related kinases (NEK) protein family are players in 
several fundamental biological processes, including cell 
cycle regulation (Moniz et al. 2011). These proteins share a 
common kinase domain, a basic domain, one or more coiled-
coil motifs (CC), and two nuclear export sequences (NES). 
Eleven mammalian NIMA-related kinases are currently 
known, and among these, NEK10 is the only that does not 
contain the N-terminal catalytic domain, while NEK4, 6, and 
7 do not have the coiled–coiled motifs. A growing number 
of NEKs are implicated in DNA damage response, some 

of which have tissue-specific functions, such as NEK3 and 
NEK7 in neurons (He et al. 2016; Shi et al. 2016).

A recent whole exome sequencing study suggested an 
association between NEK1 mutations and ALS, emphasizing 
a loss-of-function mechanism in 0.8% of ALS patients and 
highlighting a link between NEK1 and other known ALS 
genes (SOD1, TBK1, C21orf2) (Brenner et al. 2016; Cirulli 
et al. 2015; Kenna et al. 2016). To the best of our knowledge, 
there are currently no evidence correlating NEK1 splic-
ing alterations to ALS, although it is known that the other 
NIMA-related proteins undergo splicing regulation. Specifi-
cally, NEK4 isoform is engaged in mRNA processing medi-
ated by the spliceosome and is localized in nuclear speckles 
and substrates containing snRNPs (Basei et al. 2015). NEK2 
phosphorylates SRSF1 and, therefore, modulates SRSF1’s 
target genes controlling important AS events (Naro et al. 
2014). Moreover, SF phosphorylation and NEK2 silencing 
negatively affect the splicing (Naro et al. 2014). Given the 
importance of splicing regulation in components of the NEK 
family, it is possible that splicing in NEK1 is involved in 
ALS pathology.

SPG11

SPG11 (Spastic Paraplegia 11), localized on chromosome 
15q13-15, encodes for spatacsin protein, which plays a 
pivotal role in axonal maintenance, synaptic vesicle trans-
port, and autophagy. Spatacsin is essential for neuronal sur-
vival and is ubiquitously expressed in the nervous system, 
prominently in the cerebellum, cerebral cortex and hip-
pocampus. SPG11 mutations are considered causative for 
both hereditary spastic paraplegia (HSP) and the autosomal 
recessive juvenile ALS (ARJALS) form (Orlacchio et al. 
2010). ARJALS is a rare disease that occurs before the age 
of 25 years with a slowly progressive course. Interestingly, 
HSP and ARJALS have many similarities in clinical pres-
entation, molecular genetics, and cellular pathology. This 
overlap suggests that the same genetic variants may contrib-
ute to a common pathogenic pathway. Mutations in SPG11 
affect different splice donor region variants (Pippucci et al. 
2009; Yu et al. 2016).

VAPB

Vesicle-associated membrane protein (VAMP)—associ-
ated protein B (also known as VAPB) plays a role in cellular 
stress response of the endoplasmatic reticulum (ER) and in 
unfolded protein response (UPR) (Suzuki et al. 2009; Walker 
and Atkin 2011). VAPB is ubiquitously expressed in eukary-
otic cells and is involved in cellular calcium homeostasis 
regulation, protein transport, phospholipidic metabolism 
and viral infections (Kanekura et al. 2009). It is composed 
of three structural domains: a MSP (major sperm proteins) 
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conserved domain, a central amphipathic helicoidal struc-
ture and a C-terminal transmembrane domain. Five VAPB 
splice variants are known, all expressed in the human nerv-
ous system, which accumulate after proteasomal inhibition 
and contribute to ALS onset (Nachreiner et al. 2010). The 
identified variants lack specific exons of wt-VAPB: exon 2 
(VAPB-2 isoform), exons 4 and 5 (VAPB-4,5 isoform), exon 
3 (VAPB-3 isoform), exons 3 and 4 (VAPB-3,4 isoform) 
(Nachreiner et al. 2010).

DCTN1

DCTN1 (Dynactin subunit 1) is located on chromosome 
2p13 and encodes the dynactin protein (a component of the 
ubiquitous dynactin complex) that binds both microtubules 
and cytoplasmic dynein. The complex is involved in vesicle 
retrograde transport processes (endosomes and lysosomes), 
axonogenesis, ER-Golgi transports, and chromosomes shift. 
The AS of this gene results in a brain-specific and an ubiq-
uitously expressed isoform (Lazarus et al. 2013). AS of 
DCTN1 determine both distal hereditary motor neuropathy 
type VIIB (HMN7B), also known as distal spinal and bul-
bar muscular atrophy, and neurodegenerative disorders such 
as ALS (LaMonte et al. 2002). Different studies reported 
DCTN1 missense mutations and splicing changes in familial 
and sporadic ALS patients, mainly in Caucasians (Couthouis 
et al. 2014; Munch et al. 2004, 2005). Recently, a reduction 
of DCTN1 mRNA was reported in sALS motor cortex and 
spinal cord samples (Kuzma-Kozakiewicz et al. 2013).

CHCHD10

CHCHD10 (Coiled-Coil-Helix-Coiled-Coil-Helix Domain 
Containing 10) encodes a mitochondrial protein, localized 
in the intermembrane space and involved in mitochondrial 
organization maintenance. Mutations of this gene cause 
ALS2 and FTD. A recent study on fALS patients revealed 
a heterozygous missense variation that actives an acceptor 
cryptic site (Teyssou et al. 2016). Moreover, two mutations 
that cause about 50% reduction in CHCHD10 protein lev-
els and contribute to motoneuronal disease were identified 
(Brockmann et al. 2018).

KIF5A

KIF5A (Kinesin Family Member 5A) encodes a protein of 
the kinesin family, principally expressed in neurons and 
involved in axonal and organelle transport. Heterozygous 
missense mutations in KIF5A cause monogenic spastic para-
plegia (HSP10) and Charcot-Marie-Tooth type 2 (CMT2), 
while frameshift mutations are known to cause neurodevel-
opmental syndromes (Nicolas et al. 2018). Recently, two 
studies described the association between the increase of 

splice site mutations in the KIF5A C-term region and fALS 
(Brenner et al. 2018; Nicolas et al. 2018), definitively dem-
onstrating that KIF5A mutations interfere with axonal trans-
port and contribute to motor neuron degeneration.

ANXA11

Annexin A11 (ANXA11) is located on chromosome 10q22.3 
and encodes for a member of the annexin family, a group 
of cellular proteins working in calcium-dependent modality 
(Tawani and Kumar 2015). It is involved in vesicle traffick-
ing, exocytosis, endocytosis, signal transduction, cytokine-
sis, and apoptosis. ANXA11 is susceptible to phosphoryla-
tion in the amino-terminal region (Furge et al. 1999) and a 
variety of interactions influence its subcellular localization. 
Annexin A11 has been associated with cancer, autoimmune 
disorders (such as systemic lupus erythematosus), and mul-
tisystem autoimmune disease (sarcoidosis) (Hofmann et al. 
2008).

ANXA11 has been recently implicated in ALS (Smith 
et al. 2017). In particular, the p.D40G mutation was asso-
ciated to annexin A11-positive protein aggregates in spi-
nal cord motor neurons and hippocampal neuronal axons. 
ANXA11 is one of the genes most frequently mutated in 
sALS Chinese patients, where a splice site mutation in exon 
6 causes a partial deletions in amino-acidic protein sequence 
(Zhang et al. 2018).

EAAT2

Oxidative stress is one of the most important mechanisms 
responsible for motor neuron degeneration (Rothstein 2009). 
EAAT2 (Excitatory aminoacid transporter 2) is involved in 
90% of glutamate reuptake and undergoes RNA defects: 
exon 9 skipping and intron 7 retention. Splicing defects 
observed in EAAT2 mRNA in motor cortex and spinal cords 
of sALS patients were associated to alterations in spliceoso-
mal components (Grabowski 1998; Lin et al. 1998). More 
recently, reduced EEAT2 activity was linked to aberrant 
EAAT2 mRNA transcripts as a consequence of abnormal 
RNA splicing (Bristol and Rothstein 1996).

ADAR2

The possibility that RNA processing defects play a role in 
neurodegenerative diseases is also confirmed by the regula-
tion of ADAR (adenosine deaminase acting on RNA), an 
RNA-regulating protein responsible for binding to double-
stranded RNA (dsRNA) and converting (editing) adenosine 
(A) to inosine (I) (Licht et al. 2016).

Defective ADARs were associated to different human 
pathologies: cancers, metabolic and neurological diseases 
(Slotkin and Nishikura 2013). Both ADAR enzymes and 



9Cellular and Molecular Neurobiology (2020) 40:1–14 

1 3

splicing elements act on the same substrates, dsRNA, deter-
mining the interaction of these two processes. Specifically, 
editing affects post-transcriptional regulation and intro-
duces or removes splice sites. Several studies have shown 
that editing machinery affects splicing directly by altering 
the secondary RNA structures or cis-regulatory sequences, 
or indirectly by binding competitive regions of the dsRNA 
and, therefore, preventing the access to the splice machin-
ery (Hsiao et al. 2018; Licht et al. 2016). ADAR isoform 2, 
in particular, catalyzes the adenosine-inosine conversion at 
the Q/R site of GluA2 pre-mRNA, the most common RNA 
editing in higher eukaryotes (Hideyama et al. 2012). In ALS 
patients, downregulation of ADAR2 and reduction in RNA 
editing were correlated to FUS-positive cytoplasmic inclu-
sions (Aizawa et al. 2016), suggesting that ADAR2 down-
regulation could affect motor neuron physiology in ALS.

Genome‑Wide Assessment of AS Events 
in ALS: New Technologies and Future 
Perspectives

Genomic technologies (splice-sensitive microarray or RNA 
sequencing) have revolutionized the way transcriptome 
research is conducted, enabling analysis of the entire span 
of transcripts in a biological sample (Colombrita et al. 2015; 
Hu et al. 2013; Ishigaki et al. 2012; La Cognata et al. 2016; 
Morello et al. 2017; Shiga et al. 2012).

Two main RNAseq applications are currently raising 
particular interest for dissecting the complexity of splicing 
regulation: (i) the study of AS events on a large scale, span-
ning from the classic evaluation of differential expression 
between samples until the characterization of gene expres-
sion dynamics, gene boundaries, translation efficiency or 
RNA–protein interaction, and (ii) the single-cell-level iso-
form studies (Arzalluz-Luque and Conesa 2018; Zucca et al. 
2019).

Bulk RNAseq studies are the most widespread and have 
been applied to investigate the dynamic variations of tran-
scriptomes in in vitro differentiated motor neurons obtained 
from human control and patient-specific VCP mutant-
derived iPSCs (Luisier et  al. 2018). Surprisingly, these 
time-resolved RNAseq experiments revealed increased IR 
events as a dominant feature during the early differentiation 
phases, and identified SFPQ factor (splicing factor proline 
and glutamine rich) as the major intron-retaining transcript 
across diverse ALS-causing mutations (VCP, SOD1 and 
FUS), proposing SFPQ IR events as a hallmark biomarker 
of familial and sporadic ALS (Luisier et al. 2018).

Despite genome-wide RNAseq studies are nowadays 
feasible, they rely on the experimental average gene expres-
sion across populations of cells, excluding the possibility 
to capture cell-to-cell variability and thus motivating the 

development of single-cell strategy (Arzalluz-Luque and 
Conesa 2018). Indeed, single-cell level insights are required 
to fully understand the biology of AS and represent the new 
challenge in RNAseq applications (Hwang et al. 2018). 
Each splice isoforms can be differently expressed depend-
ing on the particular cell type, showing a dominant (i.e., 
very highly expressed) isoform and several others with sig-
nificantly lower expression values. This raise the question 
about whether the diverse and complex isoform expression 
landscape constitutes an additional layer of gene expression 
regulation contributing to ALS etiology, or if it is solely 
a result of the stochastic functioning of the AS machinery 
(Hwang et al. 2018).

Splicing Modulation Therapy

Deregulated AS is emerging as an important area for thera-
peutic intervention. Gene therapy, in particular, represents a 
promising pharmacological option for patients with diseases 
of genetic origins and is mainly based on antisense oligonu-
cleotides (ASOs), spliceosome-mediated RNA trans-splicing 
(SMaRT) or small interfering RNAs (siRNAs) approaches 
(Arechavala-Gomeza et al. 2014).

Antisense oligonucleotides (ASOs), which are synthetic 
single-stranded nucleic acids, are able to bind the pre-
mRNA intron/exon junctions and modulate splicing acting 
on enhancers or repressor sequences, determining exon skip-
ping or including alternatively spliced exons (Havens and 
Hastings 2016; McClorey and Wood 2015). Multiple exon 
skipping strategies with ASOs have been already used in a 
variety of neurodegenerative and neuromuscular disorders, 
including Duchenne muscular dystrophy (DMD), spinal 
muscular atrophy (SMA), and ALS (Aartsma-Rus et al. 
2017; Benoit-Pilven et al. 2018; McCampbell et al. 2018; 
Niks and Aartsma-Rus 2017; Ren et al. 2017; Sardone et al. 
2017; Tosolini and Sleigh 2017). ASOs can be chemically 
modified, generating bifunctional ASOs with added RNA 
or peptide motifs, and specifically target mutant RNAs or 
AS protein recruitment to the transcript (Singh et al. 2018).

ASO’s therapy has already entered into the medical field 
of neurological disorder. Eteplirsen, a third-generation ASO 
that hybridizes to exon 51 of DMD pre-mRNA, represents 
the first FDA-approved ASO for the treatment of Duchenne 
Muscolar Distrophy. Nusinersen is another FDA-approved 
ASO-based drug (marketed as Spinraza) used for SMA 
therapy, and works by promoting the exon skipping of exon 
7 in SMN2 gene by blocking intronic splicing silencer N1 
(ISS-N1) located immediately downstream of exon 7 (Verma 
2018).

With regard to ALS, one of the first ASO-based clinical 
trials was designed to silence SOD1. Intrathecal adminis-
tration of the ASO IONIS-SOD1Rx resulted both practical 
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and safe in SOD1 ALS patients during phase I testing 
(NCT01041222) (Miller et al. 2013). A phase Ib/IIa trial 
(NCT02623699) is currently in process to further evaluate 
safety, tolerability, and pharmacokinetics of IONIS-SOD1Rx 
(McCampbell et al. 2018).

Among the ALS-related genes that have been discussed 
in the present review, C9ORF72 may represent the best 
candidate for ASOs therapy. As previously described, C9 
accumulates in nuclear foci, conferring toxicity associated 
with the repeat expansion and, therefore, compromising the 
pre-mRNA processing (Wojciechowska and Krzyzosiak 
2011). Given the encouraging results obtained in splicing 
modulation therapy in other polyglutamic diseases (CAG 
repeats), such as spinocerebellar ataxia (SCA 2) and Hun-
tington Disease (HD) (Rindt et al. 2017; Tawani and Kumar 
2015), it is not surprising to imagine the use of ASOs and/or 
other exon skipping approaches to restore the reading code 
or remove exons containing mutations in ALS. Early test-
ing of ASO-based therapeutics for C9ALS was performed 
on iPSC-derived neurons and fibroblasts (Butti and Patten 
2018; Donnelly et al. 2013; Lagier-Tourenne et al. 2013). 
ASOs were designed to target the repeat expansion or within 
surrounding N-terminal regions of the C9 mRNA transcript 
to degrade the transcript or to block the interaction between 
the repeat expansion and RNA-binding proteins, resulting 
in a reduction of RNA foci, dipeptide proteins and restored 
normal gene expression markers (Butti and Patten 2018; 
Donnelly et al. 2013; Lagier-Tourenne et al. 2013). Recently, 
ASOs have been also tested in mouse models expressing 
the expanded C9 (Butti and Patten 2018). Last year, a ran-
domized, double-blind, placebo controlled phase I clinical 
trial with an antisense oligonucleotide (BIIB078) targeting 
C9 has been started. The study will involve 80 patients car-
rying the pathological expansion (ClinicalTrials.gov Identi-
fier: NCT03626012).

Other studies have analyzed the effects of ASO modifica-
tions within the oligonucleotide backbone, sugar and hetero-
cycles in order to improve delivery, potency, and stability to 
target FUS, demonstrating that affinities of various nucleic 
acid binding domains depend on chemical modifications and 
that ASO–protein interactions influence the localization of 
ASOs themselves (Bailey et al. 2017). These preliminary 
data suggest that ASO-based therapy can be a powerful way 
for treating ALS-relate genes although it is clear that thera-
peutic outcomes will depend on the stage of disease progres-
sion and on the time of intervention.

The SMaRT method has been used for cystic fibrosis and 
HD (Rindt et al. 2017). SMaRT is based on the correction 
of alterations at post-transcriptional level through the intro-
duction of an exogenous RNA into targeted cells to induce 
a trans-splicing event between exogenous RNA and target 
endogenous pre-mRNA (Berger et al. 2016). There are cur-
rently no applications of this approach for ALS.

Finally, SiRNAs, 21–25 nucleotide double-stranded RNA 
molecules, are becoming an important therapeutic tool for 
different diseases including tumors or metabolic/genetic dis-
orders due to genetic malfunction and deregulated expres-
sion. The siRNA selectively targets and silences the gene by 
inhibiting the expression of the protein (Borna et al. 2015; 
Ozcan et al. 2015). Several siRNAs were designed in silico 
to target the glycine-rich region of TARDBP via molecu-
lar dynamics and thermo-physical analyses (Bhandare and 
Ramaswamy 2016). Since siRNAs strategy induces a cata-
lytic process resulting in complete gene knockdown, likely 
detrimental for the cell, the exon skipping approach may be 
preferred since it corrects the gene-reading frame.

Conclusion

Many proteins implicated in motor neuron and neurological 
disorders have a physiological function in different RNA 
processes (mRNA stability, transcription regulation, trans-
port of RNA granules, splicing, miRNA biogenesis, and 
RNA editing). A large number of diseases related to splic-
ing were documented, but this is probably under-estimated 
because the splicing mutation effects are often not consid-
ered as a primary cause of the diseases. An increasing under-
standing of splicing regulation will create new treatment 
strategies for modulating this process in disease contexts, 
leading to personalized medicine. The overlap between clini-
cal data, etio-pathogenetic mechanisms, and gene therapy 
strategies may offer novel solutions by creating rigorous 
guidelines in clinical trials (Ludolph et al. 2010). This kind 
of holistic approach seems to be now the most promising to 
advance the therapy of complex and multifactorial diseases.
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