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Abstract
Germinal matrix hemorrhage (GMH) refers to bleeding that derives from the subependymal (or periventricular) germinal 
region of the premature brain. GMH can induce severe and irreversible damage attributing to the vulnerable structure of 
germinal matrix and deleterious circumstances. Molecular mechanisms remain obscure so far. In this review, we summa-
rized the newest preclinical discoveries recent years about GMH to distill a deeper understanding of the neuropathology, 
and then discuss the potential diagnostic or therapeutic targets among these pathways. GMH studies mostly in recent 5 years 
were sorted out and the authors generalized the newest discoveries and ideas into four parts of this essay. Intrinsic fragile 
structure of preterm germinal matrix is the fundamental cause leading to GMH. Many molecules have been found effective 
in the pathophysiological courses. Some of these molecules like minocycline are suggested active to reduce the damage in 
animal GMH model. However, researchers are still trying to find efficient diagnostic methods and remedies that are available 
in preterm infants to rehabilitate or cure the sequent injury. Merits have been obtained in the last several years on molecular 
pathways of GMH, but more work is required to further unravel the whole pathophysiology.
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Introduction

Germinal matrix hemorrhage (GMH) occurs in the sube-
pendymal (or periventricular) germinal region of the pre-
mature brain (Fig. 1), and sometimes develops into intra-
ventricular hemorrhage (IVH). It is very common in preterm 
infants, the incidence of which is usually disproportionate to 
the gestational age of premature (Hefti et al. 2016; Supra-
maniam et al. 2013). About 20–30% infants born with very 
low weight (birth weight < 1500 g) or gestational age < 28 

weeks suffer GM-IVH (Coen 2013; Haines et al. 2013; de 
Bijl-Marcus et al. 2017). Occurrence of GM-IVH is highly 
related to the gestational age and birth weight, and it is in 
the first 4 days that GM-IVH typically occurs in immature 
infants (Itsiakos et al. 2016; Okazaki et al. 2013). Intrau-
terine demise is frequent in fetus with GMH (Sanapo et al. 
2017). The mortality of infants with GM-IVH has dropped 
thanks to the development of diagnostic techniques and 
intensive care in recent decade, but it still induces severe and 
permanent damage on premature brain, leading to hydro-
cephalus, cerebral palsy, seizures, hemiplegia, learning dis-
abilities, and so on (Haines et al. 2013; Vesoulis and Mathur 
2017; Sheehan et al. 2017; Movsas et al. 2013; Hefti et al. 
2016; Payne et al. 2013). Recent discoveries even indicate 
the decreased development of cerebellum, and the develop-
mental retardation of preterm neonates is proportional to the 
grade of GM-IVH (Lee et al. 2016).

Researchers notice the tendency of getting injured during 
22–36 weeks of gestation when the developing course start 
maximizing, accounting for a lot of neonatal neural disor-
ders that develop in this specific gestation stage (Huang and 
Vasung 2014; Zhan et al. 2013). Attributing to the vulner-
able structure, germinal matrix is highly exposed to insults 
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such as hypoxia, hypocarbia, systemic or partial circulatory 
dysfunction, and electrolyte disturbances (Baburamani et al. 
2012; Waitz et al. 2016). Moreover, maternal disorders, fetal 
disorders, and poisons during perinatology, such as maternal 
infection, drugs abuse, smoking, inherent diseases, lead to 
a higher risk that premature fetal suffer GM-IVH (Xiaoyu 
2015).

Even if rescued from fatality, premature infants who 
suffered GM-IVH could inevitably have neural disabilities 
because these early injuries damage the functional area as 
well as interrupt normal maturation of nervous system (Pani-
grahy et al. 2012; Hinojosa-Rodriguez et al. 2017). Given 
the special condition of neonates, it is much of difficulty to 
precisely identify GM-IVH from limited clinical features, 
and thus paramount attention is laid on diagnostic technics, 
especially radiology and ultrasonography. Based on various 
clinical backgrounds and conditions of individual infants 
born immature, pediatrists grade these infants into 4 lev-
els according to the extent of periventricular hemorrhage 
(Fig. 2). CT provides us a rapid acknowledgement of severe 
lesions. MRI provides much more details to quantify and 
grade the hemorrhage as well as confirm the lesion of ven-
tricles and brain parenchyma, such as hydrocephalus and 

leukomalacia. Even transcranial ultrasonography (TUS) 
shows unsatisfactory sensitivity of diagnosing low-grade 
GMH in a few cases, it is increasingly efficient and con-
venient to detect intracranial lesions (Parodi et al. 2015) 
(Fig. 3). Color Doppler ultrasonography enjoys the advan-
tages of sensitivity when it comes to congenital vascular 
disease (Vesoulis and Mathur 2017). Automated assessment 
of electroencephalography (EEG) developed by Iyer and the 
teammates is probable to detect GMH bedsides earlier and 
more sensible to some extent (Iyer et al. 2015).

Nowadays survival of premature infant has increased a 
lot attributing to developing neonatal intensive therapeu-
tic methods, but preterm-associated sequelae persist and 
become chronic problems to these little patients. Because 
of the difficulty in identically simulating the course of GM-
IVH by proper animal model, what we understand so far is 
still unsatisfactory despite the long-term hard work of pre-
decessors. More efficient diagnosis and therapies are needed 
to cure these patients.

Based on cellular experiments, there are several theories 
and pathways where some confirmed molecules work and 
will possibly become the therapeutic targets. In this paper, 
we attempt to review pathological and molecular develop-
ments of GM-IVH so far and introduce some newest discov-
eries about the mechanisms and have a prospect of potential 
treatments.

Pathological Anatomy: Fragilities 
of Germinal Matrix

Due to the fragility of brain tissue and immature respira-
tory function, preterm infants are highly exposed to brain 
injury caused by premature delivery even if they do not 
suffer GM-IVH (Gao et al. 2015). What is more, germinal 
matrix is a highly cellular and highly vascularized structure 
beneath ependymal (or periventricular) germinal region in 
the brain where cells migrate out during brain development. 
The proliferation and differentiation of neurons with specific 

Fig. 1  The periventricular anatomy. The germinal matrix is a thin 
layer of gray matter (in green color) which locates just beneath the 
ependyma, which is full of matrix cells and immature vasculature

Fig. 2  Series of GM-IVH of different grades. a Grade I: the hema-
toma is limited inside the germinal matrix, or sometimes occurs 
within caudate nuclei. b Grade II: the bleeding bursts into ipsilateral 
ventricle with smooth CSF flowing course. c Grade III: hemorrhage 

of Grade II plus hydrocephalus. d Grade IV: hematoma breaks into 
parenchyma and causes intraparenchymal hemorrhage with or with-
out intraventricular hemorrhage
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functional potentials in the fetal rely on the specific parts 
of germinal vasculature (Ma et al. 2017). The histological 
structure is much more of vulnerability and complexity, to 
which researchers have been seeking the keys for decades.

Structural fragility of the germinal matrix is fundamen-
tally what leads it to GM-IVH. Primarily, the parenchyma of 
basal lamina is relatively soft and fragile because of deficient 
fibronectin and collagen (Ballabh 2014). Secondly, intrac-
ranial vasculature of preterm neonates has the same innate 
immaturity as the vessels in other organs, which means that 
the vessels walls with endothelia much weaker than adult 
are more prone to rupture. Decreased expression of glial 
fibrillary acidic protein (GFAP) in the germinal matrix 
is very likely to decrease the strength of the cytoskeletal 
structure, and expose the delicate vasculature of germinal 
matrix into higher rupture risk (Lekic et al. 2015b). The 
structural variants of subependymal veins are also confirmed 
to bring about the brittleness of germinal matrix, as well as 
the inclination of thrombosis (Tortora et al. 2017; Raybaud 
et al. 2013). Besides, the highly vascularization adds to the 
fragility of germinal matrix as well, especially when the fetal 
encounters hypoxia (Lekic et al. 2015b). Furthermore, the 
premature vasculature lacks the auto-adaptability to modu-
late the lumen under fluctuant hemodynamics (Ma et al. 
2017; Andreone et al. 2015; Lekic et al. 2015b). As a result, 
once encountered either external or internal environmen-
tal changes that lead to rapid fluctuation of blood pressure, 
these immature infants are in great danger of GM vascular 
rupture (Baburamani et al. 2012; Ballabh 2014).

Recently the disorder of hemodynamics also has been 
indicated to impede the normal coagulation course when 
vasculature gets injured, encouraging the occurrence of GM-
IVH (Kuperman et al. 2013). Platelets dysfunction probably 
participates deeply into the pathogenesis (Coen 2013; Mit-
siakos et al. 2016). Besides, based on specially immature 
vasculature of germinal matrix, preterm neonates bear much 
higher risk of thrombosis, if faced with platelet dysfunction 
simultaneously (Itsiakos et al. 2016; Brew et al. 2014). In 
addition, maternal condition affects immature fetal as well. 
The blood becomes hypercoagulable when the mother gets 
pregnant. Microthrombus originated from mother or pla-
centa can possibly pass through placental barrier of highly 
porosity. What is more, a parent giving birth to premature 
baby is usually suffering some other antenatal disorders that 
have adverse impacts on the fetal. As a result, neonates may 
probably have been injured when it was still in womb.

Right after the germinal matrix bleeds, this periven-
tricular lamina basalis gets injured because of structural 
fracture, mechanical compression and intracranial hyper-
tension. Brain swelling immediately aggravates out of 
interstitial and cytotoxic edema (Michinaga and Koyama 
2015). Secondary compressive ischemia, partially resulted 
from vasospasm and edema, occurs in peripheral nervous 
tissue as cerebral blood flow plunges. Some severe ger-
minal hematoma with immense volume may lead to her-
niation, or break through ependymal layer, namely IVH. 
During these serial processes, destruction of neurons and 
axons will inevitably take place due to mechanical mass 

Fig. 3  a A delayed ultrasonic image of a GMH case, grade I. A low-
density cystic mass can be seen beneath the ependyma of this pre-
mature, and the ventricle remains intact. b A transcranial ultrasonog-
raphy image taken 17 days after birth of a twin infant on gestation 

age of 29 + 3 weeks, with a concomitant preterm pneumorrhagia. The 
high-density lesion pointed by arrow shows the hematoma disrupting 
into lateral ventricle with significant ventriculomegaly
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effect, hypoxia, ischemia and cytotoxicity. Even if the pre-
term neonates get rid of fatality, they are still subjected to 
many sequelae caused by GM-IVH.

Even though GM-IVH bears much resemblance to the 
adult intracranial hemorrhage, it holds some typical char-
acters relevant to neurological growth. There appears to be 
a considerable proportion of leukomalacia following the 
survival in GM-IVH, and cortical maturation will inevita-
bly get retarded (Okazaki et al. 2013; O’Dell et al. 2015). 
Even the infant cerebellar development gets impaired 
because of GM-IVH (Lee et al. 2016). Nonetheless, since 
there is still no animal model that is perfectly congru-
ent with the real pathogenesis, our knowledge remains far 
from the whole mechanism of GM-IVH, even though we 
have known pretty much of the histopathological defection 
of neonatal brain.

Neuropathological Mechanism

Researchers have been looking for the mechanisms and 
molecular pathways that lead to injury of GM-IVH. How-
ever, what we achieved so far is not satisfied, which appears 
to be complicated and interweaving (Fig. 4). Overall, there 
are some major individual or serial molecules that occupy 
the core status. The authors try to introduce the prevalent 
theories of preterm GM-IVH with some new discoveries 
as follows.

Blood Components and Metabolites

Researchers have long confirmed the important role of 
blood components in intracranial hemorrhagic diseases, 
especially the hemoglobin metabolite, iron compounds, 

Fig. 4  The complicated mechanisms of how GM-IVH injures the pre-
mature infant brain. The solid arrows and texts without a box illus-
trate the mainly extracellular mechanisms and molecules involved 
in the damaging course of GMH; the hollow arrows and texts inside 
boxes shows those mainly intracellular mechanisms and molecules 

involved. HOs: heme-oxygenases; S1PR: sphingosine-1-phosphate 
receptor; TLR: toll-like receptor; AMPK/Nrf2: adenosine monophos-
phate-activated protein kinase/nuclear factor erythroid 2-related fac-
tor 2.
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and thrombin (Strahle et al. 2014; Lekic et al. 2015a; Gao 
et al. 2014; Garton et al. 2016). Heme-oxygenase (HO) 
expressions are significantly increased in brain paren-
chyma by exogenous hemoglobin or protoporphyrin injec-
tion (Strahle et al. 2014). Iron imposes adverse impact 
on apoplexy infants mainly through encouraging fibrosis 
and sequent adhesion of arachnoid potentially aggravates 
brain edema (Guo et al. 2015; Klebe et al. 2014). Wnt 
signaling pathway is a well-known active target for cancer 
therapy (Tai et al. 2015), and researchers have testified 
that it is activated in fibrosis of many organs varying 
from skeleton to kidney (Cisternas et al. 2014). Meng’s 
and Kaur’s findings particularly highlight the relationship 
between iron and Wnt1/Wnt3a gene expression pathway. 
Iron suppresses renewal of neurons and enhances fibrotic 
process and gliocyte’s proliferation by stimulus to Wnt 
pathway, and further leads to post-hemorrhagic seque-
lae such as hydrocephalus (Meng et al. 2015; Kaur et al. 
2013). Another research also implicates the active role 
of Wnt pathway in regulating the myelination of neona-
tal white matter, and the construction of synapses is dis-
rupted through irregulating Wnt signaling (Back 2017). 
On another aspect, hepcidin, which inhibits the intracellu-
lar iron efflux of endotheliocytes, was described in adult 
animals as the effective molecule on cognitive impair-
ment through Toll-like receptor 4 (TLR4)/MyD88 sign-
aling pathway, which is the potential target of preterm-
related injury (Xiong et al. 2016). Discoveries relevant 
to this process also indicate the effective role of iron 
on inflammatory factor (like interleukin-6), and oxida-
tive stress after intracranial hemorrhage (Hu et al. 2016; 
Xiong et al. 2016; Vela 2018). It is intriguing of iron to be 
multifunctional on various interactive signaling pathways, 
which needs further study.

Thrombin is a well-proven agent to construct hydro-
cephalus animal model. The disruptive effect of throm-
bin to the blood brain barrier (BBB) has been described 
in GMH by Tao and the teammates (Tao et al. 2015). 
Apart from that, thrombin induces the phosphorylation 
of mitogen-activated protein kinase (MAPK) leading to 
disruption of tight-junction protein which is another key 
to break down BBB (Li et al. 2015). Lekic also led a 
research that unveiled the activation of proteinase-acti-
vated-receptors (PAR) signaling pathway resulted by 
thrombin, and cyclooxygenase (COX)-2 is promising to 
be the effective treatment for GM-IVH neonates (Lekic 
et al. 2015a; Cheng et al. 2014).

Given the researches based on animals and cells so 
far, we still need more evidence to explain the definite 
relationship among blood cell metabolites, molecular 
mechanisms, and secondary neurologic deficits of pre-
term neonates with GM-IVH.

Microglia and Inflammation

Inflammation has long been believed as one of the para-
mount mechanisms of hemorrhagic stroke, and microglia 
deeply participate in the inflammatory response in the signal 
transmitting course of GMH (Blaho et al. 2015; Shigemoto-
Mogami et al. 2014; Supramaniam et al. 2013). Microglia 
have two differentiated states. One is a pro-inflammatory 
classically activated state (M1), and the other is an immune-
dampening and tissue-regenerative alternatively activated 
state (M2)(Klebe et al. 2015). Microglia get activated and 
infiltrate into the subventricular zone including germinal 
matrix (Shigemoto-Mogami et al. 2014). This phenom-
enon becomes evident when hemorrhage happens in ger-
minal matrix (Tang et al. 2015). A variety of inflammatory 
cytokines were decreased when the activated microglia are 
suppressed, verifying the inflammatory activity of microglia 
(Shigemoto-Mogami et al. 2014; Zhang et al. 2018; Wan 
et  al. 2016). Peroxisome proliferator-activated receptor 
gamma (PPARγ) induces the microglia of GMH brain to 
transform into M2 state, contributing to attenuation of hem-
orrhagic brain inflammatory response (Flores et al. 2016). In 
addition, there exists CD36 expression in microgliocyte acti-
vated with PPARγ, which helps improve the long-term neu-
rofunctional development after GMH (Flores et al. 2016).

Over a decade before, researchers have already confirmed 
the efficiency of celecoxib (an anti-inflammation) on pre-
mature animal model, reducing the risk of neonatal brain 
hemorrhage by proliferation of germinal matrix endothe-
liocytes. However, after the hemorrhage occurs, endothe-
lial proliferation seems to be beneficial to the neurologic 
deficits by vascular endothelial growth factor (VEGF) 
treatment (Dzietko et al. 2013). VEGF and the downstream 
mediators are believed to be of great participation in the 
inflammatory courses, and anti-inflammatory drugs such 
as celecoxib turn out effective in attenuate the severity of 
GM-IVH (Yang et al. 2013; Phillips et al. 2013). Recently, 
Zhang et al. (2018) substantiated that GMH-induced inflam-
matory response by promoting ChemR23/CAMKK2/
AMPK/Nrf2 pathway. In addition, aminomethyl phospho-
nic acid (AMPA) receptor pathway are believed active in 
preventing injured neurons from restoration, maturation, 
and regeneration through various inflammatory cytokines, 
and leading to apoptosis of neurons as well (Dohare et al. 
2016). Several animal experiments, respectively, indicated 
MAPK family pathway is also involved, and cannabinoid 
receptor 2 (CB2R) is a functional target that ameliorates 
injury induced by GM-IVH (Tang et al. 2015, 2017; Tao 
et al. 2015; Li et al. 2015). Besides, they also found traces on 
oxidation stress during pathogenic progress of GM-IVH just 
as some other scientists did (Esiaba et al. 2016). According 
to this hypothesis, some researchers try to treat intracranial 
hemorrhage in adult by antioxidants like Resveratrol and 
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hydrogen (Duan et al. 2016; Bonsack et al. 2017; Eckermann 
et al. 2012), which may be helpful in preterm GM-IVH. In 
conclusion, inflammation response is of great complexity 
interweaving with other molecular mechanisms, but it is 
still a promising breakthrough seeking effective therapies 
for GM-IVH.

Lymphocytes and Immunity

Regardless of the age, lymphocytes infiltrate into the lesion 
when the brain suffers an attack. There are many researchers 
devoting to finding out the deeper relationship among immu-
nity, lymphocytes, and apoplectic neuropathology, including 
hemorrhagic and ischemic stroke in neonates (Doyle et al. 
2015; Nazmi et al. 2018). Albertsson and the colleagues 
noticed a special type of immune response held by  CD4+ 
T-helper (Th) cell in a mice model of hypoxia-ischemic 
stroke, some of which result in GM-IVH (Albertsson et al. 
2014). As the first subset of T lymphocytes to emerge during 
ontogeny, γδT cells are confirmed to specifically take part in 
the injury of developing brain other than mature one. In both 
sepsis and ischemic brain injury, it is indicated that γδT cells 
induce the long-term neurologic deficit resulted by demy-
elination of and gliosis (Albertsson et al. 2018; Zhang et al. 
2017). Besides, this kind of autoimmune response also found 
interweaving with broad-spectrum inflammatory cytokines 
like tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17). 
Not only does the immune system affect the expression of 
inflammatory cytokines, but the elevated cytokines such as 
Sphingosine-1-phosphate (S1P) also affect the proliferation 
and differentiation of lymphocytes (Albertsson et al. 2014). 
Inflammatory cytokines can also become the potential tar-
gets to develop immune modulators (Tsai and Han 2016). 
Several adult-related studies indicated that S1P and S1P 
receptor (S1PR) pathway take an active part in this course. 
Molecules as its antagonists can reduce the neuroinflamma-
tion by arresting lymphocyte egress from secondary lym-
phoid tissues in the central nervous system, and at the same 
time regulate macrophages dendritic cell functions (Tsai 
and Han 2016; Blaho et al. 2015). Immune system of fetus 
and preterm neonate is immature, so the immune response 
is possibly characteristic in comparison with adults. Alto-
gether, more evidences are needed to define the effects of 
different types of lymphocytes and cytokines involved in 
the GM-IVH course.

Treatments and Preventions

The outcome of premature GM-IVH turns out quite pes-
simistic. In the acute stage of GM-IVH, intracranial hyper-
tension is often what leads the afflicted infants to fatality. 
To decrease the intracranial pressure with dehydrator and 

corticosteroid is the essential part of treatment. Neverthe-
less, because of the fragile vasculature of germinal matrix, 
dehydration with mannitol is a double-edged sword that 
decompresses the cranial cavity as well as imperils the 
infant to higher risk of re-bleeding and renal failure. Surgi-
cal operation, mainly inclusive of trephination drainage and 
external ventricular drainage, is the last choice to save the 
life yet with awful prognosis. In the chronic stage out of dan-
ger, treatments aim at reducing the secondary injury caused 
by hemorrhage, attenuating the sequelae and facilitating the 
recovery of neural functions. Infant disabilities of sucking, 
swallowing, and coughing arise after GM-IVH, so their sur-
vival and quality of life can be deeply derogated (Laptook 
2013). Consequently, this kind of complications should be 
carefully controlled by elaborative nursing in case of sudden 
accidents like choking.

In terms of medical treatments, many drugs seem to be 
influential to either vivo or vitro animal models. Oestradiol 
show the effects on ameliorating the neurologic outcomes 
by increasing the expression of neurotrophic factor (Firozan 
et al. 2014). Based on the theories introduced in Iron chela-
tors such as minocycline, deferoxamine has a favorable reac-
tion in vitro and animal experiments as well (Guo et al. 2015; 
Meng et al. 2015). Just in 2018, melatonin was reported 
protective in secondary brain injury induced by hemorrhage. 
It is variously effective in impacting apoptosis, oxidative 
stress, inflammation, DNA damage, brain edema, and BBB 
damage, and reducing mitochondrial membrane perme-
ability transition pore opening (Wang et al. 2018). Simv-
astatin was found with potential impacts on upregulating 
CD36 expression, which probably promotes the absorption 
of intraventricular hemorrhage (Chen et al. 2017). Research-
ers also found the positive role of glibenclamide in reduc-
ing the expression of MMPs and thereby protect brain from 
further injury (Jiang et al. 2017). Even though researches 
showed positive effects in preclinical modes, how they work 
and whether they are curative in apoplectic patients are still 
unknown. Some other drugs targeted at pathways including 
PPAR, TGF-β, and CB2R also impress scientists very well 
(Tang et al. 2015; Flores et al. 2016; Tsai and Han 2016). 
But some of the mechanisms of how these medications wore 
are still controversial, so what authors mentioned need to 
confirm their curative effects by more evidences.

In the recent decade, stem cell dominates the treatment 
research of restoration after brain injury. Treatments are 
mainly characterized by types of stem cells and transplanta-
tion methods (Phillips et al. 2013). Mesenchymal stem cells 
deriving from placenta and umbilical cord planted intraven-
tricularly take effect in reducing the hydrocephalus, and the 
reporters confirmed their assumption on anti-inflammatory 
effects according to the regulation of inflammation-involved 
cytokines (Ahn et al. 2013; Ding et al. 2017). Neural pro-
genitor cells (NPCs) can be more beneficial to neuron 
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regeneration for the functions of releasing neurotrophic 
factors, and differentiated types of cells are capable of per-
forming corresponding functions (Bae et al. 2016). Besides, 
there are some traces that induced pluripotent stem (iPS) 
cells, which also have the likened value of treating the brain 
deficit, but it is an incomplete technics that need improving, 
especially the inclination of tumorigenesis (Li et al. 2014). 
Despite all the problems that stem cell scientists encoun-
ter today, stem cells therapy is one of the most promising 
approaches to GM-IVH.

Compared with post-hemorrhagic treatment, prediction 
and prevention seem to be more effective, but our knowledge 
on it goes hardly further than pathophysiology for decades. 
Since there are plenty of reports implying the risk factor of 
GM-IVH, the risk can be reduced by measures like control-
ling the maternal diseases and intensive care for newborn 
premature (Waitz et al. 2016). In the past some, pediatrists 
tried to reduce risk of GM-IVH by altering the head position 
in the hope of improving the hemodynamics and oxygen 
supply, but insufficient evidence has proven the feasibility 
so far (de Bijl-Marcus et al. 2017).

Ment and coworkers reported that methylenetetrahydro-
folate reductase (MTHFR) variants may make neonates more 
vulnerable when encountering hypoxia (Ment et al. 2014). 
Szpecht and associates reported several intriguing discov-
eries about the impact of genotypes on GM-IVH. Infants 
with genotype GT eNOS 894G > T or MTHFR 1298A > C 
polymorphism suffer a higher risk of IVH born before  28+6 
weeks of gestation (Szpecht et al. 2017b, a). These discov-
eries strongly demonstrate the definite genetic effect on the 
occurrence of GM-IVH, which holds a promising future of 
genetic diagnosis and prevention to GM-IVH.

Conclusion

GM-IVH in preterm infants is a disastrous disease with con-
siderable fatality and morbidity, which is highly relevant to 
gestational age, maternal conditions, and delivering situa-
tions. Special vulnerability of germinal matrix pathologi-
cally leads to higher risk of GM-IVH. Pediatrists and scien-
tists have been deeply looking for the keys to lowering the 
risk, reducing the mortality and attenuating the sequelae. 
Given the limited acknowledge of GM-IVH, there are only 
several methods we can choose to deal with it, while the 
advanced treatments such as neurotrophic drugs, iron che-
lators, NSAIDs, and stem cells therapy are still in research. 
But researchers are still in hope of bigger breakthroughs in 
this issue to promote the survival of GM-IVH.
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