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Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke 
initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter 
the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide 
cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies 
describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results 
concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of 
progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, 
including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotec-
tive potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which 
progesterone may provide cerebroprotection.
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Introduction

Ischemic stroke is caused by the interruption of blood supply 
to brain tissue due to the occlusion of an artery by a throm-
bus, whereas the rupture of a brain artery leads to hem-
orrhagic stroke (Amarenco et al. 2009). Cerebral ischemia 
results in the rapid death of neural cells and in neurological 
deficits such as loss of some sensorimotor functions, paral-
ysis, depression, and dementia. It is the leading cause of 
adult disability and the second leading cause of dementia 
and death in industrialized countries (Lo et al. 2003; Feigin 
et al. 2009).

Sex is a crucial parameter to consider when designing 
experiments to investigate the pathophysiology of stroke 

and to develop therapeutic pharmacological strategies. This 
aspect has been neglected for a long time, most studies hav-
ing been carried out in male animals to avoid variability 
related to the female estrus cycle. However, recently, distinct 
pathophysiological mechanisms and different therapeutic 
responses according to sex have been described, notably 
those concerning brain functions (McCarthy et al. 2012). 
Incorporation of sex as a variable in the design of experi-
ments is highly needed and recommended (http://www.nimh.
nih.gov/resea​rchfu​nding​/scien​tific​-meeti​ngs/2011/sex-diffe​
rence​s-in-brain​-behav​ior-menta​l-healt​h-and-menta​l-disor​
ders/index​.shtml​).

Several studies have shown that both sex and steroids 
are important factors to be taken into consideration when 
studying injury mechanisms and outcomes following brain 
ischemia (Cheng and Hurn 2010; Choleris et al. 2018; Her-
son and Hurn 2010). Recently, Liberale and colleagues have 
nicely reviewed and discussed the multiple sex differences 
in ischemic stroke (Liberale et al. 2018).

Sex Differences in Stroke

In humans, sex has an important impact on the etiology of 
stroke. Epidemiological studies have indeed revealed marked 
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sex differences in stroke incidence, prevalence, ethiology, 
severity outcomes, and death (Reeves et al. 2008; Appelros 
et al. 2010; Haast et al. 2012; Wilson 2013; Gibson 2013). 
Stroke incidence and mortality rates are higher in men than 
in women, who are considered to be protected by their 
ovarian hormones (Petrea et al. 2009). Importantly, there 
exists an interaction between sex and age (Roy-O’Reilly and 
McCullough 2018). Whereas stroke rates increase with age 
in both sexes, starting after the age of 50, they become sig-
nificantly higher in women when compared to men around 
the age of 80 (Petrea et al. 2009; Roger et al. 2011; Mozaf-
farian et al. 2016).

Experimental studies have demonstrated that sex is a key 
parameter for ischemic stroke outcomes. Transient or per-
manent middle cerebral artery occlusion (MCAO) with a 
filament is a commonly used model of ischemic stroke in 
rodents. Transient MCAO, followed by abrupt reperfusion, 
may be considered as a translational model of endovascular 
thrombectomy, which has become a reference therapy for 
patients with large vessel occlusion (Sutherland et al. 2016).

During their reproductive period, young female rats show 
smaller ischemic brain infarcts than aged-matched male rats 
after transient MCAO (Alkayed et al. 1998). However, this 
sex difference is no longer observed in females deprived of 
their ovarian steroids by ovariectomy and in aging senescent 
females (Alkayed et al. 1998, 2000). In another study, young 
female rats showed smaller infarcts and reduced sensory-
motor deficits than young male rats or middle-aged female 
rats (Selvamani et al. 2014). Sex differences in the suscep-
tibility to ischemia and its outcomes have been shown in 
different experimental models, of note even in the presence 
of comorbidities such as diabetes or hypertension (Toung 
et al. 2000; Carswell et al. 1999; Herson and Hurn 2010; Li 
et al. 2004).

Mechanisms underlying these sex differences include cell 
death pathways after ischemic stroke (Reeves et al. 2008; 
Yuan et al. 2009; Liu et al. 2011; Gibson 2013; Sohrabji 
et al. 2017; Choleris et al. 2018). In males, ischemic cell 
death is mainly the consequence of the activation of the poly 
(ADP ribose) polymerase 1 (PARP-1), a DNA repair enzyme 
involved in the caspase-independent pathway of apoptosis. 
The oxidative stress due to ischemia leads to the formation 
of single stranded DNA molecules, causing the activation 
of PARP-1. This activation induces cytosolic nicotinamide 
adenine dinucleotide (NAD) depletion, inhibition of glycoly-
sis and depolarization of mitochondria and finally cell death 
(Alano et al. 2010). Conversely, in females, ischemic neural 
cell death mainly involves caspase-9 and caspase-3 activa-
tion. Thus, pharmacological inhibition of PARP-1 improved 
outcomes in males but not in females (Eliasson et al. 1997; 
McCullough et al. 2005), whereas caspase inhibition was 
beneficial in females but not in males (Liu et al. 2011). 
Interestingly, one study reported that deletion of PARP-1 

increased ischemic damage in females but reduced infarct 
in males (Liu et al. 2011).

Sex Steroids and Stroke

In both women and men, age is the strongest risk factor for 
ischemic stroke, and the lifetime risk of stroke in both sexes 
shows a gradual increase from the age of 50 onwards (Petrea 
et al. 2009; Chen et al. 2010). Moreover, stroke mortality, 
morbidity and poor functional recovery are higher in the 
elderly. In women, stroke rates increase after menopause 
and become higher at an advanced age when compared with 
men (Petrea et al. 2009). The increase in stroke risk after 
menopause has been related to hormonal changes. Indeed, 
circulating levels of estradiol are reduced by more than 90% 
in women 5 years after menopause when compared to pre-
menopausal women, and they even further decline thereaf-
ter (Rothman et al. 2011). However, it is important to note 
that postmenopausal women are not completely deprived 
of estrogens, as both estrone (about 40 pg/ml), its sulfated 
conjugate (about 250 pg/ml), testosterone (about 100 pg/
ml), dehydroepiandrosterone (DHEA, about 2 ng/ml), and 
dehydroepiandrosterone sulfate (DHEAS, about 600 ng/
ml) continue to circulate at significant levels in postmeno-
pausal women as determined by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) (Rothman et al. 
2011; Wang et al. 2015; Martel et al. 2016). Estrone can 
be converted to estradiol by the 17ß-hydroxysteroid dehy-
drogenase, and androgens to estrogens by the aromatase, an 
enzyme abundant in brain, adipose tissues, bone and liver 
(Arevalo et al. 2015). Circulating DHEA and DHEAS, pro-
vided by the postmenopausal ovaries (about 20%) and adre-
nal glands, are a major precursor for the synthesis of bio-
logically active steroid hormones inside hormone-sensitive 
tissues (Labrie 2015).

Increased stroke risk in women related to menopause has 
also been associated with the age-dependent increase in risk 
factors, including abdominal adiposity, increased levels of 
triglycerides and cholesterol, enhanced insulin resistance 
and elevated blood pressure (Lisabeth and Bushnell 2012). 
Interestingly, many of the stroke risk factors, including 
metabolic dysfunctions and a generalized proinflammatory 
milieu, are consequences of decreased ovarian functions 
(Della Torre et al. 2014). Androgens may increase blood 
pressure which is a major risk factor for stroke in men. Thus, 
in addition to the loss of female sex hormones, the increas-
ing levels of testosterone with aging may contribute to the 
increase in blood pressure and to the greater risk of stroke 
in women after menopause (Reckelhoff 2001).

Over the past two decades, obesity rates increased (Ford 
et al. 2014; Ogden et al. 2015) and as consequence, the 
related disorders are also increasing. Obesity is a risk factor 
of different diseases including hypertension, sleep disorders, 
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atherosclerosis, cardiovascular diseases, stroke, and diabetes 
(Sharma et al. 2017). There is a sexual dimorphism with 
respect to adipose tissue deposition, distribution, and func-
tion; sex steroid hormones play a key role as endogenous 
regulators of adiposity (Palmer and Clegg 2015; White and 
Tchoukalova 2014). For example, estrogens protect against 
obesity by decreasing food intake and increasing energy 
expenditure in women. Men show more visceral adipose 
deposits which are positively correlated with growing car-
diovascular risk. In contrast, females shows subcutaneous 
adipose deposits before menopause; this feature is associ-
ated with lower cardiovascular risk. After menopause, the 
decrease of estrogens leads to a shift in favor of the visceral 
fat, as seen in men, and an increase in cardiovascular risks 
and stroke (Palmer and Clegg 2015).

In addition to the systemic health factors, age-related 
changes in the brain contribute to its increased vulnerabil-
ity to ischemic injury. They comprise multiple degenerative 
processes, structural changes in white matter, small-vessel 
diseases, reduced brain weight and intraneuronal inclusions 
of tau and α-synuclein (Chen et al. 2010).

In men, similar to women, the incidence of stroke grad-
ually increases from the age of 50 onwards (Petrea et al. 
2009). However, in contrasts to the ovaries, there is no 
abrupt decline in testicular activity at this age. Instead, 
testosterone levels gradually decrease in men from about 
40 years onwards (Andersson et al. 2007; Huhtaniemi et al. 
2012). However, it is important to note that individuals dif-
fer in terms of hormonal aging. Although the mean decrease 
in testosterone levels in men is gradual, the rate of decline 
is more important in some aging men than in others. The 
incidence of hypogonadal testosterone levels increases pro-
gressively: about 20% of men over 60 and about 50% of men 
over 80 years of age (Harman et al. 2001).

According to the prevailing consensus, ovarian estradiol 
and progesterone protect women against stroke, but the role 
of androgens in men is more controversial. As in the young 
adult population, men have a higher incidence of stroke and 
elevated levels of androgens have been suspected to repre-
sent a risk factor for stroke vulnerability. However, there is 
little evidence for this assumption, and the established link 
between anabolic steroid abuse and cardiovascular patholo-
gies does not provide information on the role of endogenous 
androgens (Quillinan et al. 2014). On the other hand, the 
age-dependent increase in the incidence and severity of stoke 
in men suggests a protective effect of androgens (Quillinan 
et al. 2014). However, in spite of reported benefits of the 
therapeutic normalization of low testosterone levels (Sharma 
et al. 2015), concerns have been raised about the cardio-
vascular safety of testosterone therapy in aging men (Vigen 
et al. 2013). When discussing the usefulness of testosterone 
replacement, it is important to be aware that elevated levels 
of DHEA and DHEAS contribute to the pool of androgens 

and estrogens present in aging men, as they do in women 
(Labrie 2010).

Animal studies have provided strong evidence for cer-
ebroprotective effects of steroid hormones after MCAO. We 
briefly review here the roles of estrogens and androgens. 
The effects of progesterone and its metabolites are discussed 
in detail in paragraph 4. The cerebroprotective effects of 
estrogens after an ischemic insult have been documented 
by a large number of studies and have been extensively 
reviewed (Wise et al. 2001; McCullough and Hurn 2003; 
Gibson et al. 2006; Herson et al. 2009; Lebesgue et al. 2009; 
Strom et al. 2009; Liu et al. 2010; Inagaki and Etgen 2013; 
Hurn and Macrae 2000). Treatment with either low or supra-
physiological doses of estradiol has been shown to protect 
the female rat brain against stroke injury (Dubal et al. 1998; 
Suzuki et al. 2009; Carpenter et al. 2016). Importantly, pro-
tective effects of estrogen treatment are also observed in 
the presence of comorbidities such as diabetes (Toung et al. 
2000).

A systematic meta-analysis has revealed that most experi-
mental studies showing protective effects of estradiol after 
ischemic stroke used ovariectomized females. Some of the 
studies performed in gonadally intact young adult females 
failed to show beneficial effects of estradiol treatment, most 
likely because of the protective effects of endogenous ovar-
ian hormones (Gibson et al. 2006). Cerebroprotective effects 
of endogenous ovarian hormones have been demonstrated 
by ovariectomy. Removing the ovaries of female rats indeed 
resulted in increased infarct volumes (Alkayed et al. 1998; 
Rusa et al. 1999; Inagaki and Etgen 2013). Larger infarcts 
were observed in cycling female rats in proestrus phase 
when their circulating levels of estrogens are low compara-
tively to metestrus (Carswell et al. 2000). Moreover, plasma 
estradiol levels have been shown to be inversely correlated 
with cortical infarct volume and neutrophil accumulation 
(Liao et al. 2001). These observations suggest an important 
neuroprotective role of endogenous estrogens. Interestingly, 
treatment of gonadally intact female mice with the intracel-
lular estrogen receptor (ER) antagonist ICI182,780 increased 
ischemic infarct volumes, confirming the importance of 
endogenous estrogens and demonstrating the involvement 
of ER signaling (Sawada et al. 2000).

The ERα isoform, which is upregulated in response to 
MCAO, mediates the early cerebroprotective effects of estra-
diol. Thus, 24 h after cerebral ischemia, the neuroprotective 
effects of estradiol observed in wild-type mice were also 
observed in ERβ-KO mice but not in ERα-KO mice (Dubal 
et al. 2001). However, while ERα plays a critical role in the 
acute phase of stroke, both ERα and ERß are necessary for 
the stimulation of neurogenesis within the subventricular 
zone observed at 96 h after MCAO (Suzuki et al. 2007). 
Furthermore, a more recent study using a specific ERß ago-
nist, reported a role of ERß in the recovery of sensorimotor 
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functions at later time points (8 and 17 days post-ischemia) 
(Madinier et al. 2014).

Effects of estrogens on the brain are age-dependent. Treat-
ment of middle-aged ovariectomized female rats with physi-
ological doses of estradiol decreased infarct volume by about 
50% as it did in young ovariectomised female rats (Dubal 
and Wise 2001; Wise et al. 2001). This was an unexpected 
finding as at the middle age, the ability of estradiol to regu-
late the hypothalamo-pituitary axis has already markedly 
decreased (Downs and Wise 2009). With age, the neuro-
protective efficacy of estrogens may decrease and estrogens 
may even exert adverse effects. Thus, in acyclic reproductive 
senescent female rats, estrogen treatment increased infarct 
volumes (Selvamani and Sohrabji 2010). As estradiol exerts 
its neuroprotective effects in synergy with IGF-1, the age-
dependent decrease in IGF-1 levels may explain why estra-
diol ceases to be neuroprotective in aged females (Arevalo 
et al. 2015).

Estradiol treatment is also protective in male rats exposed 
to transient or permanent MCAO (Hawk et al. 1998; Toung 
et al. 1998; Perez-Alvarez et al. 2012). Different estrogen-
mediated cerebroprotective mechanisms have been reported, 
including anti-inflammatory effects, protection against apop-
tosis, enhanced angiogenesis and increased neurogenesis 
(McCullough and Hurn 2003; Suzuki et al. 2009; Petrone 
et al. 2014).

As for the influence of testosterone on stroke in men, ani-
mal studies have revealed a complex picture, with andro-
gens having either deleterious or protective effects (Quil-
linan et al. 2014). Most studies showed that gonadectomy 
of young adult male rats reduced infarct volume suggest-
ing that endogenous androgens exacerbate stroke injury in 
males (Quillinan et al. 2014). For example, castration of 
male rats decreased ischemic brain damage after transient 
MCAO, whereas replacement with testosterone increased 
infarct size. In contrast to testosterone, estradiol treatment 
was protective (Hawk et al. 1998). Likewise, treatment of 
castrated male rats with the 5α-dihydrotestosterone (5α-
DHT), a metabolite of testosterone that is not converted to 
estrogens but binds with high affinity to the intracellular 
androgen receptor (AR), restored infarct volumes to those 
of uncastrated males (Cheng et al. 2007). However, it was 
then shown that the effects of testosterone and 5α-DHT are 
dose-dependent. Whereas castrated male mice treated with 
low doses of either androgen had smaller infarct volumes, 
those treated with higher doses had larger infarcts than non-
treated castrated mice.

The testosterone effects were AR-dependent, as they 
could be blocked with flutamide (Uchida et al. 2009). Taken 
together, these results suggest that endogenous testicular 
androgens may increase the susceptibility of the brain to 
ischemic damage and that the adverse effects of androgens 
may involve AR signaling.

It is important to better define the doses–responses rela-
tionships of androgens in stroke, to know precisely what 
is the optimal dose that provide protective response and at 
which dose there is a transition to damage effect. In future 
studies, it will be important to determine the type of the 
doses–responses curves: sigmoidal, U-shaped or inverse 
U-shaped. Several drugs tested for stroke therapy showed 
U-shaped doses–reponses curves (Calabrese 2008).

As noted above, in contrast to testosterone, estradiol treat-
ment was found to be protective against ischemic injury in 
male rats (Hawk et al. 1998; Toung et al. 1998; Perez-Alva-
rez et al. 2012). However, whereas chronic treatment with 
the ER antagonist ICI182,780 of female mice exacerbated 
ischemic damage after MCAO, this treatment had no effects 
in males (Sawada et al. 2000). This suggests that endogenous 
estradiol may play a significant role in the resistance of the 
brain to ischemic damage in females but not in males.

The absence of protective effects of elevated doses of 
testosterone and endogenous estrogens in males may come 
as a surprise. Indeed, conversion of testosterone to estradiol 
in the male brain by the aromatase enzyme is neuroprotec-
tive and plays a key role in the resistance of neural cells to a 
variety of insults (Garcia-Segura et al. 2003; Arevalo et al. 
2015). However, we have to be aware that expression of the 
brain aromatase is upregulated in response to injury, mainly 
in astrocytes, which do not constitutively express the enzyme 
in adult rats (Garcia-Segura et al. 1999). The aromatase is 
also induced by MCAO in astrocytes of the peri-infarct 
area. This Increase was transient as it was observed at 24 h 
and 8 days, but neither at 2 h or at 30 days post-ischemia 
(Carswell et al. 2005). These observations suggest a delay 
in the actions of testosterone-derived estradiol, which may 
regulate neuroinflammation and play a role in regenerative 
processes. The importance of aromatase is also suggested by 
the observation that MCAO-induced neurogenesis is reduced 
in aromatase knockout mice (Li et al. 2011).

Sex‑Dependent Changes in Endogenous 
Steroid Levels in Response to Stroke

Increase in steroid levels is part of endogenous mechanisms 
triggered after ischemic stroke. In a first study, we have shown 
that levels of progesterone and 5α-dihydroprogesterone (5α-
DHP) were highly upregulated in the brain of male mice as 
early as 6 h after MCAO (Liu et al. 2012). We have then per-
formed a detailed study to investigate the temporal changes 
of steroid levels in brain and plasma of both male and female 
mice at diestrus phase using gas chromatography-tandem 
mass spectrometry (GC-MS/MS) (Zhu et  al. 2017). Our 
study revealed marked differences in brain steroid levels 
between males and females in the absence of injury and also 
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sex-dependent changes in endogenous steroid levels after 
MCAO. Data are summarized in Fig. 1.

Stroke Increased Brain Levels of Progesterone 
and its Neuroactive 5α‑Reduced Metabolite in Male 
But Not in Female Mice

Surprisingly, levels of 5α-DHP, a natural PR agonist (Rup-
precht et al. 1993), were higher in male than in female brain 
of intact mice. After MCAO, brain progesterone and 5α-DHP 
levels were rapidly upregulated in males, but not in females, 
reaching highest levels at 6-h post-MCAO (Zhu et al. 2017). 
Levels of the potent GABAA receptor active progesterone 
metabolite 3α,5α-tetrahydroprogesterone (3α,5α-THP, allo-
pregnanolone) were also higher in the male brain, but its levels 
did not significantly change with time after MCAO (Fig. 1a) 
(Zhu et al. 2017).

Stroke Increased Levels of Glucocorticoids in Both 
Male and Female Mice

Levels of steroids that are related to stress, namely, deoxy-
corticosterone (DOC), 5α-dihydrodeoxycorticosterone 
(5α-DHDOC), 3α,5α-tetrahydrodeoxycorticosterone (3α,5α-
THDOC) and corticosterone were also upregulated in response 
to ischemia in both plasma and brain of males and females. 
However, in contrast to progesterone and its metabolites, lev-
els of corticosterone remained lower in brain than in plasma 
between 1- and 4-h post-MCAO. Interestingly, a marked sex 
difference was observed at 6 h: in males, brain levels of corti-
costerone were highly increased, reaching plasma levels (about 
200 ng/g tissue), whereas in females, brain levels remained 
significantly lower than in plasma (about 70 ng/g tissue vs 
190 ng/ml in plasma) (Zhu et al. 2017) (Fig. 1b). Therefore, 
after ischemic injury, the male brain is transiently exposed to 
higher amounts of corticosterone than the female brain. Glu-
cocorticoids and stress are known to aggravate ischemic brain 
damage (Sapolsky and Pulsinelli 1985; Sugo et al. 2002). It 
is thus conceivable that the increase in levels of progester-
one and its 5α-reduced metabolite in the male brain may be a 
mechanism to protect neural cells against the damaging effects 
of elevated glucocorticoid levels. Consistent with this hypoth-
esis, a recent study has shown that chronic stress exacerbated 
inflammation and neural loss in the hippocampus of male rats 
after global ischemia and that progesterone was efficient in 
decreasing the deleterious effects of stress (Espinosa-Garcia 
et al. 2017).

Stroke Decreased Levels of Androgens in Males 
and had no Significant Effects on Estradiol Levels

In contrast to progesterone and glucocorticoids, brain 
levels of testosterone and 5α-DHT decreased as early as 
1-h post-MCAO in males. At 6 h, their brain levels were 
respectively 15- and 10-times lower than in intact male 
mice (Fig. 1c). The downregulation of androgens may 
be the consequence of a disruption of the hypothalamo-
pituitary-gonadal axis, or of the stress caused by stroke. 
Indeed, stress, adrenal hyperactivity and high doses of 
corticosteroids impair different aspects of reproduction 
including steroidogenesis (Rivest and Rivier 1991; Til-
brook et al. 2000; Orr et al. 1994; Maric et al. 1996; Kos-
tic et al. 1998). Another possibility may be a competitive 
inhibition of the P450c17 enzyme necessary for testoster-
one synthesis, by the increased levels of progesterone and 
5α-DHP as they are also substrates of this enzyme (Shet 
et al. 1994; Auchus et al. 2003).

Brain levels of estradiol were low in intact mice and 
did not differ between males and females. In both sexes, 
no significant changes in brain estradiol were observed 
between 1 and 24 h after MCAO, although there was a 
tendency to decreased estradiol levels in females at 6-h 
post-MCAO (Zhu et al. 2017) (Fig. 1c). However, it is 
important to note that in our study steroid levels were 
measured in large brain samples (the whole ischemic hem-
isphere); therefore, localized changes in steroid levels in 
specific brain regions after MCAO cannot be excluded. 
For instance, levels of 17β-estradiol have been shown to 
increase after MCAO in the dialysate from parabrachial 
nucleus of male rats. This increase was transitory with 
a maximum at 10 min followed by a decrease to levels 
bellow baseline by 90-min post-MCAO (Saleh et  al. 
2004). Furthermore, the same group showed a continuous 
increase of 17β-estradiol in the dialysate from the central 
nucleus of the amygdala beginning at 30-min post-MCAO 
with maximal values measured at 4-h post-MCAO (Saleh 
et al. 2005).

Stroke Increased Levels of 5ß‑Reduced Steroids 
in Female But Not in Male Mice

In contrast to what was observed in males (increase of 
5α-reduced steroids following MCAO), an increase 
of 5β-reduced steroids was observed in the brain of 
female mice. In particular, brain levels of 3α,5β-THP, 
5β-DHDOC, and 3α,5β-THDOC increased in females and 
were higher than in males at 6-h post-MCAO (Fig. 1a, b) 
(Zhu et al. 2017). This observation may be of importance, 
as 3α,5β-THP and 3α,5β-THDOC are, positive allosteric 
modulators of GABAA receptors. 5β-reduction of steroids 
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may also be a mechanism to regulate their concentrations 
and their availability for receptors (Belelli et al. 1996; 
Chen and Penning 2014; Gunn et al. 2015).
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Progesterone Receptor Signaling Mediates 
the Early Endogenous Cerebroprotection 
After Ischemic Stroke in Young and Aging 
Male and Female Mice

If the endogenous progesterone and 5α-DHP are important 
for the cerebroprotection at the acute phase of stroke, PR 
may be a key mediator. To test this hypothesis, we studied 
the response of PR Knockout mice to ischemia.

We first used available PR knockout mice (PRKO) lack-
ing PR expression in all tissues (Ismail et al. 2002). We 
demonstrated in young adult male mice that lack of PR 
expression increased ischemic brain infarct and motor 
dysfunctions at 6 and 24 h, but not at 48 h post-MCAO 
(Liu et al. 2012). These observations highlight the impor-
tance of PR-dependent mechanisms in the protection of 
the brain at the acute phase after stroke. To go further, 
we generated a new transgenic mice line (PRNesCre) selec-
tively lacking PR expression in neural cells, to evaluate the 
relative role of PR specifically expressed in the brain. At 
6-h post-MCAO, both young and aging male and female 
PRNesCre mice showed exacerbated neurological deficits 
and increased infarct volumes comparatively to their con-
trol PRloxP/loxP littermates that express normal levels of PR 
(Fig. 2) (Zhu et al. 2017).

However, the invalidation of PR expression had more 
deleterious effects in young males than in young females. 
In particular, the exacerbation of tissue damage in PRNesCre 
mice was more pronounced in males than in females 
(Fig. 2b) (Zhu et al. 2017). This observation points to addi-
tional endogenous processes, independent from neural PR 
signaling, which contribute to the prevention of tissue loss in 
the female brain. These additional mechanisms may depend 
on ERα as its expression is up-regulated early after cerebral 
ischemia in females (Dubal et al. 2006) but not in males 
(Westberry et al. 2008).

Our findings demonstrate an early endogenous cerebro-
protective mechanism depending on PR function in neural 
cells in young and aging males and females. This strongly 
suggests that selective ligands of PR may be useful for 

cerebroprotection after ischemic stroke. However, they may 
show different efficiencies in young males and females.

Progesterone is a Promising Pleiotropic 
Cerebroprotective Agent After Stroke

Neural cells are very sensitive to oxygen and glucose dep-
rivation, and they rapidly start dying after ischemic stroke. 
The major problem is the progressive spreading of nervous 
tissue damage. There is thus an urgent need for cerebropro-
tective agents that limit the death of neurons in the peri-
infarct area (Stankowski and Gupta 2011).

Experimental models of ischemic stroke have provided 
strong evidence for the cerebroprotective effects of proges-
terone (Gibson et al. 2009; Wong et al. 2013b). The majority 
of studies that evaluated the effects of progesterone treat-
ment on infarct size and functional outcomes reported ben-
eficial effects. Only few studies reported no effects and one 
study reported a deleterious effect (Gibson et al. 2009; Wong 
et al. 2013b). For the studies showing beneficial effects, pro-
gesterone was administrated at moderate doses early after 
ischemia. In contrast, administration of very high doses of 
progesterone before ischemia induction to ovariectomised 
females showed no effect on cortical infarct and even an 
increase of the sub-cortical infarct when the treatment was 
chronic (Murphy et al. 2000). The observed negative results 
may be due to the high doses of progesterone, the time of 
treatment initiation, the endocrine status of animals at the 
time of ischemia and/or the early time of analysis. There-
fore, endogenous progesterone levels, the dose, time, and 
schedule of progesterone treatment are all very important 
to be taken into account when designing preclinical studies.

The systematic meta-analysis by Wong et al. showed that 
in mice and rats exposed to either transient or permanent 
MCAO, progesterone treatment at moderate doses reduced 
infarct volume and improved functional recovery, such 
as the ability to remain on the rotarod and the reduction 
of neurological score deficits (Wong et al. 2013b). Most 
studies were performed in young males, some in ovariec-
tomized young females and few in aging animals. Unfor-
tunately, no study has been performed in gonadally intact 
young females (Wong et al. 2013a). The few studies that 
have used aged males, reported positive neuroprotective 
effects of progesterone (Wang et al. 2010; Yousuf et al. 
2014a, b; Wali et al. 2014, 2016). Only three studies evalu-
ated the effect of progesterone treatment in aging females. 
While one study showed a reduction of cortical infarct 
volume in aging female rats with chronic pretreatment by 
progesterone implants for 1 week (Alkayed et al. 2000); a 
second study showed no effect on infarct volume by acute 
treatment of progesterone initiated just 0.5 h before MCAO 
(Toung et al. 2004). A third study showed a reduction of 

Fig. 1   Brain levels of steroids in male and female mice intact and 
6  h post-MCAO, as analyzed by gas chromatography tandem mass 
spectrometry (GC/MS/MS). Young male and female mice (diestrus) 
were subjected to 1 h MCAO and brain steroid levels were measured 
at 6-h post-MCAO. Data are expressed as means ± SEM (ng/g of tis-
sue; n = 6–10 per group) and were analyzed by two-way ANOVA 
(surgery × sex) followed by Newman–Keuls multiple comparisons 
tests. ***p < 0.001, **p < 0.01, *p < 0.05 MCAO versus intact; 
$$$p < 0.001, $p < 0.05 MCAO females versus MCAO males as indi-
cated. DHP dihydroprogesterone, THP tetrahydroprogesterone, DOC 
11-deoxycorticosterone, DHDOC dihydro-11-deoxycorticosterone, 
THDOC tetrahydro-11-deoxycorticosterone, DHT dihydrotestoster-
one, THT tetrahydrotestosterone, 3α-HSOR 3α-hydroxysteroid oxi-
doreductase, P450aro P450 aromatase (data from Zhu et al. 2017)

◂
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total infarct volume, but no effect on neurological scores 
when progesterone was administered at 1-, 6-, and 24-h post-
MCAO (Gibson et al. 2011). Most studies except few ones 
used healthy mice and rats without any comorbidities or risk 
factors (Ankolekar et al. 2012). Studies using male hyperten-
sive animals have shown beneficial effects of progesterone 
on infarct size and neurological outcomes at 7 and 14 days 
post-MCAO (Kumon et al. 2000; Wong et al. 2014; Yousuf 
et al. 2016). However, one study showed no effect of pro-
gesterone on lesion volume nor on neurological outcomes at 
24-h post-MCAO in spontaneously hypertensive male rats 
(Spratt et al. 2014).

Treatment Schedule, Dose–Response, Time Window, 
and Mode of Progesterone Administration

The majority of experimental studies evaluating the effects 
of progesterone treatment in rodents used the dose of 8 mg/
kg administered by subcutaneous and/or intraperitoneal 
injections (Wong et al. 2014; Gibson and Murphy 2004; Lee 
et al. 2015; Liu et al. 2012; Dang et al. 2011; Yousuf et al. 
2016; Spratt et al. 2014; Sayeed et al. 2006, 2007; Ishrat 
et al. 2010, 2012; Wang et al. 2011; Gibson et al. 2011). The 
schedule of administration at 1-, 6-, and 24-h post-MCAO 
is the one that has been the most often used (Gibson et al. 
2008; Wong et al. 2013b). Dose–response studies have also 
been performed (Chen et al. 1999; Wali et al. 2014, 2016; 

Yousuf et al. 2014a). The dose of progesterone with an opti-
mal neuroprotective effect was 8 mg/kg. For instance, in a 
transient MCAO model, administration of progesterone at 
2-h post-MCAO at the dose of 8 mg/kg reduced infarct size 
and improved functional outcomes, whereas treatment with 
4-or 32-mg/kg had no effects (Chen et al. 1999). In a perma-
nent stroke model, Wali and colleagues showed that moder-
ate doses of progesterone (8- or 16-mg/kg) were efficient in 
reducing infarct volume and improving functional outcomes 
for up to 3 weeks of post-MCAO in aging rats. However, the 
dose of 8 mg/kg was more efficient in improving the spatial 
memory. Of note, progesterone treatment still provide neu-
roprotection when treatment was initiated at 6-h post-MCAO 
(Wali et al. 2014). In a more recent study, the same group 
showed that the beneficial effects of progesterone treatment 
on infarct size and neurological outcomes still be observed 
for up to 8 weeks post-MCAO (Wali et al. 2016).

One of the STAIR’s recommendations is to test different 
modes of administration of therapeutic drugs in preclinical 
studies. We are currently investigating the cerebroprotec-
tive potential of intranasal administration of progesterone. 
We have shown that progesterone dissolved in oleogel and 
administrated intranasally penetrated efficiently into the 
brain, and is cerebroprotective in male mice subjected to 
MCAO. Furthermore, brain levels of corticosterone were 
lower in progesterone-treated mice than in vehicle mice, sug-
gesting that this mode of administration is a non-stressful 

Fig. 2   Specific deletion of 
PR in neural cells leads to 
increased neurological deficits 
(a) and infarct volumes (b) in 
both young and aging male 
and female mice. Mice were 
subjected to 1 h MCAO and 
neurological deficit scores 
(higher scores reflect higher 
disability) and total infarct 
volumes were analyzed at 6-h 
post-MCAO. PRloxP/loxP mice: 
transgenic mice in which exon 2 
of PR was flanked by loxP sites; 
mice expressing normal levels 
of PR. PRNesCre mice: transgenic 
mice that selectively lack PR 
in the neural cells using the 
Cre-lox strategy (data from Zhu 
et al. 2017)
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route of progesterone delivery to brain that warrant evalu-
ation in future experimental studies (Frechou et al. 2015; 
Guennoun et al. 2018).

Pleiotropic Effects of Progesterone Treatment After 
Ischemic Injury

As presented above, several experimental studies have 
shown that progesterone treatment decreases the extent of 
ischemic infarction and improves functional outcomes. The 
underlying mechanisms of progesterone effects are begin-
ning to be unraveled. Thus, progesterone treatment has been 
shown to regulate different cellular and functional events 
important for cerebroprotection, including edema formation, 
neurotoxicity, blood–brain barrier (BBB) disruption, apop-
tosis, inflammatory responses and mitochondrial functions.

Progesterone Treatment Decreases Blood–Brain Barrier 
Disruption and Edema

One of the deleterious consequences of cerebral ischemia 
is the dysfunction of the blood–brain barrier (BBB) (Jiang 
et al. 2018). Excessive production of free radicals that cause 
oxidative stress activate matrix metalloproteases (MMPs). 
This activation leads to the degradation of the basal lamina 
as well as intercellular junctions of the BBB (Gidday et al. 
2005; Yang et al. 2007). Infiltration of leukocytes contributes 
to the alteration of the BBB (Jiang et al. 2018; Kebir et al. 
2007; McColl et al. 2007). BBB leakage results in edema 
formation, hemorrhagic transformation, and increased 
inflammation.

Different studies showed that progesterone limits BBB 
leakage after stroke. Thus, we have recently shown that intra-
nasal administration of progesterone at the time of reperfu-
sion attenuates BBB opening at 4-h post-MCAO (Frechou 
et al. 2015). This effect on the BBB during the early phase 
after stroke may contribute to the beneficial effects of pro-
gesterone on neuronal survival and on functional outcome 
observed at later time points. Likewise, Ishrat and colleagues 
demonstrated that progesterone treatment decreased the per-
meability of the BBB barrier at 72 h after ischemia by acting 
on the expression of MMPs, the pro-inflammatory molecules 
TNF-α and interleukin-6, and the tight junction proteins 
occludin 1 and claudin 5 (Ishrat et al. 2010). The effects of 
progesterone on BBB permeability and on the expression of 
the tight junction proteins were also demonstrated in vitro 
using mouse brain endothelial cells treated with thrombin 
(Hun Lee et al. 2015). Furthermore, progesterone decreased 
the hemorrhagic transformation, brain swelling, BBB leak-
age, and the induction of MMP-9 and VEGF expression 
observed in rats treated with tissue plasminogen activator 
(tPA) at 4.5-h post-MCAO (Won et al. 2014).

Cerebral edema is a major complication of ischemic 
stroke that contributes to increased mortality. Progesterone 
treatment has been found to be efficient in reducing brain 
edema after ischemic stroke (Grossman et al. 2004; Gibson 
et al. 2005; Liu et al. 2012; Jiang et al. 2016). Progester-
one was also able to counter the increased edema formation 
induced by t-PA treatment after transient MCAO (Won et al. 
2014).

Progesterone Treatment Decreases the Inflammatory 
Response

After cerebral ischemia, there is an acute and prolonged 
inflammatory response consisting of the early activation of 
microglia and astrocytes, the synthesis and release of pro-
inflammatory cytokines and chemokines and the infiltration 
into the brain parenchyme of neutrophils, T cells, and mac-
rophages. This cascade of events participates in brain tissue 
loss (Jin et al. 2010; Iadecola and Anrather 2011). There 
is a double function of microglia after stroke. Activated 
microglia can exert either beneficial or detrimental effects, 
depending on their phenotype (Hu et al. 2015; Ransohoff 
2016; Ma et al. 2017).

Progesterone treatment has been shown to regulate the 
density and polarisation of microglia and to reduce pro-
inflammatory cytokines and nitric oxide synthase-2 (Gross-
man et al. 2004; Habib and Beyer 2015; Ishrat et al. 2010; 
Jiang et al. 2009; Habib et al. 2014a, b; Coughlan et al. 
2005; Won et al. 2015; Allen et al. 2016; Lammerding et al. 
2016; Yousuf et al. 2016). Recently, Espinosa-Garcia et al. 
evaluated the anti-inflammatory potential of progesterone 
in the hippocampus of mice exposed to stress followed by 
global ischemia. They showed that stress exacerbated the 
inflammatory response by increasing the activation of micro-
glia, affecting their phenotype, enhancing the expression of 
inflammatory cytokines, and reducing the expression of 
protective factors. Progesterone treatment counteracted the 
effects of stress and ischemia by mitigating the inflamma-
tory response and regulating the polarization of microglia 
(Espinosa-Garcia et al. 2017). Inflammasomes are multipro-
tein complexes that play a key role in central nervous system 
inflammation and their activation represents a critical step 
in the neuro-inflammatory responses (Singhal et al. 2014). 
Recent studies showed that the anti-inflammatory effects of 
progesterone involve interactions between inflammasomes 
activation and their related regulatory miRNAs (Slowik and 
Beyer 2015).

Progesterone Treatment Reduces Brain Mitochondrial 
Dysfunction and Oxidative Damage

Mitochondria are the site of energy production and are major 
regulators of oxidative stress (Gaignard et al. 2018). Due to 
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the high metabolic rate and the low energy storage capac-
ity in neurons, mitochondria play a key role in brain func-
tion. We have recently investigated the role of endogenous 
steroids in the brain mitochondria function (Gaignard et al. 
2015). In particular, we have shown that mitochondrial res-
piration is higher, while oxidative stress is lower in the brain 
of young adult females as compared to young adult males. 
These differences were not observed in ovariectomised 
mice and in aged senescent mice (Gaignard et al. 2015). 
Our findings suggest that endogenous ovarian steroids may 
influence brain mitochondrial functions under physiological 
conditions.

With regard to stroke, mitochondria play a key role since 
they regulate energy production, oxidative stress, and cell 
death (Kalogeris et al. 2014; Gaignard et al. 2018). The 
drop in blood supply causes a decrease in ATP synthesis 
and the lack of oxygen causes a depolarisation of the inner 
mitochondrial membrane, leading to the production of high 
levels of reactive oxygen species (ROS). Energy drop and 
oxidative stress result in disturbance of ionic pumps and 
excitotoxicity, leading to cell death (Sims and Muyderman 
2010; Abramov et al. 2007; Manzanero et al. 2013; Dirnagl 
et al. 1999). Mitochondria are thus promising therapeutic 
targets for promoting recovery from stroke (Jin et al. 2016).

Treatment with progesterone increased the level of the 
antioxidant enzymes such as superoxide dismutase, glu-
tathione peroxidase and catalase, restored levels of total 
glutathione, and attenuated lipid peroxidase (Aggarwal et al. 
2008; Ozacmak and Sayan 2009). Progesterone was also 
shown to inhibit the translocation of the apoptotic factor, 
cytochrome c from mitochondria to cytosol (Sayeed et al. 
2009).

In a recent study, we have investigated the effects of 
progesterone on the brain mitochondrial respiratory chain 
and oxidative damage at 6-h post-MCAO (Gaignard et al. 
2016). We observed a sex difference in stroke effects on 
the brain mitochondrial respiratory chain. The reduced 
flavin adenine dinucleotide (FADH2)-linked respiration 
and the activity of complex II (CII) decreased in females 
but not in males. The reduced nicotinamide adenine dinu-
cleotide (NADH)-linked respiration decreased in both 
males and females. The mitochondrial pool of reduced 
glutathione (GSH) is the main anti-oxidant factor and its 
levels regulate neuronal cell death (Wullner et al. 1999). 
As demonstrated by others (Anderson and Sims 2002), we 
showed that levels of mitochondrial GSH decreased after 
MCAO. We demonstrated that progesterone treatment is 
efficient in preserving mitochondrial functions that are 
altered by ischemia. Our findings identify the mitochon-
dria as target of progesterone action after stroke and sug-
gest that the effects of progesterone on mitochondrial func-
tion may be one of the mechanisms by which progesterone 
provide neuroprotection (Gaignard et al. 2016). Recently, 

Andarabi and colleagues provided further evidence for the 
beneficial effects of progesterone on brain mitochondrial 
function after ischemic injury (Andrabi et al. 2017). They 
indeed showed that progesterone (1) restored the function 
of mitochondrial respiratory chain by increasing the activi-
ties of complex I and complex II and the levels of complex 
V; (2) modulated different oxidative stress parameters such 
as lipid peroxidation, ROS production, and mitochondrial 
GSH; and (3) reduced the swelling of mitochondria, and 
the release of cytochrome c from mitochondria in the cyto-
sol (Andrabi et al. 2017).

Progesterone Treatment Regulates Levels of Serotonin 
and Dopamine and Some Markers of Neurotoxicity 
and Neuroprotection

Neurotransmitter imbalance causes dysregulation of 
brain functions and may lead to secondary neuronal dam-
age (Chen et al. 2014). Levels of dopamine and serotonin 
increased in the frontal cortex after ischemia and proges-
terone treatment counteracted this increase (Andrabi et al. 
2017). Likewise, similar effects of ischemia and progester-
one were observed for the activities of the monoamine oxi-
dase and the acetylcholine esterase enzymes. Furthermore, 
progesterone was efficient in re-establishing the activity 
of the Na+, K+-ATPase that was decreased by ischemia 
thereby attenuating the mitochondrial damage (Andrabi 
et al. 2017).

Brain-derived neurotrophic factor (BDNF) and vascular 
endothelial growth factor (VEGF) regulate neuronal sur-
vival, neurogenesis and also vascular remodeling, angio-
genesis, and brain plasticity (Greenberg et al. 2009; Jin 
et al. 2002; Ruan et al. 2015). BDNF is neuroprotective 
after cerebral ischemia (Chen et al. 2013), while VEGF 
may play a dual role. For instance, a delayed treatment 
with VEGF increased angiogenesis and improved func-
tional outcomes. In contrast, treatment at the first hour fol-
lowing stroke leads to increased BBB permeability, hem-
orrhagic transformation and tissue damage (Zhang et al. 
2000). Progesterone administration increased the levels of 
BDNF and VEGF in the peri-infarct at 72 h and decreased 
them at 14 days post-ischemia (Ishrat et al. 2012). In this 
study, progesterone was also shown to reduce apoptosis 
and its related proteins. Similarly, a recent study showed 
that progesterone decreased VEGF and increased BDNF 
levels in the cortex at day 3 post-MCAO. Progesterone 
increased neurogenesis in the sub-ventricular zone and the 
density of the newly generated neurons in the peri-infarct 
at day 7 post-MCAO. These effects could partially underlie 
the improvement of neurologic functions observed on days 
7 and 14 post-MCAO (Jiang et al. 2016).
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Modes of Action of Progesterone After Stroke: A Key 
Role of PR

The classical mechanism of action of progesterone is the 
regulation of gene transcription after binding to its intra-
cellular receptors PR. Progesterone actions may also be 
mediated by specific membrane receptors, either the pro-
gesterone receptor membrane component 1 (PGRMC1) or 
the seven-transmembrane G protein-coupled progesterone 
receptors (mPRs). Progesterone is also a competitive inhibi-
tor of sigma-1 receptors. Finally, progesterone may be con-
verted to allopregnanolone, a potent modulator of GABAA 
receptors. All these mechanisms may contribute to the cer-
ebroprotective actions of progesterone as all these receptors 
are largely distributed in the brain and as progesterone is 
actively metabolized to allopregnanolone in the brain (Schu-
macher et al. 2007; Guennoun et al. 2015).

As discussed in paragraph 3, our recent studies demon-
strated a key role of PR in the endogenous cerebroprotection 
at 6- and 24-h post-MCAO (Liu et al. 2012; Zhu et al. 2017). 
PR is a limiting factor, as even heterozygous PR+/− mice 
showed larger ischemic infarcts comparatively to wild-type 
PR+/+ mice (Liu et al. 2012). The key role of PR was also 
demonstrated after progesterone treatment. Indeed, proges-
terone treatment was efficient for decreasing infarct volume, 
neurological and motor deficits in wild-type PR+/+ mice, 
but not in PR−/− knockout mice (Liu et al. 2012). Another 
study confirmed the importance of PR in stroke as proges-
terone decreased the infarct volume at 48-h post-MCAO in 
wild-type PR+/+ but not in heterozygous PR+/− mice (Lee 
et al. 2015). To know if the activation of PR is sufficient to 
provide cerebroprotection, we used Nestorone: a potent and 
selective PR agonist with no unwanted interaction with other 
receptors (Kumar et al. 2000) and which is not converted to 
GABAA receptor-active metabolites (Kumar et al. 2017). We 
showed that Nestorone at a very low dose (100-times lower 
than progesterone) decreased infarct volume and motor defi-
cits (Liu et al. 2012). We have recently extended our analysis 
concerning the role of PR. We have shown in particular that 
progesterone treatment (1) increased the density of neurons, 
of oligodendrocytes and of their precursors; (2) decreased 
the density of activated microglia and of astrocytes and of 
aquaporin 4 expression; and (3) that the selective invalida-
tion of PR expression in neural cells blocked all these effects 
(Zhu et al. 2018).

Treatment with allopregnanolone has also been shown 
to be neuroprotective after MCAO. In particular, admin-
istration of allopregnanolone has been shown to decrease 
infarct volume, edema, motor deficits, BBB dysfunctions, 
neuroinflammation and the activation of the mitochondrial 
permeability transition pore (Sayeed et al. 2006, 2009; Ishrat 
et al. 2010; Liu et al. 2012). Although both progesterone and 
allopregnanolone are neuroprotective when administered 

after ischemic injury, their mechanisms of action are dif-
ferent. Allopregnanolone exerts cerebroprotective effects 
via PR-independent signaling pathway as it has no affin-
ity for PR and its effects have also been demonstrated in 
PR knockout mice (Liu et al. 2012). As a positive modula-
tor of GABAA receptor, allopregnanolone may counteract 
excitotoxic mechanisms by potentiating GABAA receptor-
dependent decrease in neuronal excitability. Intracellular 
PR play a key role in mediating the effects of progesterone. 
Indeed, neuroprotective effects of progesterone are no longer 
observed in PR knockout mice and Nestorone, the selective 
PR agonist, is sufficient to provide efficient cerebroprotec-
tion at a very low dose. These findings also indicated that the 
in vivo bioconversion of progesterone to allopregnanolone 
is not the mechanism through which progesterone provides 
cerebroprotection, otherwise progesterone treatment would 
have been protective in PR knockout mice.

Although there is strong evidence for a key role of PR-
depending signals in the mediation of the cerebroprotec-
tive effects progesterone, these findings do not exclude the 
involvement of additional progesterone signaling mecha-
nisms, depending on the dose and timing of progester-
one administration, and on the time and type of outcome 
measures. Cai et al. investigated the potential mechanisms 
underlying the neuroprotective effects of progesterone. 
They showed in particular that PR, via activation of the 
Src-ERK1/2 cascade, mediated the cerebroprotective effects 
of progesterone observed in the hippocampus at 48-h post-
MCAO. In contrast, the acute protective effects observed 
at 1 h involved the antagonistic actions of progesterone on 
sigma-1 receptors, resulting in an attenuation of the NMDA-
induced increase in intracellular calcium concentrations (Cai 
et al. 2008).

The phosphoinositide 3-kinase/protein kinase B (PI3K/
Akt) cascade is a signal transduction pathway that regulates 
inflammation, cell survival in response to growth factors 
and is involved in cerebroprotection after ischemic stroke 
(Brazil et al. 2004; Zhao et al. 2006; Xu et al. 2008; Wang 
et al. 2009). The hypothesis that this pathway may mediate 
some of the beneficial effects of progesterone has been tested 
(Ishrat et al. 2012). Inhibiting the PI3K/Akt pathway with 
Wortmannin decreased the beneficial effects of progesterone 
on infarct size, edema, apoptosis and VEGF levels observed 
at 24-h post-MCAO (Ishrat et al. 2012).

Summary and Conclusions

Understanding the significance of sex differences in response 
to ischemic stroke injury and in cerebroprotection is funda-
mental for developing and refining effective treatment strate-
gies that are beneficial for both men and women. Rather than 
ignoring sex and steroid hormones as variables, as done in 
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almost all preclinical studies, there is much to be gained by 
taken them into account for studying pathophysiological and 
therapeutic mechanisms.

Advances in the understanding the mechanisms of 
action of steroids in stroke will permit to envisage thera-
peutic approaches based on a combination of steroids or 
new molecules modulating their synthesis, their receptors 
or their signaling pathways. In particular, cerebroprotection 
by progesterone or molecules targeting PR signaling offer 
great promises for the treatment of stroke patients. Taking 
into account the steroid status of patients and reinforcing 
progesterone signaling should be exploited in therapeutic 
strategies.
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