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Abstract
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner mem-
branes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. 
In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly 
in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate 
this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications 
in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of 
these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous 
system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
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Introduction

Mitochondria have been characterized as the metabolic 
center of the cell. These organelles contain their own 
genome (Frezza 2017) and synthesize most of the cellular 
ATP, nucleotides, fatty acids, and iron-sulfur clusters (Lack-
ner 2014). Additionally, mitochondria play a role in calcium 
and redox signaling during apoptosis (Galluzzi et al. 2014). 
Thus, mitochondria have been pointed out as central orga-
nelles in cellular function. In the last years, the morphol-
ogy and structure of these organelles have been shown to be 
relevant for the physiology of the cell and are indicators of 
the cellular fate.

Mitochondrial networks are constantly undergoing 
remodeling via cycles of fission and fusion (Westernmann 
2012). In different models, the core of proteins involved in 
the regulation of the mitochondrial morphology undergo 

changes of activity and/or expression level by a variety of 
intracellular signals and metabolic conditions (Wappler 
et al. 2013; Manczak et al. 2016; Twig et al. 2008). In this 
review, we discuss some evidences related to the mitochon-
drial dynamics, including the main components that partici-
pate in this process, and its role in some pathophysiological 
processes, with specific emphasis in the nervous system. 
Particularly, we discuss the importance of reactive oxygen 
species (ROS) as mediators of mitochondrial dynamics in 
neurons and the role of proteins involved in the mitochon-
drial fission/fusion in neurodegenerative diseases.

Mitochondrial Dynamics

Mitochondria are continuously dividing and fusing to con-
trol their size, morphology, and number. They may exist as 
individual organelles or as interconnected networks. These 
different forms of organization and structure depend on 
the tissue and cell type, as well as the metabolic state and 
developmental stages of the cell. Mitochondrial morphol-
ogy is achieved by the constant cristae remodeling, as well 
as the fission and fusion of the mitochondrial membranes. 
Altogether, these processes are known as mitochondrial 
dynamics (Pernas and Scorrano 2016). The maintenance 
of the mitochondrial organization, as well as their func-
tion and morphology is a complex issue orchestrated by a 
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heterogeneous group of proteins that keep the equilibrium 
between form and function by coordinating their activities 
(Lee and Yoon 2016). The main mechanism of mitochon-
drial dynamics relies on proteolytic processing and post-
translational modifications of the core of proteins involved 
in the process (Cho et al. 2012).

Mitochondrial fission participates in the control of the 
number and distribution of mitochondria, as well as in the 
response to changes in energetic cellular needs, the disposal 
of damaged mitochondria and the maintaining of the compo-
nents of the respiratory chain, the cristae shape and the ATP 
production. On the other hand, fusion is an intricate process 
that involves the join of outer and inner mitochondrial mem-
brane as an adaptation to facilitate communication between 
mitochondria and their host cells to maintain cell homeo-
stasis (Pernas and Scorrano 2016). Fusion has been related 
to the preservation of the capacity of the mitochondria to 
maintain genetic and biochemical homogeneity, allowing 
the dissipation of ROS, the exchange of mutated DNA, and 
the repolarization of membranes to maintain mitochondrial 
functionality. Fission and fusion determines the structural 
and functional status of mitochondria (Santel and Frank 
2008; Balog et al. 2016).

Fusion and Fission Machinery

Mitochondrial dynamics is highly regulated by at least four 
conserved dynamin-related GTPases that mediate the mem-
brane remodeling through the join or scission of mitochon-
drial membranes (Westermann 2010). The most studied pro-
teins are dynamin-related protein 1 (Drp1), which controls 
mitochondrial division, as well as mitofusins 1 and 2 (Mfn1 
and Mfn2) and optic atrophy 1 (Opa1), which drive fusion. 
The general mechanism and main components are discussed 
below and are shown in Fig. 1.

The key protein involved in mitochondrial scission is 
the soluble Dynamin-Related Protein (DRP1, in humans), 
which controls division of the mitochondrial outer mem-
brane (Ingerman et al. 2005; Mears et al. 2011; Nakamura 
et al. 2006; Karbowski et al. 2007; Chang and Blackstone 
2007a, b; Cho et al. 2009; Chang et al. 2010). Their role in 
fission is conserved in all the characterized eukaryotes to 
date, including plants, and it is ubiquitously expressed in 
mammals. It is encoded by the DNM1L gene and its known 
as dynamin-1 (Dnm1) in yeast and there are other homologs 
in different species (Labrousse et al. 1999; Bleazard et al. 
1999, 2013). It is noteworthy to note that Drp1 and some of 
its partners also mediate fission of peroxisomes (Bertholet 
et al. 2016). Drp1 undergoes post-translational modifica-
tions, which can affect its activity and cellular localization; 
the main modifications include S-nitrosylation (Nakamura 
et al. 2006; Karbowski et al. 2007; Chang and Blackstone 

2007a, b; Cho et al. 2009; Chang et al. 2010), phosphoryla-
tion (Taguchi et al. 2007; Han et al. 2008; Sesaki et al. 2014; 
Manczak et al. 2012), and sumoylation (Prudent et al. 2015).

During the fusion process, several proteins participate as 
mediators in the remodeling of outer and inner membranes. 
These include GTPases, Mfn1, Mfn2, and Opa1, among oth-
ers. Mitofusins are known as Fzo (Fuzzy onions) in flies and 
yeast, as wells as Mfn1 and Mfn2 in humans (Mozdy and 
Shaw 2003). Regarding the structure, Mfn1 and Mfn2 share 
N-terminal regions, where the GTPase domains responsible 
for the binding and hydrolysis of GTP are located. (Huang 
et al. 2011; Palmer et al. 2011; Santel et al. 2003). The main 

Fig. 1  Schematic representation of main components of mitochon-
drial dynamics machinery. Mitochondrial morphology is depend-
ent on a proper balance between fusion and fission processes, which 
are coordinated by a systematized set of dynamin-related GTPases. 
Fusion of mitochondrial outer membrane is leading by Mfn1, Mfn2, 
which are anchored in the outer membranes and allows their close up 
and the fusion of membranes. Opa1 is in charge of the connection of 
the inner mitochondrial membrane and the cristae remodeling. Fusion 
of mitochondrial membranes produces an interconnected organelle. 
On the other hand, Drp1 is the master protein for mitochondrial fis-
sion and is initially positioned at the outer mitochondrial membranes 
by adaptor proteins. It leads membranes scission by forming a ring 
around the organelle to constrain the membranes producing mito-
chondrial shortening
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post-translational modifications reported for mitofusins are 
phosphorylation for the regulation of the mitochondrial 
fusion and ubiquitination to facilitate mitophagy, i.e., the 
mitochondria elimination by autophagy (Leboucher et al. 
2012; Gegg et al. 2010; Park et al. 2009).

Opa1 is located at the inner mitochondrial membrane. Its 
biological relevance was established in a homozygous mouse 
model, which die in utero during embryogenesis. Heterozy-
gous animals are viable, but exhibit loss of retinal ganglion 
cells and eventually a severe degeneration in nerve fiber 
layer (Alavi et al. 2007). Opa1 is synthesized in the cyto-
plasm and is processed in the mitochondrial matrix (Ishihara 
et al. 2006). It has eight different isoforms in humans and is 
enriched in retina, brain, testis, heart, and muscle (Delettre 
et al. 2001). Post-translational regulation is based on the 
proteolytic processing by mitochondrial metalloproteases 
that generate a long form that retain the N-terminal trans-
membrane domain (L-Opa1) and a short soluble isoform 
(S-Opa1) (Song et al. 2007; Ehses et al. 2009; Anand et al. 
2014). Opa1 regulates the shape and the length of the mito-
chondrial cristae during apoptosis through the participation 
of oligomers of L-Opa and S-Opa (Frezza et al. 2006).

Physiological and Pathological Role 
of Mitochondrial Dynamics

In the physiological context, mitochondrial dynamics is par-
ticularly crucial for the regulation of the number of mito-
chondria, the elimination of organelles by mitophagy (Wu 
et al. 2018). It is also necessary for the distribution of mito-
chondria along the cells, since mitochondria are required 
to be accumulated in sites where high amount of energy or 
calcium buffering are needed (Otera and Mihara 2011). The 
importance of mitochondrial fission/fusion has been shown 
in different physiological processes including apoptosis, cell 
division, metabolism, and bioenergetics (Westermann 2010; 
Kanfer et al. 2017; Otera and Mihara 2011; Gomes et al. 
2011; Chen et al. 2003; Amchenkova et al. 1988).

Recent studies have shown that aberrations in mitochon-
drial dynamics processes are associated with many human 
disorders (Huang et al. 2013; Itoh et al. 2013; Reddy 2011; 
Reddy and Shirendeb 2012; Cho et al. 2010; Knott et al. 
2008). It is known that the loss of mitochondrial function, 
secondary to defects in mitochondrial dynamics, leads to 
an increase of ROS generation and a decrease in the ATP 
production (Guo et al. 2015).

Some human hereditary diseases are linked to defects in 
the activity of fusion and fission proteins. For example, it has 
been observed an inadequate function of Drp1 involved in a 
development delay, insensitivity to pain and microcephaly, 
as well as in syndromes such as sudden death (Waterham 
et al. 2007). Some types of lung cancer (Zhu et al. 2004; 

Chiang et al. 2009) have also been related to an altered func-
tion of Drp1, while spastic paraplegia syndrome and multi-
ple sclerosis are associated with defects in Opa1 (Chao de 
la Barca et al. 2016). Similarly, recent evidence suggests the 
participation of mitochondrial dynamics proteins in acquired 
diseases. For example, alterations in mitofusins have been 
linked to diabetes mellitus, pulmonary hypertension, and 
breast cancer (Yu et al. 2009; Zhao et al. 2013; Sharp et al. 
2014; Ryan et al. 2013) and Opa1 defects are observed in 
patients with hypertension (Jin et al. 2011).

Mitochondrial Dynamics in the Nervous 
System

Due to their high metabolic activity, neurons are particu-
larly sensitive to changes in the mitochondrial function and 
are energetically demanding cells that require an adaptively 
maintenance of these organelles (Kann and Kovacs 2007). 
Moreover, as highly polarized cells containing complex neu-
ritic processes, neurons also need a timely and appropriate 
transport and distribution of mitochondria to produce energy 
and regulate the calcium necessary for the neuronal activi-
ties, including synaptic transmission and vesicle recycling 
(Sheng and Cai 2012). Mitochondrial dynamics has also 
been related to neurogenesis during neuronal development 
and adult brain. Although the influence of the mitochondrial 
dynamics in this process has not been completely under-
stood, it is evident that it results an important regulatory 
event for neuronal development (Khacho and Slack 2018).

The numerous structural profiles of mitochondria cor-
relate with the different bioenergetics demands in several 
tissues, including the brain. Neurons depend on oxidative 
phosphorylation as primary source of energy production, 
which is vital to regulate complex dynamics that include 
the activity of pumps and transporters, the transport for long 
distances across neuritic extensions, as well as other pro-
cesses such as fission and fusion that imply large ATP needs 
(Kuznetsov et al. 2009; Mironov 2009; Rolfe and Brown 
1997).

In neurons, mitochondrial division is important to trans-
port mitochondria to sites where high amount of energy is 
required, including synaptic terminals (Otera and Mihara 
2011). Distribution of these organelles is particularly impor-
tant in neurons due to the need to delivery and exchange of 
newly mitochondria along the processes. Thus, the biogen-
esis is crucial for the availability of healthy mitochondria 
(Schwarz 2013). Deficiencies in the mitochondrial dynam-
ics are associated with the inability of neurons to maintain 
the ATP synthesis required for calcium regulation, neuronal 
electrical activity and axonal transport necessary for neu-
ronal communication (Cuesta et al. 2002; Chen et al. 2003; 
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Wakabayashi et al. 2009; Shields et al. 2015; Dietrich et al. 
2013).

During physiological conditions, it has been demon-
strated that mitochondrial length is critical to define when 
a mitochondria should divide, but the motility is also deter-
minant for fusion. This suggests that the equilibrium of the 
mitochondrial dynamics is finely regulated not only by a 
core of proteins, but also for other processes that affect the 
number and movement of mitochondria, which in turn exerts 
a feedback to control mitochondrial homeostasis in neurons 
(Cagalinec et al. 2013). In stress conditions, the length and 
shape of mitochondria usually adapting their shape form 
filamentous to short and round, showing the adaptability of 
these organelles for contend with the changing environment 
(Youle and van der Bliek 2012).

Nervous System Pathologies Associated 
with Mitochondrial Dynamics Defects

Despite the fact that different neuronal populations are 
affected in neurodegenerative diseases, a common condi-
tion in all cases is an abnormal mitochondrial structure and 
function. This suggests that the mitochondrial dynamics 
might not be involved in the selective vulnerability of spe-
cific neuronal populations, but rather in the mediation or 
amplification of mitochondrial dysfunction and neuronal 
death during the course of neurodegenerative or neuropsy-
chiatric disorders (Jellinger 2009; Rezin et al. 2009). The 
pathologies associated with defects in fission and fusion pro-
teins includes status epilepticus and schizophrenia in which 
activation of Drp1 is frequently reported (Flippo and Strack 
2017; Kim and Kang 2017).

In several neurodegenerative diseases and disorders 
related to mitochondrial defects, the neurons show altera-
tions in the oxidative phosphorylation, the homeostasis of 
intracellular ROS and the levels of calcium, as well as in 
the mitochondrial mobility, mitophagy and fusion/fission 
dynamics (Burte et al. 2015; Ryan et al. 2015). Deregulation 
of the mitochondrial fusion or fission has also been asso-
ciated with defects in neuronal development and neuronal 
plasticity, both in ex vivo and in vivo models (Bertholet et al. 
2016). In Drp1 mutant cultured neurons, abnormal mito-
chondrial distribution results in a compromised synapse for-
mation. It is also known that lacking of Drp1 causes devel-
opmental abnormalities in mice, which die after embryonic 
day 12.5; these mutant embryos have a small body size and a 
heart and liver abnormal development (Ishihara et al. 2009).

Neuropathologies such as Alzheimer’s, Parkinson’s, 
and Huntington’s diseases are characterized by a progres-
sive loss of neuronal function and have been related to 
mitochondrial defects as an early sign of neurodegenera-
tion (Gao et al. 2017; Correia et al. 2012; Itoh et al. 2013; 

Wilson et al. 2013). For example, in genetic models of Par-
kinson’s disease, an overexpression of mutant α-synuclein 
leads to defects on axonal mitochondrial transport and an 
elevated mitochondrial fragmentation (Devoto et al. 2017; 
Ordonez et al. 2017), suggesting a close correlation between 
α-synuclein an mitochondrial distribution in this disease.

In postnatal mouse cortical neurons, apoptotic condi-
tions decreased the expression of Drp1 and parkin and these 
effects were abolished by recovering the expression levels of 
parkin or Drp1, which enhanced neuronal viability and rees-
tablished the mitochondrial morphology (Wang et al. 2013). 
It is known that mutations in the genes that codify for parkin 
are the cause of the autosomal recessive form of Parkinson’s 
disease. Parkin recognizes proteins of the mitochondria in 
response to cellular insults and promotes the repair of mito-
chondria though autophagy and proteasomal mechanisms 
(Seirafi et al. 2015).

There are evidences suggesting that Drp1 and parkin work 
in a synergistic manner to maintain mitochondrial function 
and structure in the brain. Both molecules are critical when 
mitochondrial division is altered, which suggests that the 
initiation and progression of Parkinson’s disease are related 
to a decrease in the mitochondrial division and depend on 
these molecules (Kageyama et al. 2015). The machinery 
that links Drp1 to the origin and evolution of Parkinson’s 
disease is unclear; nevertheless, it has been demonstrated 
that Drp1 is closely modulated by different conditions that 
are also involved in Parkinson’s disease. For example, Drp1 
levels are quite sensitive to induction of autophagy. In cul-
tured striatal neurons, mitochondrial fission and Drp1 levels 
are decreased after autophagy induction and the inhibition 
of autophagy induces high level of Drp1. Thus, It is pos-
sible that the observed fission in neurodegeneration could 
be counteracted by autophagy through a reduction in Drp1 
(Purnell and Fox 2013).

Other conditions affecting Drp1 and parking modulation 
may also play a pivotal role in Parkinson’s disease. This 
includes Drp1 and parkin sumoylation that interferes with 
mitochondrial fusion/fission by reducing the amount of 
parkin available for mitochondrial recruitment (Guerra de 
Souza et al. 2016). Finally, in a model of Parkinson’s dis-
ease, it was shown that the S-nitrosylation of parkin leads 
to an increase in the levels of Drp1, but a reduction in its 
interaction with Drp1. This condition also induces the phos-
phorylation of Drp1 Ser616 and its recruitment to the mito-
chondria (Zhang et al. 2016).

Drp1 defects have also been observed in cells of Alzhei-
mer’s disease patients (Song et al. 2011; Kandimalla and 
Reddy 2016). In Alzheimer’s disease, fibroblast and human 
neuroblastoma SH5YSY cells, both the expression of Drp1, 
and its interaction with mitochondrial adaptors are markedly 
increased by Aβ-42 (Kuruva et al. 2017). In contrast, the 
inhibition of Drp1 interaction with its adaptors reduces the 
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recruitment of Drp1 and prevents the mitochondrial fission 
and functional dysfunction induced by Aβ-42 (Joshi et al. 
2017). On the other hand, in cultured cortical neurons, the 
amyloid peptide Aβ- 42 increases the expression of Drp1 
and decreases the expression of Mfn1/2 and OPA- 1; the 
inhibition of DRP1 markedly reverts the observed disrup-
tion of mitochondrial membrane potential (Han et al. 2017).

Opa1 was identified as the human gene of autosomal 
dominant optic atrophy (ADOA) that is a hereditary optic 
neuropathy that causes progressive loss of vision (Delet-
tre et al. 2000). Although initially Opa1 localization and 
function were unknown, it was later found a signal peptide 
sequence for mitochondrial localization, suggesting a mito-
chondrial function of this protein (Alexander et al. 2000). 
Mutations in Opa1 are responsible of a spectrum of diseases 
such as ADOA with deafness and multi-systemic syndromes, 
which involves neurological and neuromuscular symptoms 
(Amati-Bonneau et al. 2009). Additionally, there are evi-
dences of abnormal cristae morphology in the striatum and 
cortex of murine models of Huntington’s disease due to 
Opa1 defective oligomerization (Hering et al. 2017).

Regarding mitofusins, it has been known that mutations 
in Mfn2 are the most common cause of axonal Charcot-
Marie-Tooth disease (CMT) type 2 (Züchner et al. 2004), 
which is a genetically heterogeneous disorder of peripheral 
neuropathies, characterized by distal muscle weakness and 
atrophy (Azzedine et al. 2012). In addition, in a model for 
idiopathic PD induced by paraquat, the observed mitochon-
drial fragmentation and dopaminergic neurodegeneration are 
markedly reduced by overexpression of Mfn2 (Zhao et al. 
2017). In contrast to Mfn2, there are no reports showing a 
relation of Mfn1 to any neuropathology.

Neurons are particularly sensitive to alterations in 
mitochondrial dynamics, which seems to be important in 
the initiation and progression of neurodegenerative disor-
ders; unfortunately, no much information exists about the 
mechanisms involving mitochondrial dynamics and the 
development of neuropsychiatric disorders. The mitochon-
drial fusion/fission represents a new scenario to explore the 
pathologies associated to nervous system, but more studies 
are needed to understand the complete role on these patholo-
gies and their probable therapeutic approach. Some neuro-
pathologies related to defects on mitochondrial dynamics 
and the role of fission and fusion in these processes are listed 
in Table 1.

Regulators of Mitochondrial Dynamics

Despite the experimental evidences about the post-transla-
tional regulation of mitochondrial dynamics proteins, the 
molecular mechanism is still not fully understood. In that 
regard, it is known that some signaling molecules influence 

the fusion and fission processes. Two conditions that seem 
to be mediators of fission and fusion in the nervous system 
include the intracellular levels of calcium and ROS levels.

Calcium is a ubiquitous cellular messenger involved in 
signaling pathways that regulate numerous processes. In 
the nervous system, calcium is critical for several events, 
including synaptic transmission (Jones and Smith 2016), 
cell migration (Komuro et al. 2015), and axonal guidance 
(Kaplan et al. 2014). The role of calcium in mitochondrial 
dynamics has been extensively reviewed. For example, it 
has been reported that an increase in the levels of calcium 
alters both the mitochondrial function and Drp1 activity 
(Hom et al. 2007). Other studies have demonstrated that the 
intracellular localization of Drp1 in neurons is regulated by 
calcium through the participation of calcineurin (Cereghetti 
et al. 2008; Cribbs and Strack 2007). In addition, under exci-
totoxic conditions, the levels of Drp1 and Opa1 are mainly 
affected by a rise in intracellular calcium (Wang et al. 2015; 
(Martorell-Riera et al. 2014; Jahani-Asl et al. 2011).

In addition to calcium, ROS are also important for the 
remodeling of mitochondrial architecture, probably by act-
ing on some of the proteins responsible for the mitochondrial 
dynamics. In contrast to calcium, no much information is 
available about this topic in the nervous system.

Reactive Oxygen Species and Mitochondrial 
Dynamics

ROS are reactive metabolites of oxygen that can be radicals, 
such as superoxide anion and hydroxyl anion, or no-radicals, 
including hydrogen peroxide. All of them have a pivotal role 
in physiological and pathological processes. There are differ-
ent ROS sources in the cell: xanthine oxidase, lipooxigenase, 
cyclooxygenase, and NADPH oxidase (NOX), among others 
(Nayernia et al. 2014, Phaniendra et al. 2015). Mitochondria 
also generate ROS, mainly as a byproduct of respiration. 
In all cases, ROS contribute to the redox signaling in the 
cell (Murphy 2009). Conventionally, mitochondrial complex 
I (NADH Coenzyme Q Oxidoreductase) and complex III 
(Ubiquinol-Cytochrome c reductase) are the major contribu-
tors of ROS production, but other enzymes in mitochondrial 
matrix have also been reported as noteworthy ROS produc-
ers (Andreyev et al. 2015; Angelova and Abramov 2016).

Experimental evidence shows that the redox signaling 
is important for the mitochondrial dynamics in several cell 
types and that the levels of ROS are closely related to the 
function of the proteins involved in fission or fusion. There 
is evidence relating the oxidative microenvironment to the 
modification of these proteins, as well as to the regulation 
of the mitochondrial dynamics (Mailloux et al. 2013). Thus, 
alterations in the ROS levels lead to deficiencies in the regu-
lation of mitochondrial morphology and function (Willems 
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et al. 2015). In spite of all this information, in the majority of 
the cases, the mechanism of this regulation is still unknown.

The mitochondrial fusion in HeLa cells and MEFs 
depends on the cellular oxidizing conditions. In these cells, 
oxidized glutathione (GSSH) stimulates this process. Fur-
thermore, cysteine 684 seems to be important for the Mfn2 
oligomer formation, since the mutant C684A resulted in a 

loss of GSSG-mediated oligomers disturbing mitochondrial 
network (Shutt et al. 2012). It is possible that local ROS 
production in mitochondria could be responsible for the 
modulation of the activity and/or expression of mitochon-
drial dynamic proteins. In other non-neuronal cell lines, it 
was found that ROMO1 (Reactive Oxygen Species Modula-
tor 1), a mitochondrial key protein involved in the regulation 

Table 1  Role of the core of proteins involved in mitochondrial dynamics in neuropathologies

Protein Pathology Action References Model

Drp1 Traumatic brain injury (TBI) ↑ fission Fischer et al. (2016) CCI of adult Sprague–Dawley rats
Wu et al. (2018) TBI in adult male ICR mice

Amyotrophic lateral sclerosis (ALS) ↑ fission Altanbyek et al. (2016) Elav-gal4, Mhc-gal4, and D42-gal4 Dros-
ophila line

Joshi et al. (2017) NSC34 cells stably expressing WT or 
G93A hSOD1

Huntington’s disease (HD) ↓ fusion Song et al. (2011) Neurons and fibroblasts of HD mice
Shirendeb et al. (2012) Mutant Htt expression in generated 

BACHD mouse
Alzheimer’s disease (AD) ↓ fusion Kandimalla and Reddy (2016) Drp1 heterozygote knockout mice and APP 

mice
Kuruva et al. (2017) AD neurons treated with DDQ

Parkinson’s disease (PD) ↑ Fission Filichia et al. (2016) MPTP administration regimen in C57BL/6 
mice

Ordonez et al. (2017) Drosophila model of α-synucleinopathy 
phenotypes

Opa1 Leber’s hereditary optic neuropathy 
(LHON)

↑ fission Amati-Bonneau et al. (2009) Eye-specific homozygous OPA1 Drosophila 
mutant

Kjer’s optic atrophy (KOA) Schild et al. (2013) Patients with heterozygous mutation in the 
OPA1

Huntington’s disease (HD) Hering et al. (2017) R6/2 transgenic mice 
(B6CBATg(HDexon1)62Gpb/1 J)

Autosomal dominant optic atrophy 
(ADOA)

Delettre et al. (2000) Patients (ex vivo) exhibited typical signs 
of DOA

Zhang et al. (2017) Lymphoblastoid cell lines carrying the 
OPA1 mutation

Autosomal dominant optic atrophy and 
deafness (ADOAD)

Liguori et al. (2008) A family with a unusual phenotype of 
ADOAD

Amati-Bonneau et al. (2009) Eye-specific homozygous OPA1 mice 
mutant

Spastic paraplegia (SP) Yu-Wai-Man and Chinnery (2011) Blood 28-yo female with early-onset optic 
atrophy

Pareyson et al. (2015) Patients with OPA1 mutations in the North 
of England

Leigh syndrome (LS) Rubegni et al. (2017) Muscle and skin punch biopsies
Mnf2 Alzheimer’s disease (AD) ↓ fusion Martín-Maestro et al. (2017) Cell cultures of fibroblast cell lines from 

SAD
Manczak et al. (2018) Amyloid beta precursor protein mice 

(Tg2576 mice)
Charcot-Marie-Tooth disease (CMT) Azzedine et al. (2012) Patients with MFN2 mutations and sensori-

neural hearing loss.
Dankwa et al. (2018) Blood samples of 6 family members - from 

a large CMT2 family
Parkinson’s disease (PD) Gautier et al. (2016) Human fibroblasts obtained from skin 

biopsies (PD patients)
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of ROS and cell death (Lee et al. 2010; Kim et al. 2010a, 
b), modulates the cristae morphology and the mitochondrial 
fusion. ROS regulate ROMO1 activity by the control of the 
redox sensitive cysteines, Cys15 and Cys79. Additionally, 
ROMO1 is essential for Opa1 oligomerization required for 
maintaining the integrity of cristae junctions and preventing 
the leakage of cytochrome C (Norton et al. 2014).

ROS as Regulators of Mitochondrial 
Dynamics in Neurons

In neurons, multiple conditions involved in physiological 
processes, such as proliferation, neurite outgrowth, differ-
entiation, among others, have been related to oxidant con-
ditions (Le Belle et al. 2011; Olguín-Albuerne and Morán 
2015; Piras et al. 2016). In this context, ROS production has 
also been linked to the mitochondrial form and function in 
neurons. On the other hand, it has been reported abnormal 
forms of mitochondria in some models of neuropathological 
diseases, in which ROS production is involved.

The loss in the fusion and fission balance has been related 
to oxidative stress in neurons (Knott et al. 2008). Fission 
is probably the most studied event related to ROS produc-
tion in neuronal models. In general, an elevation of ROS 
levels triggers mitochondrial fragmentation. This condition 
also leads to a modification of Drp1 activity. In cerebellar 
Purkinje cells, the loss of Drp1 causes neuronal damage, 
probably because mitochondrial division is necessary for 
their distribution in dendrites during neurite extension. In 
this regard, antioxidant treatment prevents mitochondrial 
morphological changes and cell death in KO Drp1 neurons, 
indicating that ROS production is involved in this process, 
and showing that mitochondrial fission capacity is important 
to avoid neurodegeneration (Kageyama et al. 2012).

There is evidence suggesting a connection between Drp1 
and ROS (Cho et al. 2012). It has been observed that induc-
ing Drp1 phosphorylation causes mitochondrial fission after 
30 min, which also generates neuronal death (Zhou et al. 
2017). On the other hand, amyloid β protein (Aβ) causes 
Drp1 phosphorylation mediated by Akt, which generates 
excessive mitochondrial fragmentation, elevation of ROS 
levels and subsequently neuronal apoptosis (Kim et  al. 
2016). In an Alzheimer’s disease model, increased mito-
chondrial ROS levels lead to a shortening of mitochondria 
and to an increase in Drp1 activation by Ser616 phospho-
rylation (Cho et al. 2012).

Recently, it was described that in hippocampal neurons 
treated with Aβ the mitochondria take a granular shape, 
which is different to the typical spherical shape reported in 
the literature after an oxidant stimulus. Besides, the granular 
shape also depends on ROS, but the expression of mito-
chondrial dynamics proteins was not affected, suggesting a 

different mechanism from those described until now (Hung 
et al. 2018). The different stimuli that induce ROS levels 
have heterogeneous effects on mitochondrial fragmentation, 
as well as on the neuronal death process, but it is clear that 
a correlation exists between ROS increase and Drp1 activa-
tion, although the details in the mechanism have not been 
elucidated.

ROS production seems to exert also an effect on the 
fusion machinery. Specifically, it has been reported an 
influence of ROS over Mfn2 and Opa1. In cerebellar gran-
ule neurons, potassium deprivation and hydrogen peroxide 
induce mitochondrial fragmentation; however, under these 
conditions, the expression of Mfn2 reverts the mitochon-
drial shortening and prevents neuronal death, showing that 
Mfn2 overexpression promotes mitochondrial and neuronal 
viability (Jahani-Asl et al. 2007). In the same model of cer-
ebellar neurons, the increase of ROS levels causes Opa1 
cleavage at the N-terminal and the residue K301 is removed, 
leading to protein deactivation; finally, this condition results 
in mitochondrial fragmentation and dysfunction, as well as 
apoptosis, suggesting that mitochondrial fusion imbalance 
can compromise neuronal viability (Gray et al. 2013).

Interestingly, Opa1 deletion during early in vitro neuronal 
development also causes ROS increment and NRF2 translo-
cation accompanied by a transitory mitochondrial hyperfila-
mentation, which correlates with the onset of synaptogen-
esis. Additionally, the lack of Opa1 induces a decrease of the 
expression of pre- and post-synaptic proteins and a reduction 
in the number of synapses (Bertholet et al. 2013). These 
results suggest that mitochondrial dynamics proteins expres-
sion related to ROS production is critical for the neuronal 
development. Consistently,  Opa1+/− neurons are more sensi-
tive to oxidative stress, probably because their antioxidant 
proteins suffer a reduced expression; these cells also show 
mitochondrial dysfunction, a decrease of oxygen consump-
tion and cell death (Millet et al. 2016). Therefore, it seems 
that the defective expression of fusion proteins affects the 
response of cells against oxidant conditions, making them 
more susceptible to oxidation and subsequently to cell death.

It is clear from the literature that it is not totally under-
stood the role of ROS in the mitochondrial dynamics and 
that more studies are needed to establish a relationship 
between these molecules and the expression and activity of 
Drp1, Opa1, and mitofusins. The main effect of ROS on the 
shape and function of neuronal mitochondria is depicted in 
Fig. 2.

Conclusions

Mitochondrial fusion and fission balance is critical to con-
tend with the high energetic demand necessary to maintain 
the physiological cell functions, particularly in neurons. 
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In this context, most of the studies have been targeted to 
elucidate the contribution of the mitochondrial dynamics 
in some neuropathologies. ROS are important mediators in 
mitochondrial function and cellular health and have been 
point out as regulators of mitochondrial dynamics in several 
physiological and pathological processes. It is known that 
the loss of balance between fusion and fission is related to 
an increase of ROS production. This condition leads to a loss 
of mitochondrial membrane potential, a decoupling of the 
electron transport chain and the fall of ATP concentrations. 
The cellular ROS levels influence the expression and activ-
ity of Drp1, Opa1, and mitofusins, which in turn modulate 
the neuronal fate.

Future Challenges

The role of ROS in the regulation of mitochondrial dynamics 
is critical for several neurodegenerative disorders. One of the 
earliest signals in the pathophysiological process of neurode-
generation is an imbalance of ROS. It is therefore important 
to investigate the temporary course of ROS changes in rela-
tion to the proteins involved in fission or fission, as well as in 
the molecular pathways that are activated in this process. In 
addition, it would be particularly interesting to explore more 
exhaustively the action of ROS in the regulation of the mito-
chondrial dynamics process through redox modifications of 

specific amino acids. Thus, strategies to modify both the ROS 
production and abnormal mitochondrial dynamics may be an 
attractive therapeutic target for the treatment of neurodegen-
erative diseases. In this context, more studies are needed to 
understand the mechanisms responsible for the regulation of 
mitochondrial fission and fusion in pathological conditions. 
Progress exists in screening, identifying, and developing 
molecules as target therapies to reduce mitochondrial fission, 
maintaining mitochondrial fusion and cell survival; however, 
more information about neuronal physiological roles of mito-
chondrial dynamics is needed.
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Fig. 2  Consequence of ROS levels on mitochondrial dynamics in 
neuronal cells. In neurons, mitochondria require a balance between 
fission and fusion to maintain cell homeostasis. This balance is lost 
in elevated ROS environments, which induces Drp1 activation, Opa1 

deactivation, and mitochondrial fragmentation, leading eventually to 
neuronal death. Conversely, the reduction or scavenging of ROS by 
several conditions induces the elongation of mitochondrial network
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