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Abstract
Calcium  (Ca2+) ions are prominent cell signaling regulators that carry information for a variety of cellular processes and are 
critical for neuronal survival and function. Furthermore,  Ca2+ acts as a prominent second messenger that modulates divergent 
intracellular cascades in the nerve cells. Therefore, nerve cells have developed intricate  Ca2+ signaling pathways to couple the 
 Ca2+ signal to their biochemical machinery. Notably, intracellular  Ca2+ homeostasis greatly relies on the rapid redistribution 
of  Ca2+ ions into the diverse subcellular organelles which serve as  Ca2+ stores, including the endoplasmic reticulum (ER). It 
is well established that  Ca2+ released into the neuronal cytoplasm is pumped back into the ER by the sarco-/ER  Ca2+ ATPase 
2 (SERCA2), a P-type ion-motive ATPase that resides on the ER membrane. Even though the SERCA2 is constitutively 
expressed in nerve cells, its precise role in brain physiology and pathophysiology is not well-characterized. Intriguingly, 
SERCA2-dependent  Ca2+ dysregulation has been implicated in several disorders that affect cognitive function, including 
Darier’s disease, schizophrenia, Alzheimer’s disease, and cerebral ischemia. The current review summarizes knowledge on 
the expression pattern of the different SERCA2 isoforms in the nervous system, and further discusses evidence of SERCA2 
dysregulation in various neuropsychiatric disorders. To the best of our knowledge, this is the first literature review that spe-
cifically highlights the critical role of the SERCA2 in the brain. Advancing knowledge on the role of SERCA2 in maintaining 
neuronal  Ca2+ homeostasis may ultimately lead to the development of safer and more effective pharmacotherapies to combat 
debilitating neuropsychiatric disorders.
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Introduction

Calcium  (Ca2+) ions are prominent cell signaling regulators 
as they carry information for a wide range of cellular pro-
cesses, from egg fertilization and cell fate to gene expression 
and development (Berridge et al. 2000; Brini et al. 2014; 
Orrenius et al. 2003). Notably,  Ca2+ is critical for neuronal 
survival and function. Specifically,  Ca2+ ions regulate neu-
ronal and synaptic activity by modulating presynaptic and 
postsynaptic events, such as neurotransmitter release and 

dendritic spine density (Berridge et al. 2003; Brini et al. 
2014; Carafoli 2003; Lyons and West 2011; Neher and Sak-
aba 2008; Zucker 1999). It is well established that  Ca2+ con-
centrations in neurons can impact important neurobiological 
processes such as learning, memory, long-term potentiation/
depression (LTP/LTD), and motor function (Artola and 
Singer 1993; Baker et al. 2008; Cassidy et al. 2013; Kawa-
moto et al. 2012; Mulkey and Malenka 1992; Salinska et al. 
2001; Simonyi et al. 2005). Most importantly, disruption of 
normal  Ca2+ cycling in the brain has been associated with 
severe neuropsychiatric disorders, including Alzheimer’s 
disease, Parkinson’s disease, dementia, bipolar disorder, 
schizophrenia, autism spectrum disorders, and intellectual 
disabilities (Bezprozvanny and Mattson 2008; Dahl 2017; 
Earls et al. 2010; Green et al. 2008; Jacobsen et al. 1999; 
LaFerla 2002).

Nerve cells have developed intricate  Ca2+ signaling 
pathways to couple the  Ca2+ signal to their biochemical 
machinery. The  Ca2+ signaling toolkit of the brain consists 
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of ion channels, exchangers, and pumps, located both in 
the cell membrane and the membranes of intracellular 
organelles. These effectors, together with  Ca2+-binding 
proteins, G-protein coupled receptors (GPCRs), and 
transcriptional networks, regulate all of the brain’s 
 Ca2+-related processes (Berridge et al. 1998, 2003; Brini 
et al. 2014; Fucile 2004; Grienberger and Konnerth 2012; 
Schwaller 2010). Notably, intracellular  Ca2+ homeostasis 
greatly relies on the rapid redistribution of  Ca2+ ions into 
the diverse subcellular organelles which serve as  Ca2+ 
stores, including the ER. It is well established that  Ca2+ 
released into the neuronal cytoplasm is pumped back into 
the ER by the sarco-/endoplasmic reticulum  Ca2+ ATPase 
2 (SERCA2) (Brini and Carafoli 2009; Burdakov et al. 
2005; Burk et al. 1989; Camacho and Lechleiter 1993; 
Clapham 1995; Higgins et al. 2006; Wuytack et al. 2002).

The role of the SERCA2 in the cardiovascular system 
has been well-characterized owing to its involvement in 
the regulation of cardiac contractility (Kranias and Haj-
jar 2012). Even though the SERCA2 is constitutively 
expressed in the nerve cells, its precise role in brain 
physiology and pathophysiology is elusive. In the current 
review we summarize current knowledge on the expression 
pattern of the different SERCA2 isoforms in the nervous 

system, and further discuss evidence of SERCA2 dysregu-
lation in various neuropsychiatric disorders.

The Main Components of the Neuronal 
 Ca2+‑Handling Toolkit

The systems of  Ca2+ homeostasis in nerve cells mainly 
involve  Ca2+ buffer proteins that serve as sensors, and a vari-
ety of  Ca2+-binding transmembrane channels (Berridge et al. 
1998, 2000; Brini et al. 2014; Grienberger and Konnerth 
2012). Due to its critical role in serving as carrier of criti-
cal information, cells must maintain low intracellular  Ca2+ 
levels, so that its concentration can be significantly altered 
without wasting valuable energy. Interestingly, cytosolic 
 Ca2+ concentrations in resting neurons are approximately 
50–100 nM, while  Ca2+ levels in firing neurons may increase 
10–1000 times (Berridge et al. 2000). Figure 1 depicts all 
the key players involved in maintaining  Ca2+ homeosta-
sis in nerve cells;  Ca2+ influx from the extracellular fluid 
(ECF) is regulated by voltage-gated  Ca2+ channels (VGCs), 
nicotinic acetylcholine receptors (nAchR), ionotropic gluta-
mate receptors (i.e., NMDA-R and AMPA-R), and transient 
receptor potential (TRP) type C channels. Notably, the ER 
is a major intracellular  Ca2+ storage and mitochondria act 

Fig. 1  Neuronal  Ca2+-handling: 
 Ca2+ influx in neurons is medi-
ated by calcium-permeable 
AMPA and NMDA glutamate 
receptors, nicotinic acetyl-
choline receptors (nAChR), 
transient receptor potential 
type C (TRPC) channels, and 
voltage-gated calcium channels 
(VGCC).  Ca2+ ions enter into 
the intracellular  Ca2+ stores 
(i.e., mitochondria and the ER) 
by the mitochondrial uniporter 
and the sarco-/endoplasmic 
reticulum calcium ATPase 
(SERCA).  Ca2+ release from 
internal stores is mediated by 
inositol trisphosphate receptors 
(IP3R) and ryanodine recep-
tors (RyR) that reside on the 
ER membrane.  Ca2+ efflux 
to the extracellular fluid is 
mediated by the sodium–cal-
cium exchanger (NCX) and 
the plasma membrane calcium 
ATPase (PMCA).  Ca2+-binding 
proteins serve as  Ca2+ ion 
sensors, buffering the cytosolic 
levels of  Ca2+; arrows show the 
direction of  Ca2+ ion movement
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as  Ca2+ buffers. The SERCA pump and the mitochondrial 
uniporter facilitate the transport of  Ca2+ across the ER and 
mitochondrial membranes, respectively. Moreover,  Ca2+ 
ions are pumped from internal stores back to the cytosol by 
the inositol trisphosphate receptors (IP3R) and ryanodine 
receptors (RyR) that reside on the ER membrane, as well as 
by the mitochondrial  Na+/Ca2+ exchanger (NCX). Finally, 
the efflux of  Ca2+ from the cytosol to the ECF is mediated by 
the plasma membrane  Ca2+ ATPase (PMCA) and the  Na+/
Ca2+ exchanger (NCX) that reside on the plasma membrane 
(Berridge et al. 1998; Brini et al. 2014; Duchen 1999; Guer-
ini 1998). Apart from transmembrane channels and  Ca2+ 
buffer proteins, the interaction between intracellular orga-
nelles is critical for  Ca2+ signaling. Indeed, mitochondria-
associated ER membranes (MAM) that physically connect 
the ER and the mitochondria play an important role in the 
exchange of inter-organelle  Ca2+ signals that regulate cell 
survival and apoptosis (Bononi et al. 2013; Csordás et al. 
2006, 2010; Hayashi et al. 2009; van Vliet et al. 2014).

Interestingly,  Ca2+ storage is one of the functions most 
commonly attributed to the smooth ER in mammalian cells. 
When  Ca2+ ions are needed, specialized ER channels release 
 Ca2+ from the lumen of the ER to the cytosol. IP3Rs are 
activated by IP3 produced by phospholipase C (PLC) upon 
G-protein–coupled receptor (GPCR) activation on the neu-
ronal membrane. On the other hand, RyRs are involved in 
 Ca2+-induced  Ca2+-release (CICR). This process occurs 
when an increase in cytosolic  Ca2+ triggers RyRs to release 
more  Ca2+ ions into the cytosol. In addition to  Ca2+ concen-
tration in the cytosol affecting RyRs, the intracellular con-
centration of  Ca2+ can also have a stimulatory or inhibitory 

effect on IP3Rs depending on the concentration of  Ca2+ ions 
(Taylor and Tovey 2010). Specifically, soon after the first 
IP3-evoked  Ca2+ release, exposure of IP3Rs to lower lev-
els of  Ca2+ further enhances their response to IP3, whereas 
higher  Ca2+ concentrations further inhibit  Ca2+ release. 
When the concentration of  Ca2+ in the cytosol needs to be 
reduced,  Ca2+ may either be transported out of the neuron 
by means of the PCMA and the NCX, or pumped back into 
the ER to store for later use. The  Ca2+ uptake into the ER 
lumen is specifically facilitated by the SERCA pump, which 
resides on the ER membrane.

SERCA2: Structure and Function

SERCAs are P-type ion-motive ATPases and transport two 
 Ca2+ ions from the cytoplasm of cells to the ER lumen per 
ATP molecule hydrolyzed (Brini and Carafoli 2009; Has-
selbach and Makinose 1961; Lee et al. 2002). The differ-
ent SERCA isoforms comprised a single polypeptide chain, 
1000 amino acids in length, and 110 kDa in weight (Dally 
et al. 2006; MacLennan 1970; MacLennan et al. 1985; Toy-
oshima and Inesi 2004). Post-translationally, the folded pro-
tein resides on the ER membrane, with its ten transmem-
brane α-helices, short luminal loops, and three cytosolic 
domains (Fig. 2). These ten transmembrane domains are 
critical for the function of the protein. Specifically, trans-
membrane domains M2, M5, M6, and M8 form the SERCA 
 Ca2+ channel, whereas transmembrane domains M4–M6 
facilitate in  Ca2+ transportation across the ER membrane 
(Guerini 1998; Zhang et al. 1998). Moreover, four of the 

Fig. 2  SERCA2 structure: 
SERCA2 is a P-type  Ca2+ 
ATPase that resides on the SR/
ER membrane, protruding into 
the cytosol. It consists of 10 
transmembrane helices (M1–
10), a cytosolic stalk domain, 
and three main domains, A, P, 
and N. The A domain is the 
actuator domain, the N domain 
is responsible for nucleotide-
binding, and the P domain 
accounts for the phosphoryla-
tion domain of the enzyme. All 
SERCA2 isoforms present a 
very well-conserved structure, 
but differ in the length of the 
C-terminal, with SERCA2b iso-
form having the most extended 
carboxyl terminal, potentially 
forming an eleventh transmem-
brane domain (M11)
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transmembrane α-helices (M2–M5) extend beyond the ER 
membrane and protrude into the cytosol, forming three cyto-
solic domains (Carafoli and Brini 2000; Toyoshima and Inesi 
2004); these domains (A, P, and N) are separated from the 
transmembrane domains, by a stalk sector. The A domain, 
or the actuator domain, is created by the cytosolic exten-
sion of the M2 and M3 domains; it includes the N-terminus, 
the Lys120, and Thr245, critical for the binding and release 
of  Ca2+ ions. The P (phosphorylation) and N (nucleotide-
binding/hinge) domains are located between the M4 and 
M5 cytosolic loop. Specifically, the P domain contains the 
Asp351 residue on which the γ-phosphate binds, forming the 
high-energy phosphorylation intermediate during the phos-
phorylation reaction cycle, whereas the N domain includes 
the nucleotide and ATP-binding sites, with three residues 
(Lys515, Lys492, and Lys684) playing an important role in 
the binding process (Brini et al. 2017; Carafoli et al. 2001; 
Møller et al. 2005; Periasamy and Kalyanasundaram 2007; 
Toyofuku et al. 1992; Toyoshima and Inesi 2004).

Despite the plethora of SERCA isoforms, the protein 
structure is highly conserved, as all proteins are derived 
by tissue-dependent alternative splicing of three genes; 
SERCA1-3 (or ATP2A1-A3 in humans), with distinct expres-
sion patterns (Brandl et al. 1986; Gunteski-Hamblin et al. 
1988; Lytton and MacLennan 1988; MacLennan et al. 1985). 
The derived protein isoforms show many similarities but 
differ in the length of their C-termini (Fig. 3) (Gunteski-
Hamblin et al. 1988; Korczak et al. 1988; Zarain-Herzberg 
et al. 1990). The alternative splicing of the SERCA1 gene 
results to the formation of SERCA1a and SERCA1b iso-
forms that are selectively expressed in mature fast-twitch 
muscle fibers and neonatal skeletal muscle fibers, respec-
tively (Brandl et al. 1987, 1986). Additionally, four SERCA2 
splice variants (SERCA2a-d) have been currently identified 
with high similarities in the 5′-end, but different C-termini 
(Brandl et al. 1986; Dally et al. 2006, 2009; Gelebart et al. 
2003; Gunteski-Hamblin et al. 1988; Lytton et al. 1989; 
Zarain-Herzberg et  al. 1990). Specifically, SERCA2a 
(997 aa; 110 kDa), a cardiac and slow-twitch muscle-specific 

protein isoform, has a short C-terminus that consists of 4 aa 
(NYLEP/AILE), whereas the SERCA2b isoform (1042 aa; 
115 kDa) which is found in smooth muscle and non-muscle 
tissues, has a longer C-terminus of 49 aa (NYLEP/GKEC-
4laa-MFWS) (Gunteski-Hamblin et al. 1988; Lytton and 
MacLennan 1988). This extended C-terminus is believed to 
penetrate the ER membrane, creating an eleventh transmem-
brane α-helix (also known as 2b-tail), altering the function 
of this isoform (Lytton et al. 1992; Verboomen et al. 1992, 
1994). The notion for the formation of the 2b-tail is sup-
ported by immunohistochemical evidence showing that the 
SERCA2a and SERCA2b C-termini lie on opposite sides of 
the ER membrane; the SERCA2a C-terminus extends into 
the cytosol, whereas the SERCA2b C-terminus protrudes 
into the ER lumen (Campbell et al. 1992). The SERCA2c 
isoform, has been recently identified and is believed to be 
expressed in monocytes and cardiac tissue. This isoform 
derives from the inclusion of a short coding sequence in 
intron 20, including an in-frame stop codon (Dally et al. 
2006, 2009; Gelebart et al. 2003). Its size is similar to the 
SERCA2a (999 aa, 110 kDa), while its C-terminal sequence 
is longer than SERCA2a by 2 amino acids (NYLEP/VLS-
SEL) (Dally et al. 2009). A fourth SERCA2 mRNA variant, 
SERCA2d, has also been characterized in skeletal muscle, 
but its protein isoform is yet to be identified (Kimura et al. 
2005). Similar to the other SERCA isoforms, the alternative 
splicing of the SERCA3 gene results in six different isoforms 
(SERCA3a-f), differing at least 36 aa residues from each 
other (Bobe et al. 1998; Poch et al. 1998).

Despite the variety of protein isoforms, it is well estab-
lished that SERCAs serve to pump  Ca2+ ions from the 
cytosol into the ER lumen, a process that reduces the cyto-
solic  Ca2+ concentrations, and replenishes ER  Ca2+ stores. 
Throughout a cycle of conformational alternations between 
a high-Ca2+-affinity (E1) state and a low-Ca2+-affinity (E2) 
state, two  Ca2+ ions cross the ER membrane from the cytosol 
into the ER lumen, against their concentration gradient and 
at the expense of ATP (Brini and Carafoli 2009; Dode et al. 
2003; Hao et al. 1994; Hasselbach and Makinose 1961; Lee 

Fig. 3  The primary structure of the carboxyl termini of the SERCA2a-d isoforms: The structure of the SERCA2 isoforms is highly conserved 
but their carboxyl termini differ (3′-end). Slashes mark the splice sites
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et al. 2002; Periasamy and Kalyanasundaram 2007; Salvador 
et al. 1998; Vandecaetsbeek et al. 2009; Yu et al. 1993). In its 
native E1 state, SERCA binds  Ca2+ ions on its cytoplasmic 
high-affinity sites. Once the  Ca2+-binding sites are occupied, 
ATP-binding and hydrolysis are triggered, phosphorylating 
SERCA. The phosphorylation of the enzyme subsequently 
alters the conformation of the transmembrane α-helices 
(E2 state) leading to the release of the two  Ca2+ ions in 
the ER lumen. Once the  Ca2+ ion transport is completed, 
the pump is dephosphorylated, and returns to the E1 state 
(Carafoli and Brini 2000; Møller et al. 2005; Olesen et al. 
2004; Periasamy and Kalyanasundaram 2007; Vandecaets-
beek et al. 2009). SERCA’s apparent affinity for  Ca2+ ions 
may be affected by several factors, including alterations in 
cellular  Ca2+ ion concentrations and pH, as well as internal 
mutations in the SERCA  genes (Lee et al. 2002; Periasamy 
and Kalyanasundaram 2007; Vandecaetsbeek et al. 2009; Yu 
et al. 1993). Notably, functional studies have indicated that 
SERCA1a and SERCA2a isoforms show similar affinities for 
 Ca2+, as well as similar catalytic turnover rates, while SER-
CA2b presents two times the affinity for  Ca2+ and half the 
turnover rate, as compared to the SERCA2a isoform (Lyt-
ton et al. 1992; Verboomen et al. 1994). It is thought that 
SERCA2c could perform in a local  Ca2+-rich environment 
because SERCA2c presents the lowest affinity for  Ca2+ out 
of the three SERCA2 isoforms (Dally et al. 2006). Last but 
not least, the different SERCA3 isoforms have similar affini-
ties for  Ca2+ (Bobe et al. 2004; Martin et al. 2002). However, 
SERCA3a presents a similar turnover rate when compared to 
the SERCA2b isoform, whereas both SERCA3b and SER-
CA3c possess a higher turnover rate. However, all SERCA3 
isoforms have a lower affinity for  Ca2+ compared to SER-
CA2b (Dode et al. 1998).

SERCA2 Expression Pattern in the CNS

Currently, the expression of at least ten distinct SERCA iso-
forms has been identified in mammalian cells (Baba-Aissa 
et al. 1998; Periasamy and Kalyanasundaram 2007). As dis-
cussed above, the vertebrate SERCA isoforms are encoded 
by alternatively spliced transcripts of the SERCA1-3 genes 
(Brandl et al. 1986; Gunteski-Hamblin et al. 1988; Lytton 
and MacLennan 1988; MacLennan et al. 1985). Despite the 
differences in these three genes, all of them have been largely 
conserved with none being more than 30% different than the 
others (Periasamy and Kalyanasundaram 2007). Notably, the 
SERCA2 is the isoform that is predominately expressed in 
the CNS (Gunteski-Hamblin et al. 1988). In fact, SERCA2 
mRNA expression has been detected with in situ hybridi-
zation in Purkinje neurons of the cerebellum, followed by 
expression in the thalamus, the cortex, the pontine nuclei, 
and the mitral cells of the olfactory bulbs (Miller et al. 

1991). Additionally, subsequent immunoblotting studies in 
the pig cerebellum have confirmed that SERCA2 resides in 
the Purkinje cells, the granule cells, and the cerebellar glo-
meruli (Sepulveda et al. 2004), while SERCA1 and SERCA3 
expression is confined to the cerebellar Purkinje neurons 
(Baba-Aissa et al. 1996; Wu et al. 1995).

Interestingly, the expression pattern of the three SERCA2 
isoforms in excitable tissues is quite divergent. SERCA2a 
is strongly expressed in cardiac and slow skeletal muscle 
fibers, while it is moderately expressed in smooth muscle 
cells; SERCA2a expression in the brain is weak and con-
fined in the cerebellar Purkinje neurons and the granular cell 
layer, as well as in the giant cells of the reticular formation 
in the brainstem (Baba-Aissa et al. 1996; Campbell et al. 
1993; Plessers et al. 1991). On the other hand, SERCA2b 
is ubiquitously expressed in all cell types, including neu-
rons, cardiac muscle fibers, slow skeletal muscle fibers, and 
smooth muscle cells (Gunteski-Hamblin et al. 1988; Lytton 
and MacLennan 1988). Furthermore, SERCA2b is the only 
SERCA isoform expressed in astrocytes, as shown by recent 
immunoblotting data using astrocytes isolated from the rat 
cerebral cortex (Morita and Kudo 2010). Subsequently, the 
universal expression of the SERCA2b in mammalian cells 
has led to the consideration of this SERCA isoform as an ER 
housekeeping protein (Burk et al. 1989; Lytton and MacLen-
nan 1988; Lytton et al. 1989). Last but not least, recent 
immunoblotting data suggest that the SERCA2c isoform 
is also expressed at low levels in the brain, but it is more 
widely expressed in epithelial, mesenchymal, and hemat-
opoietic cells (Dally et al. 2006, 2010; Gelebart et al. 2003).

Remarkably, earlier immunoblotting and sequence analy-
sis studies have identified ubiquitous SERCA2b mRNA and 
protein expression in both the cerebrum and the cerebellum 
of the vertebrate brain (Burk et al. 1989; Miller et al. 1991; 
Plessers et al. 1991). Indeed, immunohistochemical and 
functional studies have confirmed the global expression of 
SERCA2b protein in the vertebrate brain (Baba-Aissa et al. 
1996; Campbell et al. 1993; Salvador et al. 2001; Sepulveda 
et al. 2004). Interestingly, Campbell et al. (1993) reported 
that SERCA2a and SERCA2b are co-expressed in both cer-
ebellar Purkinje cells and cerebral nuclei, but in different 
ratios, leading to the hypothesis that different brain regions 
have specific requirements for each of the two SERCA2 
isoforms (Campbell et al. 1993). Further immunoblotting 
and in situ hybridization studies conducted by Baba-Aissa 
et al. (1996) revealed that the highest levels of SERCA2b 
were expressed in the Purkinje neurons, followed by the hip-
pocampal pyramidal cells and the cerebral cortical layers 
II–V. More recent studies by Salvador et al. (2001) further 
confirmed the universal expression of SERCA2b in subcel-
lular fractions (i.e., microsomes, synaptosomes, and synap-
tic plasma membrane vesicles) derived from the pig brain. 
Indeed, SERCA2b expression was identified in all three 
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fractions, but no other isoform was expressed whatsoever. 
Moreover, the distribution of SERCA2b isoform differed 
among the fractions, with the microsomes having the highest 
concentration of SERCA2b, followed by the synaptosomes 
and the synaptic plasma membrane vesicles (Salvador et al. 
2001). Further studies confirmed the universal expression 
of SERCA2b in the pig cerebellum, with the highest levels 
found in the soma, the trunk, and the proximal dendritic 
branches of Purkinje neurons, as well as in the glomeruli of 
the cerebellar granule layer (Sepulveda et al. 2004). Notably, 
the weakest expression of SERCA2b was detected in the 
hypothalamus and the substantia nigra. (Baba-Aissa et al. 
1996, 1998). However, recent immunocytochemical stud-
ies using a pan-antibody that recognizes both the SERCA2a 
and SERCA2b isoforms revealed that the SERCA2 protein 
is indeed present in the somata and dendrites of dopamin-
ergic neurons in the substantia nigra pars compacta, sug-
gesting its involvement in somatodendritic dopamine (DA) 
release (Patel et al. 2009). Taken together, these expression 
data indicate that the SERCA2b is ubiquitously expressed 
in nerve cells throughout the brain, whereas SERCA2a is 
found almost exclusively in cerebellum (Verkhratsky 2005).

A Role for the SERCA2 
in the Pathophysiology of Neuropsychiatric 
Disorders?

Disruption of the  Ca2+ homeostasis in the brain leads to 
a variety of neuropsychiatric and neurodegenerative dis-
orders. Given the prominent role of the SERCA2 pump 
in regulating the  Ca2+ availability in the neuronal cytosol 
(MacLennan et al. 1985; Pozzan et al. 1994), perturbed func-
tion of this gene may result in aberrations in intracellular 
 Ca2+-dependent molecular cascades (Berridge et al. 1998). 
Indeed, SERCA2-dependent  Ca2+ dysregulation has been 
implicated in the pathophysiology of several disorders that 
affect cognitive function, including Darier’s disease (DD), 
Schizophrenia, Alzheimer’s disease (AD), and cerebral 
ischemia.

Darier’s Disease (DD)

DD, also known as keratosis follicularis, is an autosomal 
dominant skin disorder characterized by warty papules and 
keratotic plaques (Burge and Wilkinson 1992). DD shows 
almost complete penetrance and it affects between 1 in 
36,000 and 1 in 100,000 individuals worldwide (Ringpfeil 
et al. 2001). The onset of the disease usually occurs within 
the second decade of life (Burge and Wilkinson 1992). The 
majority of DD cases present with mutations in the ATP2A2 
(i.e., SERCA2) gene on chromosome 12q23-24.1. Indeed, 
a variety of altered-splicing, missense, nonsense, and 

frameshift ATP2A2 mutations have been described through-
out the years. Notably, several neuropsychiatric disorders 
appear to be more prevalent among DD patients, including: 
schizophrenia, bipolar disorder (BD), epilepsy, mild mental 
retardation, affective psychosis, major depression disorder 
(MDD) (Cheour et al. 2009; Gordon-Smith et al. 2010; Jones 
et al. 2002; Wang et al. 2002). Interestingly, a population-
based study recently reported that DD patients are four times 
more likely to suffer from BD and two times more likely to 
develop schizophrenia, as compared to the general popula-
tion (Cederlöf et al. 2015). Indeed, an early study by Jacob-
sen et al. (1999) revealed 17 ATP2A2 mutations in affected 
individuals, all of which were correlated with neuropsychi-
atric disorders. Remarkably, mutations on the ATP-binding 
domain of the SERCA2 pump were correlated with BD and 
dysthymia (Jacobsen et al. 1999). Additionally, frameshift 
and missense mutations on the hinge domain were related 
to MDD and BD, whereas mutations on the transmembrane 
helices were linked to epilepsy, MDD, and mental retarda-
tion (Jacobsen et al. 1999). A later study by Ringpfeil et al. 
(2001) identified 14 additional heterozygous mutations in 
the ATPA2 gene among DD patients. Notably all of these 
mutations were located in highly conserved regions amid 
all SERCA pumps of various species (MacLennan et al. 
1985), indicating their functional importance; most of the 
mutations identified were missense and affected the stalk, 
phosphorylation, hinge or transduction domains, as well as 
the transmembrane M6/M7 helices loop. Interestingly, it 
was also observed that the severity of symptoms was asso-
ciated with the type of mutation; in-frame deletions in the 
stalk domain and a missense mutation in the transduction 
domain resulted to the most severe DD cases, character-
ized by concurrent mental disorders and vegetative growth. 
According to the study, depressive phenotypes were identi-
fied in patients carrying four distinct missense mutations 
in the transduction and phosphorylation domains, as well 
as the M7 helix and two in-frame deletions in the S1 helix. 
Moreover, schizophrenia and epilepsy were observed in indi-
viduals carrying a missense mutation in the phosphorylation 
domain (Ringpfeil et al. 2001). Additional case reports have 
confirmed that missense mutations in the stalk domain of 
SERCA2 are associated with schizophrenic symptoms in 
DD patients (Takeichi et al. 2016). In the same year, Naka-
mura et al. (2016) identified a heterozygous altered-splicing 
mutation in the acceptor site of SERCA2 associated with 
BD in a DD patient (Nakamura et al. 2016). Another study 
conducted by Noda et al. (2016) indicated that ATPA2 muta-
tions are causally related to psychosis observed in schizo-
phrenia and BD in DD patients; a significantly higher num-
ber of likely gene-disrupting mutations was reported in DD 
patients with comorbid psychosis than without (Noda et al. 
2016). Most importantly, a major genome-wide associa-
tion study (GWAS) array conducted in 2014, confirmed the 
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association between schizophrenia and ATPA2, further sup-
porting the notion that the psychosis observed in individuals 
affected with DD is the aftermath of the pleiotropic effect 
of ATPA2 mutations (Schizophrenia_Working_Group_of_
the_Psychiatric_Genomics-Consortium 2014). Notably the 
co-occurrence of skin lesions with debilitating neuropsychi-
atric symptoms in DD patients possibly reflects the pleio-
tropic functions of SERCA2 in the skin and the brain, two 
ectoderm-derived organs.

Schizophrenia and the 22q11 Deletion Syndrome

Schizophrenia is a debilitating heterogeneous neuropsy-
chiatric disorder that affects approximately 1% of the 
general population. The most common schizophrenia-
related microdeletion, known as 22q11 deletion syndrome 
(22q11DS) or DiGeorge syndrome, has an incidence of 
1/4000–1/6000 live births (Bassett et al. 2011; Botto et al. 
2003; Chow et al. 2006; Oskarsdottir et al. 2004; Pulver 
et al. 1994). The majority of this multigene deletion syn-
drome cases are attributed to de novo microdeletions on 
the 22q11.21–22q11.23 chromosomal region (McDonald-
McGinn et al. 2001; Scambler 2000; Schreiner et al. 2013), 
leading to haploinsufficiency of multiple genes (Devaraju 
et al. 2017; Ellegood et al. 2014; Karpinski et al. 2014; 
Mukai et al. 2015; Papangeli and Scambler 2013; Scambler 
2000; Shi and Wang 2018; Yagi et al. 2003). Children with 
22q11DS present with mild to moderate cognitive defects 
and learning disabilities, and the cognitive functions fur-
ther deteriorate with aging (Bearden et al. 2001; Eliez et al. 
2000; Gothelf et al. 2007; Rauch et al. 2006; Swillen et al. 
2000). It is well established that 22q11DS accounts for 1% 
of all schizophrenia cases, while 25% of 22q11DS patients 
develop schizophrenia or a psychosis-related disorder by 
adulthood (Bassett and Chow 2008; Fung et al. 2010; Green 
et al. 2009; Jonas et al. 2014; Karayiorgou et al. 2010; Sch-
neider et al. 2014). Moreover, growing evidence suggests 
that 22q11DS- and non-deleted (ND)-psychosis are compa-
rable, presenting with similar age-onset, prevalence, symp-
tomatology, global functioning, and comorbidity (Bassett 
et al. 2003; Tang et al. 2017).

Intriguingly, preclinical and clinical data suggest a role 
for SERCA2 in the generation of cognitive symptoms in 
schizophrenia. A mouse model of schizophrenia-predispos-
ing 22q11DS, the Df(16)1/+ mouse, was reported to present 
marked deficits in hippocampus-dependent spatial memory, 
assessed in the Morris Water Maze, that were accompanied 
by enhanced LTP at the Schaffer collateral CA3–CA1 hip-
pocampal synapses (Earls et al. 2010). These neurobehav-
ioral alterations were attributed to alterations in presynaptic 
glutamate release that were brought about by an increase 
in presynaptic SERCA2 expression, altering  Ca2+ kinet-
ics in the axon terminals (Earls et al. 2010). Alterations of 

SERCA2 levels were not confined to the hippocampus; both 
the cortex and cerebellum were also found to express greater 
levels of SERCA2 in Df(16)1/+ mice (Earls et al. 2012). 
Notably, SERCA2 levels were unaltered in non-neuronal 
tissues (e.g., liver), indicating that the reported elevations 
of SERCA2 protein levels are brain-specific. Interestingly, 
in a follow-up study the same group reported that SERCA2 
upregulation in the brain of Df(16)1/+ mice was due to loss 
of two microRNAs (i.e., miR-25 and miR-185) that main-
tain normal synaptic SERCA2 levels (Earls et al. 2012). 
Upon depletion of miR-25 and miR-185, SERCA2 rises 
to abnormal levels, resulting in aberrations of presynaptic 
 Ca2+ turnover, and high levels of glutamate release during 
the sustained neuronal activity that is required for induc-
tion of LTP at excitatory synapses (Earls and Zakharenko 
2014). Most importantly, increased levels of SERCA2 have 
also been observed in the hippocampus and the prefrontal 
cortex of schizophrenic patients post-mortem, strongly sup-
porting the notion that deregulation of SERCA2 function in 
neural circuits implicated in the regulation of cognition may 
affect neuronal synaptic  Ca2+ dynamics and lead to cognitive 
deficits observed in schizophrenia and other neuropsychiat-
ric disorders (Earls et al. 2012).

Alzheimer’s Disease (AD)

AD is the most prevalent neurodegenerative disorder com-
prising approximately 60–70% of all dementia cases (Reitz 
et al. 2011). Clinically, AD is characterized by detrimental 
neuronal and synaptic loss and subsequent progressive loss 
of cognitive functions. Most cases of AD are not heredi-
tary; however, a small number of early-onset cases appear to 
have a very strong genetic component. Most of these cases 
are attributed to mutations in the presenilin (PS1 and PS2) 
genes. Presenilin is involved in the proteolytic cleavage of 
the transmembrane amyloid precursor protein (APP) and the 
formation of toxic amyloid beta (Aβ) peptides that accumu-
late in the extracellular space to form the amyloid plaques, a 
neurobiological hallmark of AD. Under physiological condi-
tions, PS1 and PS2 are highly conserved integral membra-
nous proteins that mainly localize to the ER. Mutations in 
these genes have been detected in early-onset familial AD 
cases, affecting proper APP cleavage to form Aβ peptides, 
and overfilling the ER causing elevation of intracellular 
 Ca2+ signals and attenuated capacitative  Ca2+ entry (LaFerla 
2002; Leissring et al. 2000; Lopez et al. 2008; Supnet et al. 
2006; Bezprozvanny and Mattson 2008; Bojarski et al. 2008; 
Campion et al. 1995). Interestingly, ER overfilling is the 
first clinical indication of presenilin mutations, an event that 
could be attributed either to overactivation of SERCA or 
attenuation of  Ca2+ leakage, leading to elevated secretion 
of Aβ (Cheung et al. 2008; Green et al. 2008; Green and 
LaFerla 2008; Tu et al. 2006).
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As suggested in recent excellent reviews, the intricate 
interplay between  Ca2+ signaling, amyloid metabolism, 
synaptic transmission, and plasticity, may contribute to the 
 Ca2+ dyshomeostasis observed in AD (Corona et al. 2011; 
Woods and Padmanabhan 2012). This complex interac-
tion is believed to cause major remodeling of the neuronal 
 Ca2+ network, leading to neuronal cell death and cognitive 
decline (Khachaturian 1989; LaFerla 2002; Shankar et al. 
2007; Thibault et al. 2007). Indeed, growing evidence sug-
gests an intricate interaction between  Ca2+, APP, and Aβ in 
attuning synaptic transmission and plasticity (Cirrito et al. 
2003; Kamenetz et al. 2003). Furthermore, it is suggested 
that pathologically increased Aβ synaptic levels may impair 
hippocampal synaptic transmission (Abramov et al. 2009). 
Increased intraneuronal  Ca2+ levels have also been associ-
ated with the hyperphosphorylation of TAU and neuronal 
death (LaFerla 2002). As PS mutations account for approxi-
mately 90% of all AD-causative mutations, their effect on 
SERCA-dependent ER-Ca2+ dynamics has been investigated 
in several studies. In vitro experiments in murine fibroblasts 
and human neuroblastoma cell lines suggest that the PS1 
holoprotein may form a complex with the SERCA2 chan-
nel, and thus participate in the regulation of intracellular 
 Ca2+ homeostasis (Jin et al. 2010). Indeed, studies in both 
mammalian cell lines and Xenopus laevis oocytes showed 
that presenilins physically associate with SERCA2 and are 
required for proper functioning of SERCA2 activity (Green 
et al. 2008). On the other hand, SERCA2 was also found to 
modulate Aβ peptide formation, as part of APP processing 
occurs in the ER; SERCA2b overexpression in CHO cells 
resulted in an increase in Aβ40 levels, whereas genetic and/or 
pharmacological ablation of SERCA2b induced a significant 
decrease in both Aβ40 and Aβ42 levels (Green et al. 2008). 
Additional in vitro studies in which familial AD-associated 
PS2 mutations were introduced in human neuroblastoma 
cells (SH-SY5Y), embryonic cells (HEK293), HeLa cells, 
and fibroblasts, resulted in reduced SERCA2b activity and 
a subsequent partial depletion of intracellular  Ca2+ stores, 
confirming the critical role of presenilins on SERCA activity 
(Brunello et al. 2009; Zatti et al. 2004). SERCA2 activity 
is also believed to be regulated by the  Ca2+ homeostasis 
modulator 1 (CALHM1), an abundant ER membrane pro-
tein. Polymorphisms in CALHM1 have been associated with 
sporadic AD cases, by increasing Aβ40 and Aβ42 protein 
levels (Dreses-Werringloer et al. 2008). Intriguingly, it was 
also recently shown that CALHM1 induces ER stress by 
decreasing the affinity of the SERCA2 pump for  Ca2+, fur-
ther supporting that aberrations in SERCA2 function drive 
 Ca2+ dyshomeostasis and subsequent neuronal death in AD 
(Gallego-Sandin et al. 2011). A recent pull-down assay in 
human post-mortem brains identified SERCA2 as an APP 
family (FE65)-binding protein, suggesting that the interplay 
between FE65 and SERCA2 may affect  Ca2+ homeostasis in 

the human brain leading to AD (Nensa et al. 2014). Nensa 
et al. (2014) further indicated the interaction between the two 
proteins with co-immunoprecipitation assays using HEK293 
cells. In addition, they observed elevated SERCA2 protein 
levels in primary hippocampal neurons of FE65/FE65-
like double knockout mice, while knock-down of FE65 in 
HEK293 cells resulted to increased sensitivity to a specific 
SERCA inhibitor, thapsigargin. The suggested mechanism 
of action according to this study is that upon APP cleav-
age by presenilins, the increased levels of free APP intra-
cellular domains (AICD) may result to either binding onto 
FE65 or changing the FE65 conformation. Subsequently, the 
AICD/FE65 complex may interact with SERCA2, regulating 
SERCA2 activity and therefore  Ca2+ homeostasis (Nensa 
et al. 2014). To the best of our knowledge, currently there are 
not known SERCA2 mutations associated with AD. How-
ever, SERCA2 has been shown to physically interact and/
or indirectly regulate key molecular players involved in AD 
pathogenesis (i.e., PS1/2, APP, TAU). Given that AD may 
involve a chronic deregulation of  Ca2+ homeostasis, gaining 
insights into the role of SERCA2 in the pathophysiology 
of AD could ultimately lead to the development of novel 
pharmacotherapeutic approaches aimed at restoring aber-
rant SERCA2 function and intracellular  Ca2+ levels in an 
effort to combat the development and the progression of this 
devastating disorder.

Cerebral Ischemia and Alcoholism

Cerebral ischemia is characterized by the temporary or per-
manent restriction of the blood supply to brain tissue, lead-
ing to oxygen and glucose deprivation. In the aftermath, 
functional and structural damage is caused in different brain 
regions leading to what is known as stroke. Ischemic stroke 
is a major cause of morbidity and mortality within adults 
worldwide (Donnan et al. 2008). The most susceptible brain 
region to ischemic damage is the hippocampus, with CA1 
being more vulnerable and CA3 being the least vulner-
able (Kirino 2000). Notably a transient ischemic insult was 
reported to decrease SERCA2b mRNA levels in the hip-
pocampal CA1 region of the gerbil brain (Xia et al. 1998). 
On the other hand, a recent study indicated that SERCA2b 
is upregulated in the CA3 neurons of the hippocampus 
by a hypoxia-inducible transcription factor (HIF-1α), as a 
neuroprotective endogenous mechanism for restoring  Ca2+ 
homeostasis after an ischemic event (Kopach et al. 2016). 
Further studies using an in vitro model of cerebral ischemia 
(Cao et al. 2016), revealed that cerebral ischemia–reper-
fusion injury increased apoptotic rates and significantly 
enhanced the cytosolic  Ca2+ concentrations at rest, with a 
concomitant decrease in the expression of SERCA2 (Wang 
et al. 2017). These data suggested that the inhibition of 
SERCA2 could induce the accumulation of  Ca2+ in the 
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cytosol and subsequently enhance apoptosis, supporting 
the tight SERCA-dependent regulation of intracellular  Ca2+ 
flow at the early stage of apoptosis, and marking SERCA2 as 
a potential target for the development of future therapeutic 
approaches against ischemic stroke.

As cerebral ischemia and alcoholism have been linked 
throughout the years, the effects of chronic ethanol con-
sumption to SERCA2b levels in the brain have also been 
studied. It has been established that both the hippocampus 
and the cerebellum are sensitive to ethanol, demonstrating 
neuronal cell dysfunction after chronic ethanol administra-
tion (Walker et al. 1980, 1981). Interestingly, even though 
the CA1 region of the hippocampus is sensitive to both eth-
anol and ischemia, chronic ethanol administration has no 
effect on the hippocampal SERCA2b mRNA levels (Coyle 
1978; Goldman et  al. 1973; Xia et  al. 1998). However, 
chronic ethanol administration has been reported to cause a 
significant decrease in SERCA2b mRNA levels in the cer-
ebellar Purkinje neurons and granular cell layer, as well as 
decreases in SERCA2b densities within the dendritic arbor 
of Purkinje neurons (Cassidy et al. 2013; Xia et al. 1998). 
Indeed, chronic ethanol administration (40 weeks) in rats 
was found to cause dilation of the smooth endoplasmic retic-
ulum (SER) in the dendrites of cerebellar Purkinje neurons 
(PN) accompanied by decreased SERCA2b levels that possi-
bly underlies ethanol-induced decreases in the total number 
of dendritic PN synapses and cerebellum-dependent balance 
deficits (Cassidy et al. 2013; Dlugos 2006a, b, 2008).

As SERCA2b is ubiquitously expressed in the brain, and 
predominately expressed in the Purkinje neurons, it is pos-
sible that  Ca2+-mediated neuroprotection and ischemia may 
be associated with alterations in SERCA2b expression and 
function. To support this notion, studies have revealed that 
alcohol abuse may alter  Ca2+ homeostasis, resulting to ER 
stress, caused by the overloading or depletion of  Ca2+ in the 
ER (Dlugos 2015; Garthwaite et al. 1992; Lovinger 1993; 
Nagy 2000; Paschen 2003). Interestingly, as extensively 
conversed by Dlugos (2015), the mechanism underlying 
ethanol-induced decrease in the PN dendritic synapses could 
include the elevation of dendritic resting  Ca2+ levels caused 
by the ethanol-induced decreased SERCA2b expression. The 
decline in the  Ca2+ levels of the SER would then deregulate 
 Ca2+ homeostasis, inducing ER stress and subsequent for-
mation of degenerating bodies in the dendrites. Ultimately, 
SER would collapse leading to the deletion of the terminal 
segment at the dendritic branch point (Dlugos 2015).

Conclusions

Ca2+ is a crucial component of neuronal cell function and 
survival. Apart from regulating the electrophysiological 
properties of the neurons, it also serves as a prominent 

second messenger, regulating a constellation of intracel-
lular molecular cascades. Furthermore, SERCA2 isoforms 
are major molecular players involved in maintaining intra-
cellular  Ca2+ balance in the brain. Even though only DD 
has been directly linked with SERCA2 mutations, other 
brain disorders present with  Ca2+ dyshomeostasis due to 
alterations in SERCA2 expression and/or function, includ-
ing Alzheimer’s disease, schizophrenia, and cerebral 
ischemia. Despite the fact that the SERCA2 expression 
pattern in the CNS was established more than two decades 
ago, the regulatory mechanisms that govern neuronal SER-
CA2b function have not been characterized. To the best of 
our knowledge, this is the first literature review that spe-
cifically highlights the important role of the SERCA2 in 
regulating  Ca2+ homeostasis in the CNS. Future research 
should specifically address how SERCA2 expression and/
or function is altered in different brain disorders, as well 
as which SERCA2-dependent  Ca2+-regulatory pathways 
operate in the different neural circuits. Overall, advancing 
knowledge on the role that SERCA2 plays in maintain-
ing neuronal  Ca2+ homeostasis may ultimately lead to the 
development of safer and more effective pharmacothera-
pies to combat debilitating neuropsychiatric disorders.
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