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Abstract Down’s syndrome (DS; also known as trisomy

21; T21) is caused by a triplication of all or part of human

chromosome 21 (chr21). DS is the most common genetic

cause of intellectual disability attributable to a naturally-

occurring imbalance in gene dosage. DS incurs huge

medical, healthcare, and socioeconomic costs, and there

are as yet no effective treatments for this incapacitating

human neurogenetic disorder. There is a remarkably wide

variability in the ‘phenotypic spectrum’ associated with

DS; the progression of symptoms and the age of DS onset

fluctuate, and there is further variability in the biophysical

nature of the chr21 duplication. Besides the cognitive

disruptions and dementia in DS patients other serious

health problems such as atherosclerosis, altered lipogene-

sis, Alzheimer’s disease, amyotrophic lateral sclerosis (Lou

Gehrig’s disease), autoimmune disease, various cancers

including lymphoma, leukemia, glioma and glioblastoma,

status epilepticus, congenital heart disease, hypotonia,

manic depression, prostate cancer, Usher syndrome, motor

disorders, Hirschsprung disease, and various physical

anomalies such as early aging occur at elevated frequen-

cies, and all are part of the DS ‘phenotypic spectrum.’ This

communication will review the genetic link between these

fore-mentioned diseases and a small group of just five

stress-associated microRNAs (miRNAs)—that include let-

7c, miRNA-99a, miRNA-125b, miRNA-155, and miRNA-

802—encoded and clustered on the long arm of human

chr21 and spanning the chr21q21.1-chr21q21.3 region.
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Introduction

Linking the chr21 gene dosage imbalance in Down’s syn-

drome (DS) with the considerable variability of the DS

phenotype has been an elusive goal in the study of trisomy

21 (T21) activity, function, genetics, and epigenetics

(Hattori et al. 2000; Antonarakis 2017; Castro et al. 2017;

Max Plank Institute 2017; NCBI 2017; Vega Genome

Browser 54: Homo sapiens 2017). Interestingly, a single

copy gene encoding the 770 amino acid beta amyloid

precursor protein, the precursor to the 42 amino acid

amyloid beta (Ab42) peptide that accumulates in both

familial and sporadic Alzheimer’s disease (AD) and DS

brains is encoded at chr21q21.3; virtually all DS patients

exhibit AD-type pathological change as they age, including

progressive Ab42 peptide accumulation (Castro et al.

2017a; Hithersay et al. 2017). Evidence associating a

specific gene or chr21 domain to a particular phenotype has
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been restricted and relatively limited in chr21 genomic

studies (Hattori et al. 2000; Antonarakis 2017; Castro et al.

2017; Hithersay et al. 2017). Another understudied and

perhaps underappreciated area of T21 gene triplication are

the potential contribution of chr21-encoded micro RNAs

(miRNAs), their DS-associated increase in abundance

(because of the extra chr21 copy—a gene dosage effect),

and their enormous potential to shape and regulate the DS

transcriptome, and hence alter both pathogenic and global

gene expression patterns (Hattori et al. 2000; Li et al. 2012;

Ghorai and Ghosh 2014; Hithersay et al. 2017).

miRNAs represent a novel and intriguing group of

endogenous small non-protein-coding RNAs (sncRNAs)

that are evolutionarily conserved and widely distributed

amongst all species so far studied in both the plant and

animal kingdoms (Guo et al. 2010; Eichhorn et al. 2014;

Hruska-Plochan et al. 2015; Zhao et al. 2015a, b; Hill and

Lukiw 2016; Liu et al. 2017). Interestingly, a single

miRNA can regulate multiple target genes dispersed

throughout all somatic chromosomes, indicating that

miRNAs may regulate multiple signaling pathways and

participate in numerous physiological and pathological

processes. The major mode of action of these sncRNAs is

to interact, via base-pair complementarity, with the 30-un-

translated region of their target messenger RNAs

(mRNAs), and in doing so decrease the expression of that

particular target mRNA, and hence act as negative regu-

lators of target gene expression. Ribosome profiling and

RNA sequencing have shown that up-regulated miRNAs

act predominantly to decrease their target mRNA levels,

and miRNA-mediated destabilization of mRNAs is the

main reason for the observed reductions in gene expression

that are characteristic of both AD and DS brains (Guo et al.

2010; Codocedo et al. 2016; Liu et al. 2017).

Consisting of 48 million base pairs (Mbps) and repre-

senting *1.5% of total cellular DNA, chr21 contains a

relatively low number of identified genes (*225), for

example, compared with the 545 genes reported for the 49

Mbp chromosome 22 (chr22; Hattori et al. 2000). Equally

under-represented is the small number of just five miRNAs

encoded and clustered around the long arm of chr21

spanning the chr21q21.1-chr21q21.3 region (compared to

the *46 miRNAs encoded on chr22; Dunham et al. 1999;

‘‘Vega Genome Browser 54: Homo sapiens 2017; http://

atlasgeneticsoncology.org/Indexbychrom/idxg_22.html).

Chr21 encoded miRNAs include let-7c, miRNA-99a,

miRNA-125b, miRNA-155, and miRNA-802. Together

specific members of this small miRNA family (i) have been

found to be readily detectable in control brains and sig-

nificantly up-regulated in both AD and DS brains (Zhao

et al. 2015a, b; Hill and Lukiw 2016), (ii) are observed to

be up-regulated more than gene-dosage effects alone would

predict (Li et al. 2012), (iii) includes a subset of miRNAs

including miRNA-99a, miRNA-125b, and miRNA-155

that are inducible and under NF-kB regulatory control

(Lukiw 2007, 2012; Prasad 2017; unpublished observa-

tions), and (iv) are known to down-regulate the expression

of key innate-immune regulatory and anti-inflammatory

genes in AD and/or DS (Pogue et al. 2010; Lukiw et al.

2012; Maciotta et al. 2013; Hill et al. 2015; Hill and Lukiw

2016; Nadim et al. 2017). For example, gene dosage

mediated increases in the chr21-encoded miRNA-155 have

been shown in part to down-regulate the expression of

complement factor H, an important soluble, innate-immune

regulatory glycoprotein in AD and DS tissues and in pri-

mary brain cell models of AD, and be centrally involved in

pathogenic signaling pathways that include inflammatory

neurodegeneration (Li et al. 2012; Lukiw 2012; Zhao et al.

2015a, b; Hill and Lukiw 2016).

Concluding Remarks

As research into the molecular-genetics of DS (T21) pro-

gresses, more and more neurological (and non-neurologi-

cal) diseases have been shown to be significantly linked to

the T21 phenotype. This ‘Short Communications’ paper

provides four novel findings hitherto unrecognized or

undocumented in the research field involving the molecu-

lar-genetics of T21: (i) for the first time we point out that

the five miRNAs encoded on the extra copy of chromo-

some 21 in DS have potential to regulate the expression of

over 3600 genes (see Table 1 and text), (ii) largely due to

the containment of five miRNAs encoded on chromosome

21, and the fact that DS is the most common genetic cause

of intellectual disability attributable to a naturally occur-

ring imbalance in gene dosage; this communication pro-

vides the first example of what was classically considered a

neurological-developmental-dementing disorder as also a

serious contributor to the development of disease in other

major organ systems including the heart, lung, blood,

bladder, prostate, thyroid and circulatory system, GI tract,

as well as predisposition to many types of cancer, (iii) for

the first time we point out the hitherto unappreciated reg-

ulatory potential of chromosome 21 in the development of

a very broad clinical spectrum of potentially fatal human

disease, and (iv) that further study and analysis of these

chr21-encoded miRNAs, their mRNA interactions and

induction of pathogenic biological pathways provides a

greatly expanded list of potential therapeutic targets which

would ultimately define the basis for more effective treat-

ments in the clinical management of secondary maladies

associated with development of chr21-linked disease.

Perhaps most importantly, miRNA–mRNA integration

mapping, in depth RNA sequence analysis using comple-

mentarity algorithms and bioinformatics evaluation
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Table 1 miRNAs encoded on human chr 21, location, Genbank accession, function/disease association, and references

micro

RNA

Chromosomal

location/Genbank

sequence

Number of

potential

mRNA

targets*

Function/disease association References

let-7c chr21q21.1/

NR_029480

*700 Tumor suppressor/arsenite-induced, gastric,

lung and colorectal cancers; Moyamoya

disease

Lee and Dutta (2007), Lukiw (2007), Sethi

and Lukiw (2009), Wang et al. (2013),

Cappuzzo et al. (2014), Crowley et al.

(2014), Jiang et al. (2014), Zhang et al.

(2015), Zhao et al. (2015a, b) and Regazzo

et al. (2016); http://www.genecards.org/cgi-

bin/carddisp.pl?gene=

MIRLET7C&keywords=mir-let7c

miRNA-

99a

chr21q21.1/

NR_029514.1

*665 Lung cancer, multiple myeloma, head and

neck squamous cell carcinoma, anaplastic

thyroid and prostate cancer

Feng et al. (2015), Hou et al. (2015), Huang

et al. (2015), Wu et al. (2015), Yu et al.

(2015) and Regazzo et al. (2016); http://

www.genecards.org/cgi-bin/carddisp.

pl?gene=MIR99A&keywords=mir-99a

miRNA-

125b-2

chr21q21.1/

NR_029694.1

*900 NF-kB inducible miRNA; involved in

astrogliosis, glial cell proliferation,

Alzheimer’s disease (AD), age-related

macular degeneration (AMD), breast,

gastric, gallbladder, lung, squamous cell and

colorectal carcinoma, intellectual

disabilities, glioma, glioblastoma; status

epilepticus

Lukiw (2007), Pogue et al. (2010), Risbud

and Porter (2013), Siew et al. (2013a, b),

Feng et al. (2015), Ferlazzo et al. (2016),

Moss et al. (2016), Regazzo et al. (2016),

Wang et al. (2017) and Zhang et al. (2017);

http://www.genecards.org/cgi-bin/carddisp.

pl?gene=MIR802&keywords=mir-802

miRNA-

155

chr21q21.3/

NR_030784.1

*700 NF-kB inducible miRNA; adenocarcinoma,

Alzheimer’s disease (AD); age-related

macular degeneration (AMD), B cell

lymphoma, bacterial pneumonia, peritonitis,

colitis, squamous cell carcinoma, Down’s

syndrome (DS), hepatic fibrogenesis,

bladder cancer, multiple sclerosis (MS),

status epilepticus

Pogue et al. (2010), Li et al. (2012), Lukiw

et al. (2012), Maciotta et al. (2013), Risbud

and Porter (2013), Devier et al. (2015),

Bofill-De Ros et al. (2015), Asim et al.

(2015), Hill et al. (2015), Siew et al. (2013),

Feng et al. (2015), Ferlazzo et al. (2016),

Moss et al. (2016), Regazzo et al. (2016),

Lu et al. (2017), Lutz et al. (2017) and

Mikamori et al. (2017); http://www.

genecards.org/cgi-bin/carddisp.pl?gene=

MIR155&keywords=mir-155

miRNA-

802

chr21q22.12/

NR_030414.1

*665 Breast cancer, Down’s syndrome and DS

murine models, biliary hyperplasia type 2

diabetes, cholesteatoma, osteosarcoma

Cao et al. (2013), Li and Qin (2014), Wang

et al. (2014), Higuchi et al. (2015), Yuan

and Wang (2015), Bofill-De Ros et al.

(2015) and Church et al. (2016);www.

genecards.org/cgi-bin/carddisp.pl?gene=

MIR802&keywords=mir-802

Summary chr21q21.1-

chr21q21.3/various

*3630 A surprisingly broad range of human diseases

including many cancers and neurological

disorders such as DS, AD, AMD and MS

Multiple (see text and above)

Down syndrome (DS) or trisomy 21 (T21) results from a gene dosage imbalance that translates into a surprisingly broad clinical spectrum. DS is

the most common genetic cause of intellectual disability attributable to a naturally occurring imbalance in gene dosage—a major objective in the

study of DS is the identification of functional genetic elements that impact alterations and variations in the DS phenotype. Indeed DS is a primary

human model for studying imbalances in gene dosage and provides a unique opportunity to elucidate the molecular and pathogenic consequences

of extra chromosomal copies; note that: (i) DS is also associated with multiple other serious age-related human maladies (see text and

table column function/disease association), (ii) the majority of the disease associations listed above are the result of the mis-regulation of let-7c,

miRNA-99a, miRNA-125b, miRNA-155, and/or miRNA-802 abundance and expression, (iii) all five chr21-encoded miRNAs are located within

the relatively narrow domain on the long arm of chr21 from chr21q21.1 to chr21q21.3, (iv) all five chr21-encoded miRNAs have strong genome-

wide regulatory effects, (v) miRNA-99a, miRNA-125b and miRNA-155 are inducible and under NF-kB regulatory control (Hill et al. 2015;

unpublished observations), and (vi) at least three of these miRNAs encoded on chr21 are significantly increased in expression in AD and/or DS

(miRNA-125b, miRNA-155 and miRNA-802; Lukiw 2007; Li et al. 2012; Devier et al. 2015; Zhao et al. 2015a, b; Castro et al. 2017).

Interestingly, of the 2650 human miRNAs so far identified, only about 35–40 are highly expressed in the human brain and retina, and of these

highly expressed miRNAs, miRNA-125b and miRNA-155 are encoded on chr21 (in comparison chr21 miRNAs let-7c, miRNA-99a and miRNA-

802 are less highly expressed; Hattori et al. (2000); Li et al. (2012); Zhao et al. (2015a, b); Antonarakis (2017); unpublished observations)

*The number of potential miRNA–mRNA interactions was assessed using the MicroCosm Targets Version 5 (miRBase; EMBL-EBI) algorithm
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indicate that these five chr21-encoded miRNAs have the

remarkable capacity to potentially regulate the expression

approximately 3630 protein-coding genes (Table 1). This

rather large number of protein-coding genes targeted by

chr21-encoded miRNAs and the chr21 miRNA-mediated

potential down-regulation of vast numbers of mRNAs may

in part explain the tremendous diversity and complexity of

human maladies associated with DS. This knowledge

should be useful in targeting miRNA-mediated molecular

mechanisms that cause or modify the development and

propagation of different DS phenotypes. For example,

employing anti-miRNA-based therapeutic strategies direc-

ted toward a single or a few chr21 specific miRNAs:

(i) could be of therapeutic use in the restoration of essential

and homeostatic mRNA and gene expression patterns in

DS patients, and/or (ii) may ultimately provide more

effective treatments in the clinical management of ancillary

maladies associated with the T21 phenotype (Lukiw 2013;

Antonarakis 2017; Castro et al. 2017; Zhao et al. 2016).
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