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Abstract The endoplasmic reticulum (ER) and mito-

chondria have both been shown to be critical in cellular

homeostasis. The functions of the ER and mitochondria are

independent but interrelated. These two organelles could

form physical interactions, known as MAMs, to regulate

physiological functions between ER and mitochondria to

maintain Ca2?, lipid, and metabolite exchange. Several

proteins are located in MAMs, including RNA-dependent

protein kinase (PKR)-like ER kinase, inositol 1,4,5-

trisphosphate receptors, phosphofurin acidic cluster sorting

protein-2 and sigma-1 receptor to ensure regulation. Recent

studies indicated that MAMs participate in inflammation

and apoptosis in various conditions. All of these functions

are crucial in determining cell fate following traumatic

brain injury (TBI). We hypothesized that MAMs may

associate with TBI and could contribute to mitochondrial

dysfunction, ER stress, autophagy dysregulation, dysregu-

lation of Ca2? homeostasis, and oxidative stress. In this

review, we summarize the latest understanding of MAM

formation and their potential regulatory role in TBI

pathophysiology.
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Introduction

The interaction between different organelles is necessary

for eukaryotic cells to maintain physiological functions.

Therefore, the interaction between organelles has become

the focus of current research. MAMs are structures that can

regulate the physiological functions between ER and

mitochondria. In the last century, scientists first saw the

close contact between the ER and mitochondria in the

electron microscope. However, they knew nothing about its

function (Morre et al. 1971). In 1990, Vance et al. (Vance

1990) developed a protocol to isolate ER-like membranes

that co-isolated with mitochondria from rat liver, which are

now called mitochondria-associated membranes. The main

function of MAMs is the regulation of Ca2?, lipid and

metabolite exchange between ER and mitochondria

(Marchi et al. 2014). Ca2? homeostasis is essential for

normal neuronal function and cell survival processes and

the transfer of Ca2? from the ER to mitochondria is

mediated by IP3Rs, which are concentrated in the MAMs

(Rizzuto et al. 1993). Alterations in MAMs will destroy

intracellular Ca2? homeostasis and ultimately induce

apoptosis (Pizzo and Pozzan 2007). Furthermore, MAMs

could also modulate cell function via the regulation of

mitochondrial reactive oxygen species (ROS) production

(Rodrı́guez-Arribas et al. 2016). Previous studies indicated

that MAMs are associated with numerous pathophysio-

logical conditions, including Alzheimer’s disease, Parkin-

son syndrome, and many other neurodegenerative disorders

(Vance 2014). We propose that MAMs may play an

important role in TBI pathophysiology. In this review, we
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will discuss current knowledge of MAMs, highlighting the

roles of MAMs in the pathophysiology of TBI and dis-

cussing therapeutic opportunities for drug discovery.

Mitochondria-Associated ER Membranes

Organelles are wrapped by membrane to ensure their

unique identities and specialized functions in eukaryotic

cells. To implement a variety of physiological functions,

these organelles need to communicate and cooperate with

each other via ion, metabolite, and lipid exchange at their

contact sites (Rodrı́guez-Arribas et al. 2016). MAMs, the

best-characterized inter-organelle connections, were

demonstrated to be a signaling hub in the regulation of cell

processes, such as lipid exchange, Ca2? transfer, mito-

chondrial morphology, autophagy, and apoptosis (Marchi

et al. 2014; Rowland and Voeltz 2012) (Fig. 1).

Structural Composition of the MAMs

The association between the ER and mitochondria could be

observed by electron microscopy in animal cells and yeast.

The distance between the ER and mitochondria was orig-

inally measured to be approximately 100 nm. With the

development of high-speed digital imaging microscopy and

electron tomography studies, scientists suggested that the

contact sites were much smaller, approximately 10–30 nm

wide (Csordas et al. 2006; Soltys and Gupta 1992). Several

proteins have been found to be enriched at the MAMs.

They not only participate directly in tethering, but are also

involved in the processes regulated by MAMs (van Vliet

et al. 2014). A tripartite complex, including glucose-regu-

lated protein 75 (Grp75), the mitochondrial voltage-de-

pendent anion channel (VDAC1), and IP3Rs, links the ER

and the OMM and can regulate Ca2? transfer from the ER

to mitochondria (Szabadkai et al. 2006). The absence of

IP3Rs does not affect the ER–mitochondrial linkage, while

the absence of Grp75 in HeLa cells could destroy the

physical tethering role of this Ca2? channel (Csordas et al.

2006). In addition, Sig1-R, which regulates Ca2? signaling

and cell survival, is abundant in the MAMs (Hayashi and

Su 2007). Another two proteins, PACS-2 and MFN2, are

involved in the regulation of MAM formation and function.

The mechanism of PACS-2 in the stabilization of the

structural integrity of the ER–mitochondria membrane

Fig. 1 Mitochondria-associated ER membranes. Several proteins

reside in MAMs, including inositol 1,4,5-trisphosphate receptors

(IP3Rs), the mitochondrial voltage-dependent anion channel

(VDAC1), glucose-regulated protein 75 (Grp75), RNA-dependent

protein kinase (PKR)-like ER kinase (PERK), Mitofusin-1/2, etc. In

addition, several resident MAM proteins can regulate cell survival by

governing apoptosis and inflammation. A tripartite complex that

includes Grp75, the VDAC1, and IP3Rs, links the ER and the OMM

and is the major Ca2? transporter and channel between the ER and

mitochondria. In addition, IP3Rs can cooperate with PML and Akt to

regulate proapoptotic signals. B-cell receptor-associated protein of

31 kDa (BAP31) is an important regulator of ER–mitochondria

crosstalk and interacts with the mitochondrial fission protein Fission 1

homolog (Fis1) and phosphofurin acidic cluster sorting protein-2

(PACS-2). Sarco/endoplasmic reticulum Ca2? ATPase (SERCA),

which is regulated by p53, can meditate Ca2? release and reuptake at

MAMs. Sigma-1 receptor (Sig1-R) can regulate inflammation by

interacting with dehydroepiandrosterone (DHEA). In various condi-

tions, the inflammasome could be meditated by ER stress, reactive

oxygen species (ROS), VDAC, etc., which play an important role in

the regulation of MAM-related inflammation
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contact site (MCS) is not entirely clear. However, lacking

PACS-2 causes B-cell receptor-associated protein of

31 kDa (BAP31)-dependent mitochondrial fragmentation

and uncoupling from the ER (Simmen et al. 2005). BAP31

is not only the ER-resident protein that is involved in

protein sorting, but is also an important regulator of ER–

mitochondria crosstalk by interacting with the mitochon-

drial fission protein Fission 1 homolog (Fis1) (Grimm

2012). MFN2, together with mitofusin 1 (MFN1) and optic

atrophy 1 (OPA1), could regulate mitochondrial fusion and

Ca2? signaling on the MAMs (Munoz et al. 2013). In

addition, de Brito indicated that ER–mitochondria contact

is reduced when MFN2 is deleted. However, this reduced

contact can be rescued by upregulating the expression of

MFN2, which demonstrates that MFN2 is essential for ER–

mitochondria tethering (de Brito and Scorrano 2008).

Another study that demonstrated that the absence of MFN2

can increase proximity between ER and mitochondria did

not support de Brito’s finding (Filadi et al. 2015).

Mitochondria-Associated ER Membranes

and Inflammation

In recent years, MAMs have been shown to be critical in

inflammation. A link between inflammation and the ER–

mitochondria interface was established for the first time in

2011. In this study, Zhou et al. demonstrated that ROS can

promote NOD-like receptor family, pyrin domain-con-

taining protein 3 (NLRP3) inflammasome activation, which

explained the frequent association of MAMs with inflam-

matory diseases (Zhou et al. 2011).

NLRP3

The human NLR family is composed of 22 human genes

(Schroder and Tschopp 2010). NLRP3 is a multiprotein

complex of innate immune responses, and it is one of the

most fully characterized and well-studied inflammasomes

of NLRs which are composed of the NLRP3 protein, the

adapter apoptosis-associated speck-like protein (ASC), and

pro-caspase-1 (Jin and Flavell 2010). The inflammasome

can regulate the activation of caspase-1 and the subsequent

proteolytic maturation and secretion of interleukin-1b (IL-

1b) and interleukin-18 (IL-18) (Sadatomi et al. 2017). A

previous study showed that the activation of NLRP3

required two different mechanisms. One mechanism is

driven by toll-like receptor (TLR)/nuclear factor-jB (NF-

jB) at the transcriptional level (Hornung and Latz 2010).

Another mechanism affects the activation of NLRP3 at the

posttranscriptional level (Rubartelli 2012).

The role of MAMs in the activation of the NLRP3

inflammasome is still unclear, but more studies have sug-

gested that MAMs are critical in the regulation of

inflammation. With the exception of the ER and peroxi-

somes, mitochondria are the main source of ROS (Dostert

et al. 2008). Recent studies indicated that ROS could

promote the activation of the NLRP3 inflammasome (Yin

et al. 2017). VDAC1 is a critical regulator of mitochondrial

metabolic activity through the uptake of Ca2? into the

mitochondria from MAMs. VDAC1 is essential for the

production of mitochondrial ROS. When the activity of the

OMM channel VDAC was inhibited, the formation of the

NLRP3 inflammasome was selectively abrogated (Zhou

et al. 2011). Thioredoxin-interacting protein (TXNIP) is

another bridge between oxidative stress and NLRP3. Dur-

ing mitochondrial oxidative stress, TXNIP can mediate the

activation of NLPR3 in primary rat hepatocytes and in

THP1 macrophage cells (Zhang et al. 2015; Zhou et al.

2011). During ER stress, TXNIP could be induced by

PERK and inositol-requiring enzyme 1 (IRE1) pathways

and then induce IL-1b production by the NLRP3 inflam-

masome (Oslowski et al. 2012). When TXNIP was

silenced, the activation of the NLRP3 inflammasome was

blocked, which indicated that TXNIP expression is essen-

tial for NLRP3 inflammasome activation (Zhang et al.

2015).

PERK

PERK is a protein kinase that belongs to the eukaryotic

translation initiation factor 2a (eIF2a) kinase subfamily.

The PERK protein is particularly enriched at MAMs and

appears to be crucial for tethering the ER to the mito-

chondria and thus for MAM integrity (Verfaillie et al.

2012). Under normal physiological conditions, PERK is

bound by the chaperone glucose-regulated protein 78

(Grp78) to keep PERK in an inactive state (Bertolotti

et al. 2000). ER stress could promote the disassociation of

Grp78 from the cytoplasmic domain and activate PERK to

regulate ER stress-related inflammation and apoptosis

(Walter and Ron 2011). A recent study indicated that

PERK not only plays an important role in ER stress but

also affects MAMs to maintain the ER–mitochondria

juxtapositions (Verfaillie et al. 2012). The activation of

the PERK/JAK1/STAT3 signaling pathway could elicit a

feed-forward inflammatory loop that involves astrocytes

and microglia to drive neuroinflammation. However, the

activation of microglia and the subsequent production of

IL-6 and oncostatin M (OSM) could be abolished when

the PERK was silenced via siRNA (Guthrie et al. 2016;

Meares et al. 2014). Moreover, knockdown of PERK

could result in the activation of NF-jB and ROS gener-

ation in astrocytes under OGD conditions, which indi-

cated that PERK is required for ROS generation and is

involved in the activation of NF-jB in astrocytes (Liu and

Du 2015).
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Sig1-R

Sig-1R, as a chaperone of the MAMs, is a single 25 kD

polypeptide that interacts with several protein targets. Sig-

1R could form a complex at MAMs with Grp78 and bind to

the IP3Rs to be involved in the regulation of Ca2? mobi-

lization from ER stores (Hayashi and Su 2003; Hayashi and

Su 2007). The neuroprotective effects of Sig-1R are

attributed to anti-inflammatory actions in various disease

models. In a stroke model, Allahtavakoli et al. found that

PRE-084, a Sig-1R agonist, could elevate the expression of

proinflammatory cytokines and decrease the expression of

anti-inflammatory cytokines (Allahtavakoli and Jarrott

2011). In another study, scientists found that PRE-084

could significantly reduce the number of active microglial

cells. However, when Sig-1R expression was knocked out,

treatment with PRE-084 did not have any restorative

effects on mice, which indicated that Sig-1R regulated

inflammation (Francardo et al. 2014). Consistent with

previous studies, Dong et al. found that PRE-084 could

reduce microglial activation and nitrosative and oxidative

stress to proteins after TBI (Dong et al. 2016). SKF83959

(3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-

tetrahydro-1H-3-benzazepine), an atypical dopamine recep-

tor-1 agonist, can enhance the activity of endogenous

dehydroepiandrosterone (DHEA) in a synergistic manner

and inhibit the activation of BV2 microglia and the expres-

sion/release of proinflammatory cytokines (Wu et al. 2015).

Sig-1R activation could affect the expression of ionized

calcium-binding adaptor molecule-1 (Iba1) in micro-

glia/macrophages of the ischemic hemisphere after experi-

mental stroke. However, Sig-1R has no influence on post-

stroke inflammatory mediators (Ruscher et al. 2012). All of

these results suggest that MAMs may play an important

role in initiating the inflammatory response to external

stimulus.

Mitochondria-Associated ER Membranes

and Apoptosis

Apoptosis is a process of major biomedical interest; its

deregulation plays an important role in the pathogenesis of

central nervous system diseases. Ca2? homeostasis is cru-

cial in the control of cell fate. Recent data highlight the

important role of MAMs in the regulation of Ca2? home-

ostasis and suggest that MAMs are critical hubs for

apoptosis (Danese et al. 2017; Giorgi et al. 2011).

IP3Rs

IP3Rs are important Ca2? channels that regulate the release

of Ca2? from ER to mitochondria, and IP3Rs are highly

concentrated in MAMs. Recent studies revealed that IP3Rs,

as cellular hubs, could integrate many signaling pathways

and control cell fate (Ivanova et al. 2014). Glycogen syn-

thase kinase-3b (GSK3b) is a multifunctional kinase that

can aggravate myocardial ischemia–reperfusion injury.

GSK3b can interact with the IP3R Ca2? channeling com-

plex in MAMs. When GSK3b was inhibited, both cytosolic

and mitochondrial Ca2? overload and subsequent cell death

was limited (Gomez et al. 2016). Members of the Bcl-2-

family, including Bcl-2, Bcl-Xl, and Mcl-1, have been

reported to play an important role in the regulation of IP3R

channels (Distelhorst and Bootman 2011). They could

inhibit Ca2? release from the ER via interacting with the

IP3R Ca2? channel (Rong et al. 2008). Bcl-2-related

ovarian killer (Bok) is a proapoptotic Bcl-2 family mem-

ber, and cellular overexpression of Bok could induce

apoptosis (Hsu et al. 1997). Recent evidence has indicated

that Bok interacts strongly with IP3Rs and may contribute

to the structural integrity or stability of IP3R tetramers

(Schulman et al. 2013). In return, Bok is dramatically

stabilized by binding to IP3Rs and the proapoptotic effects

of overexpressed Bok could be limited (Schulman et al.

2016). PKB/Akt, which is a well-known prosurvival factor,

exerts critical neuroprotective effects by phosphorylating

downstream targets after TBI. PKB/Akt could be activated

by IP3Rs and then inhibit Ca2? release from IP3Rs after

Ca2?-dependent apoptosis was stimulated (Stephens et al.

1998; Szado et al. 2008). In addition, phosphatase and

tensin homolog (PTEN), a well-known negative regulator

of PKB/Akt signaling, have been reported to be located at

the MAMs. PTEN can directly reduce IP3Rs phosphory-

lation and enhance Ca2? transfer to the mitochondria

(Bononi et al. 2013). Previous observations indicated that

mTORc2 resides at the MAMs and could interact with both

the ER and the mitochondria. Moreover, mTORC2 con-

trolled MAM integrity and mitochondrial function via Akt-

mediated phosphorylation of the MAM-associated proteins,

which include IP3Rs, Hexokinase 2, and PACS-2 (Betz

et al. 2013). Cytochrome c could be released from the

mitochondria, and it is a critical factor for apoptosis

induction. A recent study indicated that cytochrome c

could bind to IP3R channels and translocate to the ER upon

apoptosis induction to promote apoptotic Ca2? release

(Boehning et al. 2003).

PACS-2

PACS-2 is a novel sorting protein that links the ER–mi-

tochondria axis to ER homeostasis and plays an important

role in the control of cell fate. When stimulated by apop-

totic inducers, PACS-2 could translocate Bid to mito-

chondria to initiate the formation of mitochondrial

truncated Bid, the release of cytochrome c, the activation

of caspase-3, and eventually cause cell death (Simmen
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et al. 2005). Aslan JE and colleagues found that PACS-2,

as an essential tumor necrosis factor-related apoptosis-in-

ducing ligand (TRAIL) effector, is required for the killing

of tumor cells in vitro and virally infected hepatocytes

in vivo (Aslan et al. 2009). A recent study demonstrated

that cellular inhibitor of apoptosis (cIAP) could negatively

regulate TRAIL cytotoxicity by mediating the ubiquitina-

tion of PACS-2 (Guicciardi et al. 2014). It is well known

that NF-jB can promote cell survival by inducing the

expression of anti-apoptotic proteins, including Bcl-Xl, and

can protect mitochondria from stress-induced mitochon-

drial outer membrane permeabilization (MOMP). A recent

study suggested that PACS-2 is required for Bcl-xL

induction following DNA damage in primary mouse thy-

mocytes. When PACS-2 was knocked down, thymocytes

exhibited a blunted induction of Bcl-xL, increased MOMP,

and accelerated apoptosis (Barroso-Gonzalez et al. 2016).

PERK

As described before, PERK is crucial for tethering the ER

to the mitochondria and is present in MAMs. The phar-

macological inhibition of PERK could attenuate brain

injury in a subarachnoid hemorrhage model via the acti-

vation of the Akt signal pathway, which suggests that

PERK is crucial in regulating cell fate (Yan et al. 2016). In

addition, PERK is also the central regulator of ER stress

and can determine cell fate by interacting with its down-

stream molecules (Liu et al. 2015). Among the large

number of downstream signaling pathways, eIF2a could be

considered part of the critical PERK-mediated signaling

pathway. A recent study indicated that eIF2a could be

dephosphorylated by GADD34 and contributes to survival

by suppressing the ATF4/CHOP signaling pathway

(Chambers et al. 2015). Nuclear factor-erythroid 2-related

factor 2 (Nrf2), a nuclear transcription factor, is known as a

critically important mechanism for cellular protection and

cell survival following TBI (Zhang and Teng 2016). The

activation of Nrf2 can negatively regulate ER stress-in-

duced apoptosis, which suggested that Nrf2 is an anti-

survival factor (Zhang et al. 2014). A recent study

demonstrated that Nrf2 was one of the direct substrate

molecules of PERK that could initiate the separation of

NRF2 from Keap1 with the assistance of Nrf1 (Digaleh

et al. 2013). Indeed, PERK is required for the regulation of

inter-organellar communication during ROS-induced cell

death. The loss of PERK may cause defects in cell death

sensitivity and decreased mitochondrial Ca2? uptake.

Furthermore, PERK deficiency could reduce ER stress-in-

duced apoptosis by reducing caspase activation and cyto-

chrome c release (Verfaillie et al. 2012). A recent study

indicated that PERK physically interacts with MFN2 and

that the inhibition of PERK could reduce ROS production,

normalize mitochondrial Ca2?, and improve mitochondrial

morphology (Munoz et al. 2013).

Sig1-R

Previous studies demonstrated that Sig-1R, which is

implicated in neuroprotection, carcinogenesis, and neuro-

plasticity, is a Ca2?-sensitive ligand-operated receptor

chaperone at MAMs. The major mechanism of its neuro-

protective function is the regulation of intracellular Ca2?

homeostasis. Sig1-R can promote Ca2? entry into mito-

chondria through the stabilization of IP3R3 at the MAMs

and could decrease apoptosis (Hayashi and Su 2007). In an

in vitro model of ischemia, Katnik C indicated that 1,3-di-

o-tolyl-guanidine (DTG), a sigma receptor agonist, can

attenuate intracellular Ca2? elevations in response to

ischemia induced by sodium azide and glucose deprivation

(Katnik et al. 2006). Another mechanism of its neuropro-

tective function is possibly through the modulation of

ROS-neutralizing proteins. The overexpression of Sig1-R

can activate the antioxidant response element (ARE) to

upregulate NAD(P)H quinone oxidoreductase 1 (NQO1)

and superoxide dismutase 1 (SOD1) expression in COS

cells to reduce oxidative stress. However, the anti-oxida-

tive stress function was abolished when Sig1-R was

knocked out (Pal et al. 2012). Sig1-R can also regulate the

production of ROS through the ER–mitochondrial Rac1

system, and this system could promote a mild pro-oxidant

milieu for cellular signaling and induce plastic transfor-

mation in neurons (Natsvlishvili et al. 2015). 4-Phenyl-1-

(4-phenylbutyl) piperidine (PPBP), a Sig1-R agonist, could

protect neurons via a mechanism that involves the anti-

apoptotic protein Bcl-2 (Yang et al. 2007). The mechanism

of this protection may include NF-jB and/or extracellular

signal-regulated kinase (ERK) pathways (Ha et al. 2014;

Meunier and Hayashi 2010). Another study demonstrated

that Sig1-R may promote cell survival via the regulation of

ER stress, p38 MAPK activation, ROS production, and

proteins involved in apoptosis (Caspases-3, Bax) in breast

cancer cells (Happy et al. 2015). In a TBI model, Dong

et al. found that PRE-084 can significantly reduce lesion

volume, lessen brain edema, and accelerate the recovery of

nerve function and body weight after TBI, which indicated

that MAMs may play an important role in cell fate and

neural function following TBI (Dong et al. 2016).

Mitochondria-Associated ER Membranes and TBI

TBI is mainly divided into primary brain injury and sec-

ondary brain injury. The primary brain injury occurs

immediately after trauma and is inevitable. Secondary

brain injury occurs hours to days after the primary brain
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injury and is another blow to the central nervous system

(Gao et al. 2016; Park et al. 2008). Secondary brain injury

is related to numerous interrelated biochemical pathways

that mainly include a cerebral inflammatory response and

apoptosis, which are induced by mitochondrial dysfunc-

tion, autophagy, the disruption of Ca2? homeostasis,

oxidative stress, excitotoxicity, and free radical generation

(Faridar et al. 2011; Pearn et al. 2016). Mitochondrial

dysfunction, ER stress, autophagy dysfunction, the dys-

regulation of Ca2? homeostasis, and oxidative stress were

closely related to MAMs, which suggested that MAM

dysfunction may play an important role in TBI (Arruda

et al. 2014; Verfaillie et al. 2012; Wang et al. 2015; Yu

et al. 2015).

Mitochondria are the only energy-producing organelles

in the cell. Following TBI, the body goes through a state of

metabolic crisis, and mitochondrial dysfunction becomes

apparent (Yonutas et al. 2016). Mitochondrial dysfunction

plays an important role in proinflammatory signaling and

cell apoptosis, which are closely related to mitochondrial

oxidative stress, the inflammatory cycle, and inflamma-

some formation (Lopez-Armada et al. 2013). An experi-

mental study indicated that MAMs could regulate PACS-2,

IP3R1, and Ca2? transport and improve mitochondrial

function, which indicated that MAMs may be a potential

therapeutic target for the inflammatory response and cell

apoptosis after TBI (Arruda et al. 2014).

The endoplasmic reticulum is an important organelle

that can regulate protein synthesis, processing, transport,

and calcium homeostasis. Following TBI, misfolded and

unfolded proteins in the endoplasmic reticulum will

aggregate, which can cause ER stress (Harvey et al. 2015).

PERK activation is the first indicator of ER stress and

aggravates inflammation and apoptosis following TBI

(Dash et al. 2015; Nakka et al. 2014). Therefore, PERK,

which is particularly enriched at the MAMs and is essential

for MAM integrity, builds the bridge between MAMs and

TBI.

Autophagy is a lysosomal degradation pathway that

degrades damaged organelles into basic biomolecules and

can be induced by TBI (Zhang et al. 2016). During

autophagy, double membrane-bound organelles, which are

called autophagosomes, are formed. Previous studies have

indicated that the formation of autophagosomes requires

the presence of MAM–mitochondria contacts (Hailey et al.

2010). A recent study indicated that autophagy, especially

mitophagy, is a negative regulator of NLPP3 inflamma-

some activation (Kim et al. 2016). The activation of the

NLRP3-inflammasome could cause the processing and

release of IL-1b and IL-18 and enhance the progression of

the inflammatory response after TBI, which links the

MAMs and the inflammatory response after TBI (Liu et al.

2013). In addition, autophagy can increase cell survival and

improve functional recovery following injury, which sug-

gests that MAM-regulated autophagy may be a potential

therapeutic target for TBI (Lipinski et al. 2015).

Ca2? homeostasis is thought to be one of the funda-

mental pathological mechanisms of cell death induced by

TBI. Mitochondria are involved in the regulation of cel-

lular Ca2? signaling mainly through the mitochondrial

Ca2? uniporter (MCU). TBI causes a disruption in ion

homeostasis and an uncontrolled influx of Ca2? into neu-

rons. Ca2? overload induced by mitochondria through

MCU can aggravate mitochondrial dysfunction and cell

death following TBI (Cheng et al. 2013). In addition, Ca2?

could activate lipid peroxidases, proteases, and phospho-

lipases, which could increase the intracellular concentra-

tion of free fatty acids and free radicals (Sande and West

2010). The disruption of Ca2? homeostasis can lead to cell

injury and apoptosis, which could be mediated by IP3Rs

located in MAMs (Werner and Engelhard 2007).

Moreover, excessive cytosolic Ca2? could induce the

degradation of the cytoskeleton and extracellular matrix

proteins and then enhance ROS production (Dirnagl et al.

1999). Evidence demonstrates that ROS are generated by

mitochondria and contribute to the pathophysiology of TBI

(Marklund et al. 2001). TBI could induce structural and

functional damage in mitochondria during an early event,

which in turn could contribute to the production of ROS

and eventually lead to cell death and poor cognitive out-

come (Fischer et al. 2016). Evidence indicated that the

propagation of ROS signals between the ER and mito-

chondria could be modulated by PERK, which is a MAM

component that plays a key role in the regulation of ER–

mitochondria juxtapositions and mitochondrial apoptosis

following TBI (Verfaillie et al. 2012). Nrf2, an anti-ox-

idative stress factor that is a direct substrate of PERK,

could be affected by MAMs and protect against TBI by

regulating microglial function (Digaleh et al. 2013; Wu and

Liu 2016). Furthermore, as a chaperone at the MAMs, Sig-

1R could reduce microglial activation and oxidative stress

and accelerate the recovery of nerve function after TBI

(Dong et al. 2016).

Conclusions and Future Directions

In a word, MAMs play a critical role in many cellular

processes and signaling pathways. The physical interaction

between these two organelles could regulate lipid transport,

mitochondrial dynamics, Ca2? transfer, and the inflam-

matory response and could uniquely reflect cell health. For

instance, when the number of ER–mitochondria contact

sites was increased, Ca2? transfer to the mitochondria

could be enhanced and could ultimately induce cell death.

When the expression of PERK was elevated, ROS
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generation and ER stress could also be enhanced and

eventually cause cell death. All of these findings indicate

that MAMs are not only structures between the ER and

mitochondria but also a structural platform that accom-

modates several regulatory or effector proteins to regulate

biological processes. However, studies on the role of

MAMs in TBI are still in their infancy, and many questions

remained to be solved. Have we already identified all

proteins that constitute MAMs? Can TBI change the pro-

tein composition or stability of MAMs? What are the

mechanisms underlying the regulation of MAMs? If we

answer these questions, we may find potential treatments

for TBI.
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