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Abstract The objective of this study was to explore the

potential role of G-protein-coupled receptor kinase 2

(GRK2) in the progression of cannabinoid 2 receptor (CB2)

agonist-induced analgesic effects of bone cancer pain.

Female Sprague–Dawley rats, weighing 160–180 g, were

utilized to establish a model of bone cancer pain induced

by intra-tibia inoculation of Walker 256 mammary gland

carcinoma cells. JWH-015, a selective CB2 agonist, was

injected intrathecally or intraperitoneally on postoperative

day 10. Bone cancer-induced pain behaviors—mechanical

allodynia and ambulatory pain—were assessed on postop-

erative days -1 (baseline), 4, 7, and 10 and at post-

treatment hours 2, 6, 24, 48, and 72. The expressions of

spinal CB2 and GRK2 protein were detected by Western

Blotting on postoperative days -1 (baseline), 4, 7, and 10

and at post-treatment hours 6, 24, and 72. The procedure

produced prolonged mechanical allodynia, ambulatory

pain, and different changes in spinal CB2 and GRK2

expression levels. Intrathecal or intraperitoneal adminis-

tration of JWH-015 alleviated the induced mechanical

allodynia and ambulatory pain, and inhibited the down-

regulation of spinal GRK2 expression. These effects were

in a time-dependent manner and reversed by pretreatment

of CB2 selective antagonist AM630. The results affirmed

CB2 receptor agonists might serve as new treatment targets

for bone cancer pain. Moreover, spinal GRK2 was an

important regulator of CB2 receptor agonist-analgesia

pathway.

Keywords Spinal cord � CB2 � JWH-015 � GRK2 � Bone

cancer pain

Introduction

The incidences of cancer among developing countries are

rapidly increasing in recent years (Jemal et al. 2011; Khan

et al. 2010). Many epithelial-derived cancers, including

breast, prostate, and sarcoma, typically metastasize to bone

(DeNardo et al. 2008). Chronic pain, a deleterious effect

caused by bone metastases (van den Beuken-van

Everdingen et al. 2007), decreases the quality of patients’

life and remains a clinical challenge. Therefore, a devel-

opment of new and effective analgesic therapies with fewer

side effects is one of the major goals in bone cancer pain

researches. Many types of tumor cells, such as breast

cancer, prostate cancer, and sarcoma cells have been
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successfully intra-medulla inoculated to establish preclin-

ical pain models (Mao-Ying et al. 2006; Ren et al. 2012;

Zhang and Lao 2012). A series of behavioral, neuro-

chemical, and cellular changes are potentially correlated

with bone destruction and cancer growth in these models.

Since the underlying mechanisms evolve and change with

disease progression, all models can reveal the mechanisms

that drive bone cancer pain.

In the nervous system, the endocannabinoid signal sys-

tem based on G-protein-coupled receptors (GPCR), CB1

and CB2 receptors, can mediate the neurotransmission

(Fernandez-Ruiz 2009; Marrs et al. 2010). CB1 and CB2

receptors can also modulate many physiological systems,

such as memory, mood, and immune (Cabral and Griffin-

Thomas 2009; Garcia-Gutierrez et al. 2013; Howlett 1995).

Ample evidences suggest that CB2 selective agonists have

analgesic effects without psychotropic side effects pro-

duced by CB1 receptors agonists in preclinical models

(Pertwee 2012; Romero-Sandoval et al. 2008). Further-

more, CB2 receptor agonist displayed the antiallodynic

effect in a dose-dependent manner in our previous studies

(Gu et al. 2011). Nevertheless, it remains controversial that

CB2 receptor agonists could prevent bone loss (Bab et al.

2009; Lozano-Ondoua et al. 2013; Sophocleous et al.

2011). Given that the pharmacological efficacy of CB2

receptor agonists proved complex, it was essential to reveal

the underlying molecular mechanisms to fully characterize

the therapeutic potential.

GRK2 is a critical modulator of GPCR signaling. GRK2

can phosphorylate GPCRs and dissociate G proteins from

binding to the receptor (Benovic et al. 1986; Lohse et al.

1990). Consequently, it causes receptor internalization or

desensitization, and thus, the downstream signals are

inhibited (Hausdorff et al. 1990; Reiter and Lefkowitz

2006). Generally, the upregulation of receptor signaling is

related to a reduction of cellular GRK2 activity (Vroon

et al. 2004). Several studies reported the downregulation of

spinal GRK2 participated in the modulation of pain signal

transmission in different models (Kleibeuker et al. 2007;

Wang et al. 2013; Won et al. 2014). However, the role of

spinal GRK2 in bone cancer pain remains unclear. In an

animal model of neuropathic pain, a blockade of glial

(microglia and astrocytes) activation could attenuate neu-

ropathic pain and recover the expression of GRK2. Con-

siderable evidence reports that the IL-1b-activated glia

cells are also important regulators of the glial-neuronal

GRK2 pathway and essential for the development of

chronic pain conditions. Glial-neuronal GRK2 pathways

play a critical role in the development of neuropathic pain

(Won et al. 2014). Our previous studies have reported that

JWH-015, a CB2 receptor selective agonist, could inhibit

glial activation and eventually attenuate remifentanil-in-

duced postoperative hyperalgesia (Sun et al. 2014). In

addition, JWH-015 produced antinociceptive effects via

time-dependent modification of spinal IL-1b and other pro-

inflammatory cytokines in bone cancer pain (Lu et al.

2015). Then, we hypothesized that GRK2 protein might be

an important regulator of bone cancer pain.

The aim of this study is to investigate whether spinal

GRK2 pathway is involved in the development of bone

cancer pain and different administration routes of CB2

receptor agonist JWH-015 can exert antinociceptive effects

through GRK2.

Materials and Methods

Animals and Design

Female Sprague–Dawley rats (60–80 g body weight for

ascites passage; 160–180 g body weight for surgery; Drum

Tower Hospital Laboratories, Nanjing, China) were kept

under controlled conditions (21 ± 1 �C, 12-h light/dark

cycle, food and water ad libitum). According to different

experimental conditions, the rats were randomly divided into

5 groups (n = 8): (1) sham operated group; (2) tumor-bear-

ing group with intrathecal JWH-015 injection; (3) tumor-

bearing group with intrathecal dimethyl sulfoxide (DMSO)

injection; (4) tumor-bearing group with intrathecal injection

of AM630 30 min before JWH-015; (5) tumor-bearing group

with intraperitoneal JWH-015 injection; (6) tumor-bearing

group with intraperitoneal DMSO injection; and (7) tumor-

bearing group with intraperitoneal injection of AM630

30 min before JWH-015. Behavioral tests were performed on

postoperative days -1 (baseline), 4, 7, and 10 and at post-

treatment hours 2, 6, 24, 48, and 72. Western blotting anal-

yses were analyzed on postoperative days-1 (baseline), 4, 7,

and 10 and at post-treatment hours 6, 24, and 72.

All the experimental procedures used in this study were

performed according to the Medical College of Nanjing

University Animal Care and Use Committee (Nanjing,

China) and in agreement with the National Institutes of

Health and the International Association for the Study of

Pain (Zimmermann, 1983).

Drugs and Chemicals

JWH-015 and AM630 were both purchased from Sigma

(USA), while DMSO was purchased from Amresco (USA).

JWH-015 and AM630 were dissolved in DMSO to obtain

the final concentration. To determine the effects of

peripheral and central CB2 receptors bone cancer pain or

GRK2 expression, JWH-015 was injected in two different

routes. On postoperative day 10, JWH-015 (10 lg/10 ll)

or DMSO (10 ll) was injected into the subarachnoid space

through the intervertebral foramen between L5 and L6
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(Hylden and Wilcox 1980). JWH-015 (100 lg/500 ll) or

DMSO (500 ll) was intraperitoneally injected to another

bone cancer group at the same time. To determine whether

the effects of JWH-015 were indeed specifically mediated

via CB2 receptors, the antagonist AM630 was used.

AM630 (15 lg/10 ll, i.t.) and AM630 (100 lg/500 ll,

i.p.) were administered 30 min before JWH-015. All

solutions were made fresh daily.

Cell Culture

Walker 256 rat mammary gland carcinoma cells (obtained

from Shanghai Research Center of Biomedical Engineer-

ing, China) were derived from SD rats. A 0.5 ml volume of

ascetic cancer cells (2 9 107 cells/ml) was injected into

the abdominal cavity of SD rats (60–80 g). The ascitic fluid

was extracted 6–7 days after injection followed by cen-

trifugation at 1500 rpm for 5 min. The precipitate was

isolated, thrice washed with 10 ml normal saline, and re-

centrifuged at 1500 rpm. The precipitate was finally diluted

with normal saline to obtain a cell density of 1 9 105/ll

using a hemocytometer and maintained on ice until the

surgery (Mao-Ying et al. 2006; Zhu et al. 2014).

Anesthesia and Surgical procedure

As previously described (Medhurst et al. 2002; Mao-Ying

et al. 2006), an appropriate animal model, which was based

on Walker 256 mammary gland carcinoma cells injection

in rat tibia and could produce a progressive development of

pain, was utilized. In this model, estrous cycle shows no

effect on the development of bone cancer pain (Zhu et al.

2014). Rats (160–180 g) were anesthetized with pento-

barbital sodium (50 mg/kg, i.p.) and placed in a supine

position. After the sterile preparation, a longitudinal inci-

sion was made through the skin overlying the low third of

the left tibia, and thus, the tibia was exposed. A 23-gauge

needle was inserted to perforate the bone cortex and 5-ll

volume of Walker 256 rat mammary gland carcinoma cells

(1 9 105/ll) or normal saline was injected into the intra-

medullary space using a 25-ll microsyringe. No leakage of

cells was spilled outside the tibia. Afterward, the inject

eyelet was sealed with bone wax followed by the irrigation

with normal saline. The wound was finally closed with 4-0

silk thread (Ethicon, USA) in layers. Rats were placed on a

heated pad before the recovery of consciousness and then

returned to their home cages. No significant motor

impairment was demonstrated in this procedure.

Behavioral Studies

All of the animals were tested in a blind fashion (the

experimenters were blind to the treatment groups) during

the day portion of the circadian cycle and acclimatized to

the test chamber at least 30 min prior to each experiment.

The pain behavior test consisted of two tests: ambulatory

pain test and mechanical hyperalgesia test.

Ambulatory Pain Assessment

The rats were placed into individual plexiglas observation

chamber (50 cm 9 50 cm 9 40 cm). All animals were

allowed to walk across the chamber freely. The extent of

ipsilateral limb use was observed for 2 min during spon-

taneous ambulation and ambulatory pain scores were

characterized using the following criteria: score 0, normal

use: score 1, slight limp; score 2, limp and guarding

behavior; score 3, severe limp or partial non-use of the

limb in locomotor activity; and score 4, complete lack of

the limb use.

Mechanical Hyperalgesia Assessment

Mechanical hyperalgesia was assessed by Von Frey fila-

ments (Stoelting, Wood Dale, IL, USA). Chaplan’s up–

down method was chosen (Chaplan et al. 1994). A series of

calibrated Von Frey filaments (value ranging from 2 to

15 g) were used to determine the withdrawal thresholds

(PWMT) of the paw ipsilateral to the site of surgery. Every

Von Frey filament was applied five times and poked ver-

tically to the medial plantar surface for 6–8 s with

approximately 10-min interval. The positive pain response

was a brisk withdrawal of the hind paw. The lowest Von

Frey filament that induced at least three positive pain

responses in one trial was considered as the PWMT.

Western Blotting for CB2 and GRK2

The rats were sacrificed with overdose of sevoflurane, and

lumbosacral enlargement of spinal cord was immediately

removed and stored in liquid nitrogen until further pro-

cessing. Tissue samples were homogenized in lyses buffer

(KeyGEN BioTECH, Nangjing, China). Lysates were

centrifuged at 13,000 rpm for 20 min at 4 �C, and super-

natants were removed. Protein concentrations in super-

natant were determined by BCA Protein Assay Kit.

Samples (70 lg) were then separated by SDS-PAGE

(10 %) and subsequently transferred onto polyvinylidene

fluoride membranes (Pall, USA). Membranes were blocked

with 5 % non-fat milk in Tris buffered saline for 1 h at

room temperature and followed by incubation with primary

antibody for CB2 (1:500; Abcam; ab3561; USA), GRK2

(1:400; Santa cruz; sc-562; USA), or b-actin (1:4000;

Abcam; ab52614; USA) at 4 �C overnight. The membranes

were then washed forth with PBST and probed with a

horseradish peroxidase-coupled secondary antibody
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(1:5000; Jackson; 115-005-003; USA) at room temperature

for 1–2 h. Finally, these membranes were washed repeat-

edly with PBST and visualized by chemiluminescence

ECL with X-ray film exposure. The density of each band

was measured with ImageJ software.

Statistical Analysis

All data are expressed as mean ± SD (standard deviation)

and evaluated by SPSS software 17.0. Repeated measure-

ments were performed to determine overall differences in

pain behavior changes over time. The effects of treatments

upon the expression of GRK2 protein in spinal cord were

analyzed by means of one-way analysis of variance

(ANOVA), followed by Bonferroni’s Multiple Comparison

Test. P value\0.05 was accepted as significant.

Results

Bone Cancer Pain Behaviors Induced by Walker 256

Rat Mammary Gland Carcinoma Cells Over Time

As shown in Fig. 1, baseline measurements were similar in

different groups. At day 4 after surgery, both sham group

and tumor-bearing group rats displayed increased scores of

ambulatory pain and decreased PWMT of the ipsilateral

hind limb (P[ 0.05). However, on day 7, the pain

behavior values of sham group returned to baseline, while

significant differences were in tumor-bearing group

(P\ 0.05). Furthermore, the rats gradually displayed a

profound decrease in PWMT and increase in ambulatory

pain scores in tumor-bearing group on day 10. ANOVA

revealed a significant effect of time (Mechanical hyperal-

gesia assessment: F3,56 = 17.463, P\ 0.001; Ambulatory

pain assessment: F3,56 = 30.231, P\ 0.001) and a signif-

icant time * group interaction (Mechanical hyperalgesia

assessment: F3,56 = 18.512, P\ 0.001; Ambulatory pain

assessment: F3,56 = 30.846, P\ 0.001). Taken together,

the ambulatory pain and mechanical allodynia were suc-

cessfully induced by tibia inoculation with Walker 256 rat

mammary gland carcinoma cells.

Spinal CB2 and GRK2 Protein Expression During

Bone Cancer Pain

To evaluate whether CB2 and GRK2 expression in spinal

cord changed along with the ongoing bone cancer pain,

Western bolt analysis was performed to quantify CB2 and

GRK2 levels on postoperative days -1 (baseline), 4, 7, and

10. Compared with the sham group, CB2 expression in the

tumor-bearing group was significantly increased overtime

10 days after surgery. However, the expression of GRK2

decreased in a time-dependent manner after surgery

(F3,32 = 19.161, P\ 0.001). The decrease started from

postoperative day 4 and remained until postoperative day

10 (Fig. 2). Furthermore, there was a significant reduction

of spinal GRK2 levels in tumor-bearing group since day 7

after surgery (P\ 0.01). However, no corresponding

changes were observed in the sham group. These data

confirmed that spinal GRK2 level was gradually decreasing

in the progression of bone cancer pain.

Administration of JWH-015 Alleviated Bone

Cancer-Induced Mechanical Allodynia

and Ambulatory Pain

To address whether administration of JWH-015 could

indeed attenuate bone cancer pain and to determine the

antinociceptive effects of intrathecal administration of

Fig. 1 Development of mechanical allodynia and ambulatory pain

following intramedullary injection of Walker 256 rat mammary gland

carcinoma cells (n = 8). Mechanical allodynia and ambulatory pain

were, respectively, evaluated by PWMT and scores of ambulatory

pain. PWMT to von Frey filaments (a) progressively decreased over

time in tumor-bearing group. The scores of ambulatory pain

(b) progressively increased over time in tumor-bearing group.

Significant difference was detected since 7 days after surgery and

stable at day 10. Date were presented as mean ± SD. #P\ 0.05,
##P\ 0.01 versus baseline; *P\ 0.05, **P\ 0.01 versus sham

group rats
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JWH-015 (10 lg/10 ll) and intraperitoneal administration

of JWH-015 (100 lg/500 ll) on bone cancer pain behav-

iors, we analyzed the pain behavior over time in various

groups. On day 10, all animals underwent bone cancer

pain, and no significant differences of pain behaviors were

shown in different groups. After intrathecal administration

of JWH-015, there was an upward tendency of PWMT and

a downward tendency of ambulatory pain scores. And there

was a significant effect of time (Mechanical hyperalgesia

assessment: F8,336 = 258.998, P\ 0.001; Ambulatory

pain assessment: F8,336 = 167.135, P\ 0.001). However,

there were no significant differences at 2 h after injection

(Fig. 3). Actually, the antinociceptive effect of JWH-015

was beginning at 6 h after injection (P\ 0.05) and sus-

tained for at least 48 h after injection (P[ 0.05). More-

over, the analgesia effect of JWH-015 reached its peak at

24 h after injection (P\ 0.01). As controls, the pain

behaviors did not differ in the DMSO treated rats. This

result suggested the antinociceptive effect of JWH-015 was

a slow-onset and long-duration response in this model.

However, the antinociceptive effect of JWH-015 occurred

in a reversible manner, as it was reversed in the presence of

specific CB2 antagonist AM630 (P\ 0.05). This was

manifested by no significant changes of the PWMT and

ambulatory pain scores in AM630 group. When exploring

the difference of i.t. and i.p. JWH-015 effect, we found that

pain behaviors of JWH-015 (i.p.) group and JWH-015 (i.t.)

group were maintained the same trend. Neither AM630

(i.p.) nor DMSO (i.p.) elicited any significant effect on pain

behaviors (P[ 0.05). ANOVA showed a significant time *

group interaction (Mechanical hyperalgesia assessment:

F40,336 = 4.493, P\ 0.001; Ambulatory pain assessment:

F40,336 = 6.418, P\ 0.001). And at these doses, there

were no significant differences between the two groups

(P[ 0.05).

Effect of JWH-015 on Bone Cancer-Induced GRK2

Reduction

To assess the potential effects of JWH-015 on the expression

of spinal GRK2, Western bolt was used to analyze the level

of spinal GRK2 on postoperative day 10 and at post-treat-

ment hours 6, 24, and 72. As shown in Fig. 4, the expression

of GRK2 was inhibited in tumor-bearing group. After

intrathecal injection or intraperitoneal injection of JWH-

015, the expression of GRK2 was increased at 6 h

(P[ 0.05). This change peaked at 24 h (P\ 0.05). How-

ever, the level of GRK2 at 72 h closely approximated to the

level before treatment (P[ 0.05). This was consistent with

the effect on pain behaviors. In contrast, no corresponding

changes were exhibited in AM630 and vehicle-treated

groups. Both time (F3,96 = 5.754, P\ 0.001) and drug

effects (F5,96 = 6.223, P\ 0.001) were significant, as was

the interaction between these factors (F15,96 = 1.918,

P\ 0.05). These results converged to suggest that the

reduction of GRK2 induced by bone cancer pain could be

prevented by CB2-selective agonist JWH-015. Furthermore,

local or systemic administration of JWH-015 at the doses in

this study showed no differences.

Fig. 2 CB2 and GRK2 expression levels in the spinal cord of sham

group and tumor-bearing group (n = 5). Western blots (a) and

statistical analysis (b) for CB2 and GRK2 in sham group and tumor-

bearing group 4, 7, and 10 days after surgery. CB2 expression was

first evident and significantly up-regulated at 7 days after inoculation

with Walker 256 rat mammary gland carcinoma cells, and then these

values increased over time. GRK2 expression was first evident and

significantly downregulated at 7 days after inoculation with Walker

256 rat mammary gland carcinoma cells, and then these values

decreased over time. No corresponding changes were observed in the

sham group rats. #P \ 0.05, ##P\ 0.01 versus base-

line; *P\ 0.05, **P\ 0.01 versus sham group rats
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Discussion

CB2 receptor selective agonists have been shown anal-

gesic effects in some preclinical models of inflammatory,

neuropathic, and bone cancer pain (Romero-Sandoval et al.

2008; Yao et al. 2008). CB2 receptors were previously

thought to be restricted to immune system in the periphery

(Facci et al. 1995; Howlett et al. 2002). Subsequently, a

few CB2 receptors were also presented in CNS regions and

with an upregulation in the sites involved in nociception

(Atwood and Mackie 2010; Di Marzo 2011). In our pre-

vious studies, intrathecal administration of JWH-015 (0.5,

1, and 2 lg) attenuated tumor-evoked tactile allodynia and

thermal hyperalgesia in mice, and the effect was dose

dependent (Gu et al. 2011). In a rat model, intrathecal

injection of JWH-015 (10 lg/10 ll) attenuated remifen-

tanil-induced postoperative hyperalgesia (Sun et al. 2014).

So a dose of 10 lg/10 ll of JWH-015 was selected. And

combined with domestic and overseas literatures, there is

no equivalent dose of JWH-015 by intrathecal or

intraperitoneal injection. Then, JWH-015 in an effective

dose (100 lg/500 ll) was intraperitoneally injected to

another bone cancer group at the same time (Romero-

Sandoval and Eisenach 2007; Romero-Sandoval et al.

2008). In the present study, both intrathecal administration

and intraperitoneal administration of JWH-015 had anal-

gesic effects and could recover spinal GRK2 expression

levels. These results suggested both peripheral and central

CB2 receptors contributed to bone cancer pain. Our pre-

vious studies displayed that the upregulation of the NR2B

subunits of NMDAR contributed to bone cancer pain in

mice (Gu et al. 2010), and intrathecal administration of

JWH-015 decreased NR2B mRNA expression and attenu-

ated bone cancer pain (Gu et al. 2011). In conclusion, we

suggest CB2 receptor agonists may elicit the analgesic

effects via various pathways.

In the family of GRKs, which is familiar to regulate

homologous desensitization of a wide range of agonist-

occupied GPCRs, GRK2 is the most studied member

(Lombardi et al. 2002). GRK2 is expressed in all tissues

especially in nervous and immune system (Vroon et al.

2006). The desensitization evoked by GRK2 is dependent

Fig. 3 JWH-015 administration alleviated mechanical hyperalgesia

and spontaneous pain in a time-dependent manner (n = 8). Pain

behaviors were assessed at 1 day before surgery (baseline), 4, 7, and

10 days after surgery and at 2, 6, 24, 48, and 72 h after different

treatments. Changes of PWMT (a) and ambulatory pain (b) in tumor-

bearing group after intrathecal injection of JWH-015 (10 lg/10 ll);

changes in PWMT (c) and ambulatory pain (d) in tumor-bearing

group after intraperitoneal injection of JWH-015 (100 lg/500 ll).

Significant changes were showed at 24 h after JWH-015 administra-

tion compared with AM630 or DMSO administration. Each group

used eight rats. Date were presented as mean ± SD. *P\ 0.05,

**P\ 0.01 versus day 10
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on the phosphorylation of intracellular serine, threonine

residues, and the binding of b-arrestins that promote

internalization of receptors. This process can prevent cells

from overstimulation. Conversely, cells with a reduced

expression of GRK2 protein may display prolonged sig-

naling in response to the activation of GPCRs (Homan

et al. 2013; Vroon et al. 2006). GRK2 is also revealed to

interact with specific downstream intracellular kinases,

including Akt, p38 mitogen-activated protein kinase

(MAPK) and extracellular signal-regulated kinase (ERK)

1/2 (Jimenez-Sainz et al. 2006; Peregrin et al. 2006; Ribas

et al. 2007). In addition, GRKs and arrestins might interact

with non-GPCR, such as epidermal growth factor (EGF)

(Porcile et al. 2004). In vivo, GRK2 protein level in neu-

rons in the spinal horn significantly reduced after

neuropathic pain (Kleibeuker et al. 2007, 2008). The

increased sensitivity of pain sensing neurons could result in

hyperalgesia and allodynia (Woolf and Ma 2007). Our

current results also revealed that GRK2 was involved in the

progression of Walker 256 rat mammary gland carcinoma

cell-induced bone cancer pain. Recently, it was well

established that activated microglia and astrocytes released

pro-inflammatory cytokines and induced the process of

sensitization (Gao and Ji 2009; Kawasaki et al. 2008; Lee

et al. 2010). All these could contribute to chronic hyper-

algesia in different models of neuropathic pain (Clark et al.

2007; DeLeo and Yezierski 2001; Milligan and Watkins

2009). Considerable evidence suggests that glial-neuronal

cross-talk is essential to develop neuropathic pain (Fields

and Stevens-Graham 2002; Guo et al. 2007). And low level

Fig. 4 GRK2 expression after

JWH-015, DMSO, and

AM630 ? JWH-015

administration in tumor-bearing

group (n = 5). a Western blots

for GRK2 in spinal cord at

different time after different

interventions; b Changes in

GRK2 protein levels in spinal

cord of tumor-bearing rats after

intrathecal injection of JWH-

015 (10 lg/10 ll); c Changes in

GRK2 protein levels in spinal

cord of tumor-bearing rats after

intraperitoneal injection of

JWH-015(100 lg/500 ll).

*P\ 0.05, **P\ 0.01 versus

day 10
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of GRK2 facilitated ongoing activation of microglia and

astrocytes (Eijkelkamp et al. 2010). Hence, the changes in

GRK2 levels contribute to the duration and severity of pain

under different neurobiological mechanisms.

In summary, Walker 256 rat mammary gland carcinoma

cells could induce bone cancer pain accompanied by the

downregulation of GRK2 in the spinal cord of rats. CB2

receptor selective agonist JWH-015 showed antiallodynic

effects and recovered spinal GRK2 expression levels.

These effects were slow onset but long duration, and there

were no significant differences between two routes of

administration at certain doses. Combining with com-

pelling evidences that GRK2 degradation could contribute

to pain, we suggested CB2 receptor agonists were poten-

tially important new treatment targets for bone cancer pain.

Moreover, spinal GRK2 was an important regulator of CB2

receptor-analgesia pathway.
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