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Abstract Ginsenosides are the major active components

of ginseng, which have been proven to be effective in

therapies for neurodegenerative diseases. Ginsenoside Rb1

(GS-Rb1) is the most abundant among all the identified

ginsenosides and has been shown to exert neuroprotective

effects, although the underlying molecular mechanisms

remain unclear. Connexins are a family of transmembrane

proteins that form gap junctions, which are important for

diffusion of cytosolic factors such as ions and second

messenger signaling molecules. Previous studies have

shown that a subset of connexin proteins is involved in

neuroprotection. We investigated the protective effects of

GS-Rb1 against traumatic brain injury (TBI) and the

potential mechanism using TBI mouse model. We dis-

covered that TBI-induced brain injury and up-regulation of

connexin40 (Cx40) protein expression as early as 6 h post-

TBI, which was reversed by administration of GS-Rb1. In

addition, we found that the protective effects of GS-Rb1

are dose and time dependent and are partially mediated

through phosphorylation of ERK1/2 signaling pathway, as

evidenced by the abolishment of GS-Rb1-mediated eleva-

tion of p-ERK1/2 expression and inhibition of Cx40

expressions when ERK inhibitor U0126 was used. Our

study provides evidence that Cx40 is implicated in TBI-

induced brain injuries, and GS-Rb1 exerts neuroprotective

activity against TBI involving down-regulation of Cx40

expression.
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Introduction

Ginseng, the root of Panax ginseng C.A. Meyer, has been

widely used for over 2000 years in east Asia and has been

gaining popularity in the west during the past decades (Cho

2012; Park et al. 2012). Ginsenosides, the major active

components of ginseng, have been demonstrated to provide

therapeutic value for treatment of neurodegenerative dis-

eases (Cheng et al. 2005, 2013; Cho 2012). To date, more

than 40 different ginsenosides have been identified and

isolated from different species of ginseng (Cheng et al.

2005). Ginsenosides are generally categorized as pro-

topanaxadiol (PPD), protopanaxatriol (PPT), and oleanane

saponins, based on the chemical structure (Christensen

2009). Ginsenoside Rb1 (GS-Rb1), a member of PPT sub-

family, is the most abundant among all the identified gin-

senosides and has received wide attention due to its diverse

biological activities (Cheng et al. 2013). It has been

reported that GS-Rb1 exhibits neuroprotective effects on

cortical neurons and dopaminergic neurons against gluta-

mate toxicity (Chen et al. 2010; Radad et al. 2004), pos-

sesses suppressive effect on local inflammation in rats with

cerebral ischemia as well as in a rat model of Alzheimer’s

disease (Wang et al. 2011; Zhu et al. 2012), and protects

against cerebral ischemia in rats by promoting neurogen-

esis (Gao et al. 2010). Other studies have provided evi-

dence showing that GS-Rb1 can enhance nerve growth

factor (NGF)-mediated neurite outgrowth of cultured chick

embryonic dorsal root ganglia (Nishiyama et al. 1994),

prevent MPP?-induced apoptosis in PC12 cells (Hashimoto

et al. 2012), and improve spatial learning and increases
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hippocampal synaptophysin level in mice (Mook-Jung

et al. 2001). All these studies suggest the potential thera-

peutic value of GS-Rb1 for treatment of neurological dis-

orders. However, the mechanism by which GS-RB1 exerts

its neuroprotective effects is not clear.

Gap junctions are composed of thousands of intercel-

lular channels permeable to cytosolic factors, such as ions

and second messenger signaling molecules (Smyth et al.

2014; Jara et al. 1995). Connexins (Cx) are widely dis-

tributed proteins that oligomerize into hexameric trans-

membrane channels termed connexons, which forms gap

junction when coupled with connexons on the surface of

neighboring cells (Smyth et al. 2014). Several pieces of

evidence suggest that gap junction proteins play important

roles in neuroprotection using different pharmacological as

well as genetic approaches. However, the conclusions

remain controversial (Contreras et al. 2004). There are

several types of connexin proteins, such as Cx23, Cx43,

and Cx40, among which Cx43 is the most widely studied

(Smyth et al. 2014; Contreras et al. 2004). Cx43 has been

reported to be involved in neuroprotection against reper-

fusion-induced injury, after global cerebral ischemia, etc.

(Li et al. 2005; Davidson et al. 2013). As a close family

member of Cx43, Cx40 has been shown to be necessary for

recovery of ischemic hindlimb perfusion, and both Cx40

and Cx43 have been reported to be involved in

atherosclerosis and ischemia–reperfusion injury (Morel and

Kwak 2012; Fang et al. 2012). In addition, the absence of

Cx40 gene polymorphism has been found in patients with

unexplained cerebral ischemic events (Chaldoupi et al.

2009). However, the neuroprotective effects of Cx40 have

not been investigated in detail.

In our study, we investigated the neuroprotective

mechanism of GS-Rb1 post-traumatic brain injury (TBI)

and the potential implication of Cx40 gap junction protein

in this process.

Materials and Methods

Animals

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health.

The protocol was approved by the Committee on the Ethics

of Animal Experiments of The People’s Hospital of Pu

Dong New Area. All surgery was performed under sodium

pentobarbital anesthesia, and all efforts were made to

minimize suffering. Wistar rats were purchased from

SLAC laboratory animal (Shanghai, China). TBI model

was generated via CCI as described before with some

modifications (Chen et al. 2003). Briefly, wistar rats were

anesthetized with 4 % isoflurane in oxygen and placed in

the stereotaxic frame. A 3.5-mm-diameter craniotomy was

performed over the right parietal cortex between bregma

and lambda, 1 mm lateral to the midline. A pneumatic

piston impactor device (3 mm diameter, rounded tip) was

used to induce injury in the brain at the center of the

craniotomy at a depth of 1 mm (velocity 4.5 m/s). Rats

were randomly divided into three groups: sham operation

(Sham), vehicle injection (veh), and GS-Rb1 injection (GS-

Rb1). Sham-operated mice underwent identical surgical

procedures but did not receive a CCI. Immediately after

TBI, rats were randomly subjected to receiving vehicle or

GS-Rb1 via intraperitoneal injection. For each single

experiment at every time point, six animals were used.

Brain Infarction Measurement

Rats from each group were subjected local infarct volume

measurements, as previously described (Swanson et al.

1990). Briefly, after reperfusion, brains were removed and

immediately frozen in isopentane cooled with dry ice, and

serial sections from anterior to posterior were prepared as

2 mm slices. Samples were stained in 2 % 2,3,5-triph-

enyltetrazolium chloride (TTC, Sigma, St. Louis, MO,

USA) for 20 min at 37 �C and then fixed in 10 % buffered

formaldehyde for 24 h. After TTC staining, the infarcted

brains were visualized as an area of unstained (white) tis-

sue and measured using Image-Pro Plus 6.0 software. The

data represent the percentage of infarct volume per ipsi-

lateral hemisphere volume in the coronal slices.

Brain Water Content

Brain water content was measured using Hatashita’s wet–

dry method (Hatashita et al. 1988). Briefly, rats were killed

by cervical dislocation, and their brains were immediately

removed and placed onto a frozen plate and then weighed

to determine wet weight. Next, brains were dried in a

desiccating oven at 110 �C for 24 h and weighed again to

determine dry weight. Brain water content was calculated

using the following formula: brain water content

(%) = (wet weight - dry weight) 9 100/wet weight.

Neurological Score

Neurological deficit was evaluated using the Neurological

Severity Score (NSS) on a 10-point scale according to

Chen’s method (Chen et al. 1996) by a researcher blinded

to treatment. On this scale, one point represents failure of

one of 10 tasks, such that the maximum score of 10 points

indicates severe neurological dysfunction, whereas 0 point

indicates normal function.
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Western Blot Analysis

Western blot analysis on brain tissue was performed as

previously described (Deng et al. 2014). Briefly, whole

cell lysate from the tissues was extracted using RIPA lysis

buffer (Santa Cruz) containing 1 % protease inhibitor

cocktail. For electrophoresis, a total of 30 lg of protein

were loaded onto a 12 % SDS-PAGE gel. After transfer,

membranes were blocked in 5 % non-fat milk in Tris-

buffered saline (TBS)/Tween-20 (0.2 %) overnight at

4 �C and then incubated with rabbit polyclonal antibodies

against Cx40 (1:500, Santa Cruz), p-ERK1/2 (Y204,

1:500, Santa Cruz), ERK1/2 (H197, 1:500, Santa Cruz),

and GAPDH (1:2000, Santa Cruz) diluted in TBS/T for

1 h at 37 �C. After three washes in TBS/T, the mem-

branes were incubated with anti-rabbit IgG conjugated to

HRP (Zhongshan Golden Bridge Biotechnology) at a

dilution of 1:2000 in TBS/T for 40 min at 37 �C. The

immunoreactive bands were visualized with an enhanced

chemiluminescence kit (Zhongshan Golden Bridge

Biotechnology).

RT-PCR

Non-fixed brains from injured or sham animals were

removed after cervical dislocation 6, 12, 24, 48, and 72 h

following injury or sham surgery. A 3-mm coronal sec-

tion was taken from the injured area or the contralateral

hemisphere over the parietal cortex, snap-frozen in liquid

nitrogen, and stored at -70 �C until use. RT-PCR was

performed as previously described (Hung et al. 2006).

The total was extracted using RNeasy Mini Kit (Qiagen,

CA, USA). Then 1 lg RNA was converted to cDNA

using a First Strand cDNA Synthesis Kit (Roche). Real-

time quantitative PCR reactions were set up in triplicate

with Ssofast Master Mix (Biorad) and run on a

LightCycler� 480 (Roche). The following primers were

used in the current study: Cx40: (Fwd: TTT GGC AAG

TCA CGG CAG GG, Rev: TTG TCA CTG TGG TAG

CCC TGA GG); GAPDH: (Fwd: GGC ACA GTC AAG

GCT GAG AAT G, Rev: ATG GTG GTG AAG ACG

CCA GTA).

Statistical Analysis

Statistical analysis was performed using SPSS 16.0 soft-

ware. Data are presented as mean ± standard error of the

mean (SEM). Two-way analysis of variance (ANOVA)

followed by Tukey’s post hoc test was used to determine

between-group differences. Statistical difference was con-

sidered to be significant only if p\ 0.05.

Results

TBI-Induced Brain Injuries and Up-Regulated Cx40

Expression

Consistent with previous reports, we found that TBI-in-

duced brain injuries gradually within 24 h after TBI

induction as demonstrated by increased brain infarction

volume, brain water content, and neurological deficiency

(Fig. 1a–c). These effects leveled off with moderate

recovery between 24 and 72 h. Importantly, we observed

concomitant up-regulation of Cx40 in both mRNA and

protein levels as early as 6 h after TBI induction (Fig. 1d–

f) and slight decrease between 24 and 72 h post injury,

suggesting that Cx40 is involved in TBI-induced brain

injuries.

Dose-Dependent Protective Effects of GS-Rb1

Against TBI-Induced Brain Injuries

Previous studies reported that GS-Rb1 exhibited dose-de-

pendent effects on angiogenesis, neural plasticity and

apoptosis, etc. (Cheng et al. 2005, 2013; Kimura et al.

2012). We set out to evaluate the potential dose-dependent

protective effects of GS-Rb1 at four different doses. As

shown in Fig. 2, 20 and 40 mg/kg of GS-Rb1 showed

maximum recovery from TBI-induced brain injuries, while

5 mg/kg GS-Rb1 treatment failed to induce significant

differences compared to vehicle administration, as evi-

denced by brain infarction volume, brain water content and

neurological severity scores. Therefore, we used 20 mg/kg

for the following study.

Cx40 was Implicated in GS-Rb1-Mediated

Neuroprotective Effects Against TBI-Induced Brain

Injury

We next investigated time-dependent protective effects of

GS-Rb1 on TBI-induced brain injury. As shown in Fig. 3a–

c, 20 mg/kg of GS-RB1 significantly reduced brain

infarction volume, brain water content, and neurological

deficit as early as 6 h post-TBI, and these protective effects

persisted till 72 h post-TBI. Concomitantly, we observed a

decrease of mRNA as well as protein levels of Cx40 in the

same time-dependent manner (Fig. 3d–f), suggesting that

Cx40 is implicated in GS-Rb1-mediated neuroprotective

effects against TBI-induced brain injury. Furthermore, to

investigate the possible correlation between Cx40 expres-

sion and brain injury, Cx40 expression after TBI to brain

infarction volume was compared by using Spearman’s

correlation coefficient (R), and the result (Fig. 3g,

Cell Mol Neurobiol (2016) 36:1057–1065 1059

123



R = 0.8623) suggested Cx40 expression was indeed posi-

tively correlated with the brain infarction volume.

The ERK1/2 Signaling Pathway was Involved

in the Protective Effects of GS-Rb1 on TBI-Induced

Brain Injuries

Phospho-ERK has been reported to be involved in neuro-

protective activity of leptin against brain ischemic injury

(Deng et al. 2014). To elucidate the mechanism of

neuroprotective effects of GS-Rb1, the expressions of

p-ERK1/2 and Cx40 were assessed in the presence and

absence of ERK inhibitor, U0126 (500 lg/kg, intravenous
injection). p-ERK1/2 expression was notably decreased in

brains compared with that of sham group 6 h post-TBI,

which was partially reversed by GS-Rb1 administration

(Fig. 4a). Cx40 expression was significantly elevated in

brains after TBI, and GS-Rb1 treatment was able to reverse

this elevation (Fig. 4b). U0126 treatment immediately after

TBI greatly abolished the GS-Rb1-induced elevation of

Fig. 1 Brain injuries and Cx40 mRNA and protein expression in

cortex at indicated time after TBI (6, 12, 24, 48, and 72 h). Brain

injuries are characterized by brain infarction volume (a), brain water

content (b), and neurological severity score (c). The mRNA

expressions of Cx40 in the cortex of different experimental groups

were analyzed by RT-PCR (d). Cx40 protein expression was analyzed
by Western blotting (e), while the relative optical densities of Cx40

normalized to GAPDH were shown (f). Six animals were used for

each time point. Data are presented as mean ± SEM, *p\ 0.05 and
#p\ 0.01 versus sham control

Fig. 2 Dose-dependent protective effects of GS-Rb1 against TBI-

induced brain injuries. Animals were tested and samples were

collected at 24 h post-TBI. Brain infarction volume (a), brain water

content (b), and neurological severity score (c) were analyzed in the

rats treated by saline (veh) or different dose of GS-Rb1 (5, 10, 20 and

40 mg/kg). Six animals were used for each experimental group. Data

are presented as mean ± SEM. *p\ 0.05 and #p\ 0.01 versus sham

control; ?p\ 0.05 and ^p\ 0.01 versus veh control
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p-ERK1/2 expression and largely blocked the GS-Rb1-

mediated inhibition of Cx40 expression, suggesting the

activation of ERK1/2 is essential for GS-Rb1-mediated

neuroprotection against brain injuries.

Discussion

TBI represents brain dysfunction resulting from external

mechanical forces of shearing, tearing or stretching (Wang

et al. 2015). It induces contusion, hemorrhage, and a series

of complex inflammatory responses that lead to secondary

injuries (Wang et al. 2015; Chen et al. 2007). Neural

inflammation is associated with activation of microglia,

which can release various neurotoxic substances that may

contribute to neuronal death after TBI (Kreutzberg 1996).

TBI-induced inflammatory cascade also results in the

release of various pro- and anti-inflammatory cytokines,

among which interleukin-1 beta (IL-1b) and tumor necrosis

factor alpha (TNF-a) are the two well-characterized pro-

inflammatory cytokines that elevate after TBI (Taupin et al.

1993). Inhibition of TBI-induced expression of IL-1b and

TNF-a has been shown to exhibit neuroprotective effects in

mice and rats (Wang et al. 2015).

Fig. 3 GS-Rb1 (20 mg/kg) significantly attenuated TBI-induced

brain injuries and Cx40 mRNA and protein expression in the cortex

at different time points post-TBI (6, 12, 24, 48, and 72 h). Brain

infarction volume (a), brain water content (b), and neurological

severity score (c) were examined in veh and 20 mg/kg GS-Rb1

treated groups at indicated time. The mRNA expressions of Cx40 in

the cortex of veh and 20 mg/kg GS-Rb1 groups were analyzed by RT-

PCR (d). Cx40 protein expression was analyzed by Western blotting

(e), while the relative optical densities of Cx40 normalized to

GAPDH were shown in (f). g Correlation study of Cx40 expression

and brain infarction volume by using Spearman’s correlation

coefficient. Six animals were used for each single experiment at

every time point. Data are presented as mean ± SEM, ?p\ 0.05 and
^p\ 0.01 versus veh group
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GS-Rb1 is the major active component of ginseng

extracts, which exerts multiple biological functions

including anti-inflammatory, anti-apoptosis, and neuro-

protective activities (Cheng et al. 2013). It has been

reported that GS-Rb1 can prevent IL-1b-induced inflam-

mation and apoptosis in human articular chondrocytes, and

reduce inflammation in obese mice fed on high-fat diet

through regulation of inflammatory and apoptotic genes

(Cheng et al. 2013; Wu et al. 2014). It has also been

reported to protect neural progenitor cells against oxidative

injury in rats by activating Nrf2 pathway (Ni et al. 2014).

More importantly, GS-Rb1 has been shown to exert neu-

roprotective activities in cortical neurons and dopaminergic

neurons and in rats with cerebral ischemia, partially

through regulation of local inflammatory responses, apop-

totic machinery, and promotion of neurogenesis (Chen

et al. 2010; Radad et al. 2004; Wang et al. 2011; Zhu et al.

2012; Gao et al. 2010). In our present study, we demon-

strated that administration of GS-Rb1 decreased TBI-in-

duced brain infarct volume in rats and attenuated TBI-

induced brain edema and neuronal deficit. These results

suggest that GS-Rb1 exerts neuroprotective activities

against TBI.

It has been reported that GS-Rb1 in orally administered

ginseng is metabolized to bioactive compound K before

being absorbed into the blood stream (Kim et al. 2013).

These metabolizing activities are significantly different

between individuals depending on the composition of gut

microbiota (Kim et al. 2013). Other reports also showed

that different concentrations of GS-Rb1 exerted differential

effects on wound healing or angiogenesis after adminis-

tration (Cho et al. 2015; Kimura et al. 2012). These reports

suggest that the biological actions of GS-Rb1 are dose

dependent. In agreement with previous reports, our data

showed that the neuroprotective effects of GS-Rb1 against

TBI were also indeed dose dependent, with 20 and 40 mg/

kg being the optimal dosages in our animal model.

Connexin proteins are integral components that form

hemichannels or gap junction complexes which allow for

exchange of ions and small molecules (Smyth et al. 2014).

Gap junction channels play important roles in brain dam-

age in vitro as well in vivo (Contreras et al. 2004). It is

proposed that detrimental molecules can spread from more

injured to less-injured cells to harm the latter when coupled

cells are subjected to stress or injury; similarly, healthy

molecules can spread the other way around. The ultimate

consequences depend on the balance of these two actions

(Contreras et al. 2004). A growing body of evidence

showed that gap junction channels contribute to ischemic

brain injury, although the conclusions remain controversial

(Contreras et al. 2004). The first evidence supporting the

role of gap junctions in mediating spread of damage in

CNS was that octanol, a gap junction blocker, reduced

infarct volume after focal ischemia (Rawanduzy et al.

1997). A recent study showed that blockage of connexin

hemichannel was neuroprotective after global cerebral

ischemia in near-term fetal sheep (Davidson et al. 2013). In

the rat brain, down-regulation of specific connexins

Fig. 4 The ERK1/2 signaling pathway was involved in the protective

effects of GS-Rb1 on TBI-induced brain injuries. The animals were

treated by 20 mg/kg GS-Rb1 and sacrificed for Western blot analysis

at 6 h post-TBI. U0126 was used as inhibitor for ERK signaling

pathway. a Representative Western blot bands of pERK1 and total

ERK1/2 in sham-, veh-, 20 mg/kg GS-Rb1-treated groups and co-

treatment of 20 mg/kg GS-Rb1 and U0126 group, and relative optical

density of pERK1/2 to total ERK1/2. b Western blot analysis and

relative optical density of Cx40 expression in the experimental

groups. GAPDH was used as control. Data are presented as

mean ± SEM, *p\ 0.05 and #p\ 0.01 versus sham control,
^p\ 0.01 versus veh group\ 0.01 versus GS-Rb1-treated group
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reduced neuronal cell death in a global ischemia model

(Frantseva et al. 2002a). There are several family members

of connexin proteins, among which Cx43 is one of the best

characterized. It has been shown that Cx43 exerted detri-

mental effects in models of focal ischemia and other neu-

rodegenerative conditions (Schulz et al. 2015). Brain slices

from Cx43 deficient mice exhibited markedly reduced

neuronal cell death (Frantseva et al. 2002b). Inhibition of

Cx43 has been shown to be involved in leptin mediated

neuroprotection against brain ischemic injury (Deng et al.

2014). Although being a close family member of Cx43, the

potential involvement of Cx40 in neuroprotection is poorly

investigated. In our study, we observed an up-regulation of

Cx40 as early as 6 h post-TBI which persisted till 72 h

post-TBI. Administration of GS-Rb1 reversed these effects,

suggesting that Cx40 is involved in GS-Rb1 mediated

neuroprotection. This is the first evidence that Cx40 may

be implicated in neuroprotection. However, it remains to be

determined how Cx40 expression is up-regulated in

response to GS-Rb1 treatment and how this up-regulation

confers neuroprotective activities. Of note, although our

study does not provide direct evidence showing whether

GS-Rb1 blocks hemichannels or gap junction channels, we

think GS-Rb1 is almost impossible to block this type of

channels. First of all, hemichannels are transported to the

surface membrane after assembly, and they remain closed

until docking with a hemichannel in an apposed membrane.

Second, gap junction channels connect cells via channels

not open to the extracellular space.

Many connexin proteins, including Cx40, have been

demonstrated to be phosphoproteins (Solan and Lampe

2005). Previous reports demonstrated that activation of

MEK/ERK signaling pathways may be involved in leptin

mediated neuroprotection by regulation of Cx43 expression

(Deng et al. 2014; Weng et al. 2007). In addition, Cx40 has

been shown to be the major target involved in

lipopolysaccharide-induced decrease in electrical coupling

in microvascular endothelial cells in an ERK1/2-dependent

manner (Bolon et al. 2007). Our results showed that TBI

induced a decrease in phosphorylation of ERK1/2, whereas

GS-Rb1 significantly up-regulated ERK1/2 phosphoryla-

tion post-TBI, supporting an important role of ERK1/2

signaling pathway in GS-Rb1 mediated neuroprotection

against TBI, potentially through regulation of Cx40

expression. Meanwhile, when U0126, an ERK pathway

inhibitor, was administrated immediately after TBI, it was

able to greatly abolish the GS-Rb1-induced elevation of

p-ERK1/2 expression and largely block the GS-Rb1-me-

diated inhibition of Cx40 expression, strongly indicating

that the activation of ERK1/2 is essential for GS-Rb1-

mediated neuroprotection against TBI. Further research is

needed to unravel the detailed link between activation of

ERK signaling pathway and Cx40 expression.

In conclusion, our study shows a positive relationship

between TBI-induced brain injuries and Cx40 expression.

Also, we demonstrated neuroprotective effects of GS-Rb1

against TBI and provided the first evidences that expres-

sion of Cx40 may be involved in GS-Rb1 mediated neu-

roprotection. GS-Rb1 may represent a valuable therapeutic

reagent for clinical treatment of TBI.
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