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Abstract Patients with high-grade gliomas and glioblas-

tomas (GBMs) have poor survival despite optimal surgical

and drug therapy. Minimally invasive diagnostic biomarkers

would enable early diagnosis and tumor-specific treatments

for ‘personalized targeted’ therapy, and would create the

basis for response tracking in patients with GBM. Extracel-

lular vesicles (EVs) isolated from cerebrospinal fluid and

blood contain glioma-specific molecules, including tumor-

derived EV RNAs that are detectable in small copy numbers

in these biofluids. EV RNAmutations or expression changes

are also detectable, the analysis of which gives rise to ‘liquid

biopsy’ tumor profiling.
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Introduction

Glioblastoma (GBM) is the most aggressive primary brain

tumor. Despite advances in radiation therapy and

chemotherapeutic agents, fewer than one in five patients sur-

vive two years from diagnosis (Darefsky et al. 2012). This

poor survival reflects tumor-induced angiogenesis, cellular

invasion of surrounding brain, and tumor-derived immune

suppression (Ricci-Vitiani et al. 2010; Wang et al. 2010;

Bonavia et al. 2011). GBMs are molecularly heterogeneous,

which limits the effectiveness of standardized therapies. In the

past few years, GBM heterogeneity has come under scrutiny,

beginning with the identification of four molecular subtypes

(Verhaak et al. 2010). These subtypes termed ‘‘proneural,’’

‘‘classical,’’ ‘‘mesenchymal,’’ and ‘‘neural’’ have unique gene

signatures based on amplified expression of wild-type genes

or mutations in tumor-related genes. Specifically, the

‘‘proneural’’ subtype is defined by focal amplifications in the

tyrosine kinase cell surface growth factor receptor platelet-

derived growth factor receptor alpha (PDGFRA), and point

mutations in the enzyme isocitrate dehydrogenase 1 (IDH1), a

catalyst for production of the anti-oxidative molecule

NADPH (nicotinamide adenine dinucleotide phosphate). The

‘‘classical’’ subtype is associated with amplifications and

mutations in the cell surface tyrosine kinase receptor epider-

mal growth factor receptor (EGFR), a critical player in cell

differentiation and proliferation. The ‘‘mesenchymal’’ sub-

type possesses high rates of mutations in the gene neurofi-

bromin 1 (NF1), a negative regulator of Ras signaling

pathways that promote cell growth and division, and the

neural subtype expresses high levels of neuronal markers,

including neurofilament light polypeptide (NEFL), the neu-

rotransmitter receptor GABRA1 (gamma-aminobutyric acid

A receptor alpha 1), the synaptic vesicle protein synaptotag-

min 1 (SYT1), and the solute transporter critical for neuronal

chloride equilibrium SLC12A5 (solute carrier family 12

potassium/chloride transporter, member 5) (Verhaak et al.

2010).TheseGBMmolecular subtypesdiffer in their response

to therapy and prognosis (Verhaak et al. 2010). As a result,

early identificationof subtype conveys obvious clinical utility.

In addition, there have been identified other clinically relevant

GBMsubdivisionsbasedon the expressionofoverlapping and

novel mutations such as the EGFR mutation variant EGFR-

vIII, IDH1.132, and the mutation-associated CpG island

methylator phenotype (G-CIMP; glioma-CpG island methy-

lator phenotype) (Noushmehr et al. 2010; Wong et al. 1992;
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Heimberger et al. 2005; Bleeker et al. 2010). Such classifi-

cations are likely still an oversimplification of GBM com-

plexity, as high-resolution analytics has revealed intra-

tumoral heterogeneity of both bulk tissue and individual cells

(Patel et al. 2014; Sottoriva et al. 2013), aswell aswithinGBM

stem cells (Beier et al. 2007; Beier et al. 2012; Lottaz et al.

2010). These discoveries partially explain the basis for the

variable response of many GBM patients to standardized

treatments, and may explain the acquired resistance to ther-

apy. Most importantly, they open the door for the creation of

therapies tailored to tumor-specific characteristics and for

indices which provide a roadmap for changes in therapeutic

directions. Unfortunately, these individualized therapies

cannot be based upon sequential sampling of brain tumors.

The ability to perform sequential longitudinal ‘liquid biop-

sies’ of minimally invasive biofluids would profoundly alter

GBM diagnosis and treatment.

Clinical Rationale for Glioblastoma Diagnostic
Biomarkers

An ideal GBM biomarker would provide a specific early

diagnosis, inform the molecular subtyping of the tumor,

serve as a risk stratifier for the patient, and guide the clinician

to appropriate therapies for downstream targets, as well as

provide a template for changes in therapy. Patient care would

then include tailored therapies, and provide a novel metric of

response to therapy. These biomarkers will improve the

sensitivity (proportion of patients with GBM, diagnosed as

such) and specificity (proportion of patients without GBM,

identified as such) of evaluations of patient care and reduce

the cost. Magnetic Resonance Imaging (MRI) is the most

commonly used diagnostic technique for GBM. However,

MRI canmiss early lesions (Chittiboina et al. 2012) and has a

specificity ranging from only 50 to 80 % for distinguishing

GBM from other intracranial lesions such as low-grade

gliomas, lymphomas, and metastases (Weber et al. 2006).

MRI is also incapable of providing information onmolecular

subtype. Biopsies performed after MRI provide tissue upon

which histopathologic diagnoses are based. Operations are

attended by morbidity, feasible for tumors only in favorable

locations, and provide tumor information at a single place in

space and time that may not be representative of the evolving

and molecularly heterogeneous tumor environment (Patel

et al. 2014; Jackson et al. 2001; Nickel et al. 2012). Tissue

evaluations, except for methylation status (wherein anti-tu-

mor genes are inactivated by the addition of a methyl group

to associated promoter regions) (Thon et al. 2013), have

limited ability to predict chemotherapeutic resistance or to

differentiate tumor progression from post-treatment necrosis

(Sarkaria et al. 2008; Yip et al. 2009; Fischer et al. 2008;

Rock et al. 2002).

The cost of treatment for GBM is also prohibitively

high. Estimates for the cost of basic treatment for a primary

malignant brain tumor are more than $6000 per month

(Kutikova et al. 2007), with the bulk of these costs relating

to inpatient hospitalizations and surgery. The addition of

newer chemotherapeutic agents has demonstrated only

modest increases in survival, yet cost approximately

$50,000 per life year gained (Messali et al. 2013). Non-

invasive GBM biomarkers are sorely needed, as they have

the potential to provide inexpensive and molecularly

detailed information with high sensitivity and specificity.

RNA EVs as Biomarkers for GBM

Extracellular nucleic acids are ideal biomarkers that provide

detailed information about their cell of origin. They exist in

multiple forms such as protein complexes, lipoprotein par-

ticles, and EVs, with EVs demonstrating the potential for

selective molecular packaging and stability in the presence

of degrading enzymes (Witwer et al. 2013). EVs are lipid

membrane structures that range from 30 to 1000 nm in size,

are released by all cells, and are key to multiple biologic

processes including removal of cellular debris, intercellular

signaling, and microenvironmental alterations (Gonda et al.

2013; Hochberg et al. 2014). EVs containing brain-derived

proteins and lipids, in addition to RNA and DNA, have been

isolated from blood and the cerebrospinal fluid, a demon-

stration that supports the trafficking of these vesicles out of

the brain parenchyma. EVs are typically isolated via ultra-

centrifugation, filtration, or antibody-based aggregation

(Gonda et al. 2013), and quantified using electron micro-

scopy or proprietary laser or resistance pulse techniques

(NanoSight, qNANO) (Gonda et al. 2013). The EVs from

tumor cells contain tumor-specific molecules that are enri-

ched relative to their cells of origin by up to 100-fold. These

molecules include small RNAs such as non-coding RNA,

microRNA (miRNA), and messenger RNA (mRNA). Early

data support a role for tumor-derived EVs in altering tumor

genetic stability, niche relations to vasculature and reactive

cells, growth rates and predisposition to invasion and

metastases, and immune modulation (Bronisz et al. 2014; de

Vrij et al. 2015). There appear stem cells with mesenchymal

and neural signatures within these tumors the EVs of which

may also reflect and influence oncogenic drivers and

microenvironmental alterations (Nakano et al. 2015). EV

RNA is an especially appealing biomarker, as small copy

numbers of key genes can be detectedwith high sensitivity in

the plasma, serum, and cerebrospinal fluid (CSF). These

detections involve reverse transcription polymerase chain

reaction (RT-PCR) analyses of EV mRNA, which is pro-

tected from circulating RNAses by the lipid membrane sur-

rounding EVs (Hochberg et al. 2014).
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We and others have identified multiple clinically

appealing glioma-specific potential biomarkers (Table 1)

(Verhaak et al. 2010; Hochberg et al. 2014; Lechapt-Zal-

cman et al. 2012; Mellai et al. 2012; Kushwaha et al. 2014;

Zhou et al. 2010; Akers et al. 2013; Zhi et al. 2010;

McNamara et al. 2013; Hegi et al. 2005; Wang et al. 1997;

Towner et al. 2013; Shao et al. 2015), with ongoing vali-

dation at the EV level. These EV RNAs are most easily

categorized as unique mutations or expression changes.

These have been associated with molecular subclassifica-

tion of GBM, have been correlated with GBM prognosis,

and offer the potential for individualized therapeutic tar-

geting based on specific tumor molecular signatures (Ver-

haak et al. 2010; Heimberger et al. 2005; Bleeker et al.

2010; Masui et al. 2012; Sampson et al. 2010; Pelloski

et al. 2007).

GBM-specific gene mutations are not expressed in

healthy tissues and are likely specific for their tumor of

origin. The multi amino acid mutation (EGFRvIII) in the

epidermal growth factor receptor (EGFR) is associated

with the ‘‘classical’’ GBM subtype and is targetable with

immune therapies and chemotherapy. The downstream

pathways for EGFRvIII are different from those for EGFR

and thus the mutation opens the possibility of improved

prognosis and favorable response to therapy (Verhaak et al.

2010). We have demonstrated serum EV EGFRvIII RNA

detection only in blood of patients with GBM (Skog et al.

2008), and in recent work presented at the 2015 Interna-

tional Society for EVs, the CSF of GBM patients with a

50 % sensitivity rate and 98 % specificity. Thus quantita-

tive sampling of EGFRvIII RNA provides real-time

assessment of tumor burden and future predictions of

therapeutic efficacy (Shao et al. 2012). Similarly, we have

demonstrated that EV expression of wild-type EGFR in

CSF is linked to GBM chemotherapeutic response, is a

marker of drug sensitivity (Sampson et al. 2010), and is a

surrogate marker of EGFRvIII mutational status. These

approaches demonstrate the feasibility of EV quantification

of wild-type genes for GBM characterization and thera-

peutic tracking. Detecting single point mutations is more

challenging, but possible with high-resolution approaches,

such as BEAMing (beads, emulsion, amplification, mag-

netics) PCR and droplet digital PCR (ddPCR). Mutant

isocitrate dehydrogenase 1 (IDH1.132) is one such point

mutation associated with the ‘‘proneural’’ GBM subtype

and a favorable clinical prognosis (Verhaak et al. 2010;

Bleeker et al. 2010). Using these high-resolution tech-

niques, we demonstrated that mutant IDH1 EV mRNA was

detectable in the CSF of patients with mutant IDH1 glio-

mas (Chen et al. 2013), establishing its utility in reducing

the need for invasive biopsy. This minimally invasive

sampling provides a springboard for earlier initiation of

aggressive therapies. Characterizations of EV expression of

other molecular subtype mutations, such as mutant NF1

associated with the ‘‘mesenchymal’’ subtype, are similarly

needed.

It is also possible to bring to patient care the analysis of

GBM-related changes in the methylation status. For pro-

moter methylation of the nucleotide repair enzyme O6-

methylguanine methyl transferase (MGMT), there are

corresponding decreased MGMT mRNA and protein

levels, and increased GBM sensitivity to chemotherapeutic

agents such as temozolomide (Ramakrishnan et al. 2011).

We have shown that MGMT mRNA levels can be detected

directly in the serum of patients with GBM using a

microfluidic chip-based analysis (Shao et al. 2015). Addi-

tionally, the presence of two miRNAs (miR-603 and miR-

181d) provides an indirect quantification of MGMT

expression (Kushwaha et al. 2014). Other miRs, such as

miR-1, have been linked to GBM microenvironmental

alterations including tumor cell invasion (Bronisz et al.

2014) and our recent work has identified both overex-

pression of miR21 in biofluids of high-grade glioma

patients as distinct from controls, as well as an EV nine

miR signature that offers the same separation for diagnostic

purposes. EV expression patterns of GBM molecular sub-

type defining genetic amplifications, such as the increased

PDGFRA expression associated with the ‘‘proneural’’

classification, are obvious areas of further study. Moreover,

novel gene expression changes in gliomas are regularly

reported as potential GBM biomarkers (Towner et al. 2013;

Sreekanthreddy et al. 2010; Reddy et al. 2008; Ruano et al.

2008), providing a rich genetic library for future EV RNA

analyses.

Practical Challenges of EV Implementation

Given the clear clinical potential for EV biomarkers for

GBM, work is ongoing to optimize the analytical logistics

of this technique. These efforts include optimization of

biofluid sampling, and increasing the efficiency of sample

preparation, processing, and analysis. Blood (plasma/

serum) and CSF are the two logical foci of biofluid

sampling due to their relative ease of access. Within

blood, plasma has traditionally been the preferred EV

sampling medium, as serum can be contaminated by

platelet-derived EVs released after blood collection during

clot formation (Witwer et al. 2013). Sampling of plasma

can nonetheless be complicated by the presence of anti-

coagulants such as heparinoids, which can interfere with

reverse transcription/PCR and EV signaling (Witwer et al.

2013). Recent success with serum-derived EVs (Shao

et al. 2015; Chen et al. 2013) highlight the need for future

studies assessing the differential effects of processing on

plasma/serum.
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Table 1 Potential glioma-specific biomarkers

Biomarker Clinical glioma correlate Molecular significance Analytic technique Tissue/

biofluid

EGFR amplification 30–70 % of GBM Enhanced cell survival and

proliferation via EGFR-PI3K

pathway

RT-PCR, Western blot Tissue

miR-21 amplification 100 % of GBM; high detection

rate in astrocytomas

Regulator of EGFR expression,

cell-cycle and signaling

pathways

RT-PCR, microarray,

immunohistochemical

analysis, Western blot

Cell lines,

CSF

O(6)-methylguanine-DNA

methyltransferase (MGMT)

promoter methylation status,

mRNA amplification

Promotor methylation in 22–57 %

of GBM, 30 % of pilocytic

astrocytoma; mRNA expression

increases with temozolomide

treatment and correlates with

drug resistance

Enzyme capable of repairing

temozolomide-induced DNA

damage. Increased promoter

methylation decreases

mRNA expression

RT-PCR, Western blot,

microfluidic mRNA

analysis

Serum,

tissue, cell

line

Epidermal growth factor,

latrophilin, and 7

transmembrane domain-

containing protein 1 on

chromosome 1 (ELTD1)

amplification

[67 % in high-grade gliomas,

[33 % in low-grade gliomas

Transmembrane protein

involved in G-protein

signaling

Immunohistochemistry FFPE tissue

4q12 locus PDGFRA

amplification

*17 % of GBM Enhances cell proliferation,

cell migration, and

angiogenesis via PI3K/Akt

signaling

Microarray Tissue

Alkylpurine-DNA-N-

glycosylase (ADNG)

amplification

Expression in GBM increases

with temozolomide treatment

and correlates with drug

resistance

Enzyme capable of repairing

temozolomide-induced DNA

damage

Microfluidic mRNA

analysis

Serum,

tissue, cell

line

EGFRvIII mutation 24–67 % of GBM; ‘‘primary’’

GBM; pediatric brainstem

glioma

EGFR wild-type amplified;

upregulates PI3K pathway

Immunohistochemical

analysis, RT-PCR,

Western blot, flow

cytometry

Tissue,

CSF,

Plasma

IDH 1.132 mutation 50–82 % ‘‘secondary’’ GBM;

65–94 % oligodendrogliomas/

oligoastrocytomas

2-Hydroxyglutarate tissue;

MGMT expression

Genomic analysis, gel

electrophoresis, RT-

PCR, knock-in mouse

tissue

FFPE tissue,

peripheral

blood

samples

IDH 2 mutations 4.7 % grade II

oligodendrogliomas, 5.2 %

grade III anaplastic

oligodendrogliomas, 6.2 %

grade III anaplastic

oligoastrocytomas

2 Hydroxyglutarate

accumulation. No association

with IDH1.132

Knock-in mouse tissue,

tissue sequencing

FFPE tissue

17q11.2 locus NF1 mutation *18 % of GBM Loss of negative regulation of

RAS signaling pathway

Microarray Tissue

PTEN mutations 50–70 % of primary GBM,

54–63 % of secondary GBM

Loss of negative regulation of

PI3K/Akt cell proliferation,

apoptosis, and tumor

invasion

Tissue sequencing Tissue

CIC (homolog of Drosophila

Capicua) mutations

46–69 % of oligodendrogliomas;

*10 % astrocytoma

FISH 1p/19q deletion; IDH 1/2

mutations. Downstream of

Ras/MAPK pathway

Tissue sequencing FFPE, tissue

FUBP1 (far upstream element

[FUSE] binding protein 1)

mutations

10–24 % of oligodendrogliomas,

10 % in astrocytomas

FISH tissue 1p/19q deletion;

IDH 1/2 mutations; FUBP1-

mutated gene does not bind

to MYC oncogene

Tissue-based

sequencing

FFPE, tissue
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The proximity of CSF to the central nervous system

(CNS) makes it appealing for the study of CNS disease

given the role of CSF in CNS solute removal (Laterra et al.

1999), as well as avoidance of the restrictive blood–brain

barrier that limits molecular trafficking of CNS-derived

EVs to the blood. CSF EVs are thus less likely to be diluted

by peripheral ‘noise’ EVs which do not arise from the

target organ, and also lack potentially confounding plate-

let-derived particles (Witwer et al. 2013). Amassing sam-

ples from enough GBM patients for large-scale correlative

studies from either the CSF or blood nonetheless requires a

coordinated multi-institutional effort. To address this need,

we have developed a biorepository that already contains

over 4000 specimens from more than 600 patients, most

with brain tumors (Butler et al. 2014), and established

biomarker consortia for both high-grade and low-grade

gliomas as well as collaborations that further our under-

standing of the EV populations of CSF under a variety of

clinical conditions.

Clinical sample EV isolation and quantification also

remains a variable process. Most commonly, samples are

subjected to ultracentrifugation, then RNA isolation (with

or without pre-amplification), and finally amplification

using quantitative RT-PCR. There are, however, multiple

Table 1 continued

Biomarker Clinical glioma correlate Molecular significance Analytic technique Tissue/

biofluid

ATRX (alpha

thalassemia/mental

retardation syndrome

X-linked) mutation

33–71 % grade II glioma, 68 %

oligoastrocytomas; 46 % grade

III glioma, 57–80 %

‘‘secondary’’ GBM, 7 %

‘‘primary’’ GBM; 0 % in

oligodendroglioma

Aberrant telomere lengthening.

Associated with IDH1

mutation

Tissue sequencing FFPE, tissue

BRAF V600E mutation 18 % brainstem gangliogliomas;

66 % pleomorphic

xanthoastrocytoma; 9 %

pilocytic astrocytoma; 3 %

anaplastic astrocytoma; 22.5 %

pediatric grade II–IV tumors,

0 % in grade I tumors

Activates Ras/Raf/MEK/ERK

kinase pathway

DNA sequencing Cell line

TERT promoter mutations 83 % primary GBM, 10 %

astrocytomas, 78 %

oligodendrogliomas, 25 %

oligoastrocytomas; increased

glioma risk

Upregulation of telomerase

expression

Tissue-based RT-PCR

and sequencing

Tissue

H3F3A/HIST1H3B mutation 80 % pediatric diffuse intrinsic

pontine gliomas, 20 % pediatric

non-brainstem GBM; pediatric

high-grade glioma, 3.4 % adult

GBM

ATRX, selective gene

regulation/telomere length/

stability

Whole-genome/targeted

sequencing

FFPE, tissue

miR-603/miR-181d ratio Dichotomized ratio only tested in

GBM

Co-regulators of MGMT

expression

Transfection, RT-PCR,

Western blot

Tissue, cell

line

BRAF-KIAA1549 fusion 100 % in pediatric grade I tumors,

0 % in grade II–IV tumors in 10

grade I, 31 grade II–IV gliomas

respectively; 80 % incidence in

pilocytic astrocytomas;

brainstem gangliogliomas;

pleomorphic

xanthoastrocytoma; pilocytic

astrocytoma

KIAA1549-BRAF fusion-

mediated upregulation of

MAPK pathway

Clinical case report and

sequencing

Tissue, CSF

Adapted from Hochberg et al.(2014)

PKB protein kinase B (also known as Akt), ATRX alpha thalassemia/mental retardation syndrome X-linked, BRAF b-raf proto-oncogene, serine/

threonine kinase, CIC capicua transcriptional repressor, CSF cerebrospinal fluid, EGFR epidermal growth factor receptor, ERK extracellular-

signal-regulated kinase, FFPE formalin-fixed paraffin-embedded, FISH fluorescence in situ hybridization, GBM glioblastoma, H3F3A H3

histone, family 3A, HIST1H3B histone cluster 1, H3b, IDH isocitrate dehydrogenase 1, MAPK mitogen-activated protein kinase, MEK mitogen-

activated protein kinase/ERK kinase, miR-181d microRNA 181d, miR-21 microRNA 21, miR-603 microRNA 603, mRNA messenger RNA, NF1

neurofibromin 1, PDGFRA platelet-derived growth factor receptor, alpha polypeptide, PI3K phosphoinositide 3-kinase, PTEN phosphatase and

tensin homolog, RT-PCR reverse transcription polymerase chain reaction, TERT telomerase reverse transcriptase
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commercially available isolation kits and analytic tech-

niques currently in use, as well as a lack of consensus on

the fidelity of ‘housekeeping’ reference transcripts using

this approach. Reference standards are not defined for this

new field and we routinely evaluate biofluid EV concen-

trations using Nanosight Tracking Analysis based on laser

detection, resistive pulse sensing (qNANO), and novel

microflow studies based upon multichannel detection on

EVs of fluorochrome-labeled antibodies. Normalization

studies have only recently begun utilizing absolute EV

miRNA expression, normalization to spike-ins or to

‘housekeeping mRNA genes’ (Akers et al. 2013), and

similar advances in standardization are needed as the field

moves forward.

Future Perspective

EV RNAs have tremendous clinical potential as diagnostic,

subtype-defining, and prognostic biomarkers in GBM. The

identification of new EV RNA targets and validation of

existing EV RNA targets will be accelerated by large-scale

biorepositories established for clinic sample warehousing

and ongoing standardization studies to streamline sample

processing. Parallel efforts to understand EV dynamics in

other neurologic diseases are also underway, and include

Parkinson’s disease (Kunadt et al. 2015), Alzheimer’s

disease (Joshi et al. 2015), neurotrauma (Patz et al. 2013),

and low-grade gliomas (Chen et al. 2013). As such, EV

RNA may one day replace invasive approaches to diag-

nose, subtype, and track disease progression in not only

GBM, but also a myriad of neuro-pathologies.
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