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Abstract We investigate the antinociceptive effect of

intrathecal and intraperitoneal tempol administration in a

rat model of chronic constriction injury (CCI)-induced

neuropathic pain and explore the underlying antinocicep-

tive mechanisms of tempol. Rats were randomly assigned

to four groups (n = 8 per group): sham group, CCI group,

Tem1 group (intrathecal injection of tempol), and Tem2

group (intraperitoneal injection of tempol). Neuropathic

pain was induced by CCI of the sciatic nerve. Tempol was

intrathecally or intraperitoneally administered daily for

7 days beginning on postoperative day one. The mechan-

ical withdrawal threshold and thermal withdrawal latency

were tested on preoperative day 3 and postoperative days 1,

3, 5, 7, 10, 14, and 21. Structural changes were examined

by hematoxylin and eosin staining, toluidine blue staining,

and electron microscopy. Malondialdehyde (MDA) and

superoxide dismutase (SOD) levels were determined using

the thiobarbituric acid and nitroblue tetrazolium methods,

respectively. Nerve growth factor (NGF) expression levels

were determined by immunohistochemistry and Western

blot. Intrathecal, but not intraperitoneal, injection of tempol

produced a persistent antinociceptive effect. Intraperitoneal

injection of tempol did not result in high enough concen-

tration of tempol in the cerebrospinal fluid. Intrathecal, but

not intraperitoneal, injection of tempol inhibited CCI-in-

duced structural damage in the spinal cord reduced MDA

levels, and increased SOD activities in the spinal cord.

Furthermore, intrathecal, but not intraperitoneal, injection

of tempol further downregulated the expression of NGF in

the spinal cord following CCI, and this effect was blocked

by p38MAPK inhibitor. Intrathecal injection of tempol

produces antinociceptive effects and reduces CCI-induced

structural damage in the spinal cord by increasing SOD

activities and downregulating the expression of NGF via

the p38MAPK pathway. Intraperitoneal administration of

tempol does not exhibit antinociceptive effects.

Keywords Tempol � Neuropathic pain � Oxidative stress �
Neurotrophic factor � Spinal cord

Introduction

Neuropathic pain is a type of abnormal pain that is caused

by central or peripheral nerve injury. The most common

clinical symptoms of neuropathic pain include allodynia,

hyperalgesia, spontaneous pain, and paraesthesia (Costigan

et al. 2009; Zhao et al. 2015). Epidemiological studies have

shown that neuropathic pain occurs in approximately

4–6 % of the general population, 22 % of patients with

chronic pain, and 74 % of patients with moderate or severe

pain (Bouhassira et al. 2008; Ohayon and Stingl 2012;

Torrance et al. 2006). Neuropathic pain is one of the most

intractable types of chronic pain and it causes physiologi-

cal, psychological, and social problems that impair the

quality of life of affected patients (Attal et al. 2011; Smith

and Torrance 2012). It has been reported that that patients

with neuropathic pain have a lower quality of life than

those with cancer, diabetes, chronic heart failure, or stroke

(Doth et al. 2010; Dworkin et al. 2010; Smith et al. 2007).

Although diverse pharmacological agents, such as sero-

tonin reuptake inhibitors and calcium channel blockers, are

available for the treatment of neuropathic pain, many
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patients have neuropathic pain that is refractory to these

treatments (Dworkin et al. 2010). Therefore, identification

of novel pharmacological agents is needed for the treat-

ment of neuropathic pain.

The mechanisms underlying neuropathic pain are com-

plex and not clearly understood. One mechanism with

reported involvement in the pathogenesis of neuropathic

pain involves the promotion of neuropathic pain by reac-

tive oxygen species (ROS) (Janes et al. 2012; Khalil et al.

1999). In a mouse model of capsaicin-induced hyperalge-

sia, ROS was mainly synthesized by mitochondria in the

neurons of the dorsal horn of the spinal cord (Schwartz

et al. 2008). Spinal cord injury induces the release of ROS

from neurons and subsequently triggers activation of

postsynaptic neurons and glial cells, thus contributing to

neuropathic pain (Gwak et al. 2012). Gao et al. reported

that phenyl N-tert-butylnitrone (PBN), a ROS scavenger,

reduced hyperalgesia. The reduction of hyperalgesia was

accompanied by inhibition of N-methyl-D-aspartate

(NMDA) receptors in the dorsal horn, suggesting that ROS

contributes to neuropathic pain via activation of NMDA

receptors, a key step in central sensitization (Gao et al.

2007). Additionally, Gwak et al. found that ROS played an

important role in neuropathic pain via activation of CaM-

KII in remote segments following spinal cord injury (SCI)

in rats (Gwak et al. 2013). Another study found evidence

that inhibition of ROS-induced p38MAPK and ERK acti-

vation in microglia contributed to the analgesic effect of

acupuncture (Choi et al. 2012). Furthermore, the antioxi-

dant activity of the stress-responsive antioxidant protein

Sestrin 2 has been reported to control ROS-dependent

neuropathic pain signaling following peripheral nerve

injury (Kallenborn-Gerhardt et al. 2013a). Therefore,

inhibition of ROS is a promising potential therapeutic

strategy for the treatment of neuropathic pain.

Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-

oxyl) is a prototype nitroxide antioxidant that is charac-

terized by a low molecular weight and good membrane

permeability (Mitchell et al. 1991). Tempol has diverse

biological functions, including the removal of ROS and

inhibition of lipid peroxidation, that contribute to the

inhibition of oxidative injury in cerebrovascular endothe-

lial and neuronal cells, alleviation of inflammation, and

reduction of brain edema (Xiong et al. 2009). We previ-

ously demonstrated that tempol promotes the recovery of

neuronal function in ischemic and hypoxic brain tissues

(Cao et al. 2014). However, it remained unclear whether

tempol could have an antinociceptive effect in a rat model

of SCI.

We have previously investigated the antinociceptive

effects of HBO treatment at various stages following CCI

in rats, and found that early HBO treatment beginning on

postoperative day 1 produced persistent antinociceptive

effects (Zhao et al. 2014a, 2015). In addition, several

studies have shown that early treatment promotes recovery

of pathological pain (Beaudry et al. 2007; Liu et al. 2014;

Matsuo et al. 2014). In this study, we investigated the early

antinociceptive effects of intrathecal and intraperitoneal

tempol administration in a chronic constriction injury

(CCI) model of neuropathic pain in rats. To test the early

antinociceptive effect of tempol, tempol administration

was initiated 1 day after CCI. We studied the antinoci-

ceptive mechanisms of tempol and investigated whether

tempol has different antinociceptive effects that depend on

the administrative route.

Materials and Methods

Animals

The Animal Ethics Committee of Guangzhou Women and

Children’s Medical Center (Guangzhou, China) approved

all experimental protocols. All procedures were conducted

in accordance with the National Institutes of Health

Guidelines for the Care and Use of Laboratory Animals

and the Animal Welfare Act. Thirty-two adult Sprague–

Dawley rats (male, weighing 250–280 g, 8–10 weeks old)

were used in this study. The animals were obtained from

the Animal Care Center of Guangzhou Women and Chil-

dren’s Medical Center. Animals were housed individually

in plastic boxes at room temperature (23–25 �C) with a

12 h light/dark cycle. Animals were fed standard rat chow

and water ad libitum. The animals were randomly assigned

to four groups (n = 8 for each group): sham group, CCI

group, Tem1 group (intrathecal injection of tempol for

7 days beginning 1 day after CCI), and Tem2 group (in-

traperitoneal injection of tempol for 7 days beginning

1 day after CCI). To test whether tempol produced

antinociceptive effect as an oxidant, the animals were

randomly assigned to three groups (n = 8 for each group):

CCI group, Tem1 group, and positive control group (PC

group, Animals in the PC group received intraperitoneal

administration of the SOD (4000 U/kg/day, Sigma-Aldrich,

St. Louis, MO, US)for 7 days beginning 1 day after CCI).

Induction of Neuropathic Pain

The CCI model of the sciatic nerve was used to create

neuropathic pain as previously described (Bennett and Xie

1988). Briefly, rats (n = 8 per group) were anesthetized

with an intraperitoneal injection of sodium pentobarbital

(40 mg/kg). The left biceps femoris of each rat was bluntly

dissected to expose the sciatic nerve. For the CCI, Tem1,

and tem2 groups, four 4–0 chromic catgut sutures were

loosely tied around the trunk of the sciatic nerve at 1 mm
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intervals. An appropriate amount of constriction was

applied by tightening the sutures to cause a mild shaking of

the left leg without inducing a blockade of the nerve or

blocking the blood supply. The wound was then sutured in

layers. For the sham group, an identical dissection was

performed, but the sciatic nerve was not ligated.

Intrathecal Catheter Insertion

An intrathecal catheter was inserted as previously descri-

bed (Sakura et al. 2005). Briefly, all rats were anesthetized

by an intraperitoneal injection of sodium pentobarbital

(40 mg/kg). Rats were placed in a prone position and a

longitudinal skin incision (2 cm long) was made at the L4–

L5 intervertebral space in the midline of the back. After the

fascia was cut open, the L4–L5 interspinous space was

exposed by blunt dissection of the muscles around the

spinous process. The ligamentumflavum was exposed after

removal of part of the spinous process of the L4 and L5

vertebra. A heat-connected polyethylene catheter (PE-10,

Ningbo Anlai Company, China) was inserted into the

subarachnoid space by passing through the ligamentum-

flavum and the dura at the L4–L5 intervertebral space. The

insertion of the catheter into the subarachnoid space was

verified by the appearance of side tail swing or hind leg

twitch. The catheter was advanced by 2 cm in the caudal

direction. The success of catheter insertion was verified by

cautious aspiration of cerebrospinal fluid (CSF). The

catheter was then flushed with normal saline (10 ll) to

prevent thrombus formation. The distal end of the catheter

was closed by heating to prevent CSF leakage. The catheter

was then fixed subcutaneously. Next, the incision was

sutured and the rat was given an intramuscular injection of

penicillin to prevent infection (Huabei Pharmaceutical Co.,

Ltd., China). One day after catheter insertion, lidocaine

(1 %, 20 ll) was injected through the catheter. Rats

showing obvious hind limb paralysis (lidocaine-positive) in

both hind limbs within 30 s after lidocaine injection were

included in the study. Rats that exhibited obvious limb

paralysis or movement disorders after catheter insertion

and lidocaine-negative rats or rats showing unilateral limb

paralysis were excluded from the study. A total of 10 rats

were excluded, including 2 rats in the control group, 2 rats

in the CCI group, 3 rats in the Temp1 group, and 2 rats in

the Temp2 groups.

Drug Administration

Rats received both intrathecal and intraperitoneal injections

of saline solution (Baxter, Deerfield, IL, USA) or tempol (a

gift from the Department of Cell Biology, School of

Medicine, New York University, USA) daily for 7 days,

starting 1 day after CCI. For the sham and CCI groups, rats

received intrathecal injections of 20 ll saline and

intraperitoneal injections of 20 ll saline. For the Tem1

group, rats received intrathecal injections of 20 ll tempol

(30 lg) and intraperitoneal injections of 20 ll saline. For
the Tem2 group, rats received intrathecal injections of

20 ll saline and intraperitoneal injections of 20 ll tempol

(30 lg) (Cao et al. 2014; Liu et al. 2013).

To test whether p38MAPK mediates tempol-induced

downregulation of NGF, rats in the CCI, Tem1, and Tem2

groups received intrathecal injection of SB203580 (2 lg), a
specific inhibitor of p38MAPK, daily for 7 days, starting

1 day after CCI. The expression of NGF was tested on the

21st day using Western blot.

Neurobehavioral Tests

Mechanical withdrawal threshold (MWT) and thermal

withdrawal latency (TWL) tests were performed on pre-

operative day 3 and postoperative days 1, 3, 5, 7, 10, 14,

and 21, as previously described (Zhao et al. 2013). The

MWT test was carried out to assess the response of the paw

to a mechanical stimulus. The rats were placed in a Plex-

iglas chamber, and the MWT test was performed by

stimulating the plantar surface of the left hind paw using

Von Frey filaments (Stoelting Company, Wood Dale, IL,

USA). Each Von Frey filament was held for approximately

3–5 s. Each trial started with the application of a 0.6-g Von

Frey force following the up-and-down procedure. A posi-

tive response was defined as a quick withdrawal of the hind

paw upon stimulation. When a positive response occurred,

a filament with a lower force was applied. If a negative

response occurred, a filament with a greater force was

applied. This protocol was continued until the least force

necessary to cause withdrawal was identified. The MWT

test was performed ten times, and the paw withdrawal

threshold was defined as the Von Frey force that caused

withdrawal 50 % of the time.

To examine TWL, a BME-410C full-automatic plantar

analgesia tester (Youer Equipment Scientific Co., Ltd.,

Shanghai, China) was used to measure the sensitivity of the

paw to thermal stimuli. The thermal withdrawal latency

test was performed by placing the rats on the surface of a

3-mm-thick glass plate that was covered with the same

Plexiglas chamber that was used for the MWT tests. The

radiant heat source was positioned at a fixed distance below

the glass plate. Heat stimuli were directed at the exposure

site on the left hind paw. TWL was defined as the elapsed

time (in seconds) between the delivery of the thermal

stimulus and the withdrawal of the paw from the heat

source. Each test session calculated the mean latency from

the delivery of five thermal stimuli at 5-min intervals. A

cut-off time of 30 s was set to avoid tissue damage.
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Determination of Tempol Concentration

in Cerebrospinal Fluid (CSF) and Whole Blood

Tempol concentrations were measured using electron

paramagnetic resonance (EPR) spectrometry as previously

reported (Hahn et al. 1992). Briefly, cerebrospinal fluid

(0.1 ml) and whole blood samples were obtained at 20, 40,

60, 80, 100, and 120 min after intrathecal or intraperitoneal

injection of tempol (30 lg). The sample was mixed with

0.2 ml of preservative-free heparin. Then, the samples

were mixed with the oxidizing agent potassium ferri-

cyanide and stored on ice for a short time. Samples were

then placed vertically into the EPR cavity. EPR spectra

were recorded on a Varian E4 X-band spectrophotometer.

A standard curve was generated by determining the EPR

signal of varying concentrations of an aqueous Tempol

solution, and used for determining the tempol concentra-

tions in the CSF and blood.

Tissue Preparation

After completion of the behavioral tests on postoperative

day 21, the rats (n = 8 per group) were anesthetized by

intraperitoneal injection of sodium pentobarbital (40 mg/

kg). Four rats in each group were transcardially perfused

with 200 ml of normal saline. The spinal cord between the

L4–L5 segment and the cauda equina was removed and

was used for the toluidine blue and hematoxylin and eosin

(HE) staining, transmission electron microscopy (TEM),

and immunohistochemistry. The other four rats in each

group were used for the measurement of malondialdehyde

(MDA) levels and superoxide dismutase (SOD) activities

and Western blot.

Toluidine Blue and Hematoxylin and Eosin (HE)

Staining

After removal, the spinal cord between the L4–L5 seg-

ment and cauda equina was fixed in 4 % paraformalde-

hyde for 4 h and embedded in paraffin. Transverse

sections (4-lm thick) were obtained from paraffin-em-

bedded tissue blocks. Sections were washed in xylene to

remove the paraffin and rehydrated with serial dilutions of

alcohol followed by a wash in phosphate buffered saline

(PBS) solution. For HE staining, sections were stained

with hematoxylin and eosin. For toluidine blue staining,

sections were immersed in toluidine blue solution for

5 min. Slides were then rinsed well in water, dehydrated,

cleared, and mounted. Histological images were recorded

under a light microscope (Fluo View 1000; Olympus Co.;

Tokyo, Japan).

Transmission Electron Microscopy (TEM)

For TEM examination, white matter (1 mm) from the

dorsal horn of the spinal cord was removed and fixed with

2.5 % glutaraldehyde for 24 h. After three 10-min washes

with 0.1 M PBS, tissues were postfixed in 1 % OsO4 for

1 h, dehydrated in a graded series of acetone (50, 70, 90,

and 100 % for 10 min each), embedded in a 1:1 mixture of

Epon812 and acetone for 2–3 h, and finally embedded in

Epon812 for 2 h. Ultrathin sections were cut, stained with

lead citrate and uranyl acetate, and viewed and imaged

with a scanning electron microscope.

The ultrastructure damage score was determined as

previously reported(Zhao et al. 2014b). Fifteen slices in

each group were selected for examination of the cauda

equine fibers. Fibers that had locally disintegrated myelin

lamellae and intracellular edema were considered dam-

aged. The total ultrastructure damage score was determined

as follows: ‘‘1’’ normal, no disintegrated myelin lamellae

and intracellular edema; ‘‘2’’ mild injury,\20 % damaged

fibers per region; ‘‘3’’ moderate injury,\50 % damaged

fibers per region; ‘‘4’’ severe injury,\80 % damaged fibers

per region; and ‘‘5’’ ultra-severe injury,[80 % damaged

fibers per region. Evaluation of all tissue sections was done

by the same examiner, who was blinded to the experi-

mental conditions.

Determination of Malondialdehyde (MDA) Levels

and Superoxide Dismutase (SOD) Activities

MDA levels and SOD activities in the spinal cord and

plasma were measured using the thiobarbituric acid and

nitroblue tetrazolium methods, respectively, as previously

reported (Zhao et al. 2014a). To determine MDA levels and

SOD activities in the spinal cord and plasma, spinal cord

specimens and plasma were homogenized in ice-cold lysis

buffer. Samples were centrifuged at 6009g for 15 min at

4 �C and the supernatant was collected. MDA levels in the

spinal cord and plasma were determined using Type 532

spectrometry (S0131, Beyotime Co. Ltd., Haimen, China).

Blood SOD activity was evaluated using commercial kits

(S0109, Beyotime Co. Ltd.) according to the manufac-

turer’s instructions. Standard curves were plotted according

to the absorption values of the standard samples and were

used to determine the MDA levels and SOD activities of

the spinal cord and plasma samples.

Immunohistochemistry

Immunohistochemistry to detect the expression of NGF in

the spinal cord was performed as previously described

(Zhao et al. 2014b). Briefly, the spinal cord between the L4

and L5 segments was removed, fixed in 4 %
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paraformaldehyde for 24 h, dehydrated in 30 % sucrose in

PBS at 4 �C for 24 h, and embedded in paraffin. Transverse

spinal cord sections (5-lm thick) were obtained from

paraffin-embedded tissue blocks. Endogenous peroxidase

activity was blocked by 3 % H2O2 at room temperature for

10 min. Sections were incubated in 5 % normal goat serum

for 20 min to block nonspecific protein binding sites.

Sections were then incubated with primary antibodies

against NGF (polyclonal rabbit anti-rat NGF, 1:100 dilu-

tion, Wuhan Boster Bio-Engineering Co., Wuhan, China)

for 3 h at 37 �C. After the primary antibody was washed

off, sections were incubated with goat anti-rabbit biotin-

conjugated secondary antibodies (1:1000 dilution, Wuhan

Boster Bio-Engineering Co.) for 30 min at 37 �C. Sec-

tions were then incubated with streptavidin horseradish

peroxidase for 30 min at 37 �C. DAB (3, 3-diaminoben-

zidine) substrate was then applied to the sections followed

by counterstaining with hematoxylin. The integral optical

density (IOD) of NGF-positive cells in each spinal dorsal

horn was examined by observers blind to the experimental

conditions, using a confocal microscope (FluoView 1000;

Olympus Co., Tokyo, Japan). The images were processed

using an Image-Pro Plus image 6.0 analysis system. Ten

sections that were not damaged, folded, or torn were

selected from each group for the analysis.

Western Blot

Spinal cord tissues were homogenized in lysis buffer on

ice. Proteins were resolved by SDS-PAGE and transferred

onto polyvinylidene fluoride membranes by electroblotting.

Membranes were incubated with primary antibodies

against NGF (rabbit anti-rat NGF, dilution 1:200, Santa

Cruz, Dallas, TX, USA) and p38 MAPK (rabbit anti-rat

p38MAPK, dilution 1:1000, Santa Cruz, Dallas, TX, USA)

at 4 �C overnight. b-actin was used as a loading control.

Membranes were then incubated with horseradish peroxi-

dase-linked goat anti-rabbit secondary antibodies (dilution

1:1000, Santa Cruz) at room temperature for 2 h. Bands

were visualized using a chemiluminescence detection

system.

Statistical Analysis

Analyses were performed using SPSS 17.0 (SPSS Inc.,

Chicago, IL, USA). Numerical data are presented as the

mean and standard deviation. One-way analysis of variance

(ANOVA) was used to compare differences among groups,

followed by the least significant difference test. p\ 0.05

was considered statistically significant.

Results

Intrathecal Injection of Tempol Produces Persistent

Antinociceptive Effects in CCI Rats

There were no significant differences in the preoperative

MWT and TWL among the sham, CCI, Tem1, and Tem2

groups. Compared with the sham group, the MWT and

TWL significantly decreased during postoperative days 1

through 21 in the CCI group (Fig. 1a and b), suggesting

that CCI induced persistent mechanical and thermal algesia

in rats. Compared with the CCI group, the MWT and TWL

were significantly higher on postoperative days 5 through

21 in the Tem1 group, suggesting that intrathecal tempol

injection produced a persistent antinociceptive effect.

However, there were no significant differences in the MWT

and TWL on postoperative days 1 through 21 in the CCI or

Tem2 groups, suggesting that intraperitoneal tempol

injection did not produce an antinociceptive effect (Fig. 1a

and b). Similarly, intraperitoneal injection of SOD pro-

duced similar antinociceptive effects as intrathecal injec-

tion of tempol (Fig. 1c, d), suggesting that tempol exerted

its antinociceptive effects as an antioxidants.

Intraperitoneal Injection of Tempol Results

in a Low Concentration in the Cerebrospinal Fluid

(CSF)

The peak concentration of tempol in the CSF occurred

within 20 min after intrathecal injection of tempol, which

was significantly higher than that after intraperitoneal

injection of tempol (Fig. 2a). The concentrations of tempol

in the blood were not detectable after intrathecal injection

of tempol (Fig. 2b). The concentration of tempol in the

blood reached peak at approximately 40 min after

intraperitoneal injection of tempol (Fig. 2b).

Intrathecal Injection of Tempol Reduces CCI-

Induced Structural Damage in the Spinal Cord

Figure 3a shows normal white matter histology in the

dorsal horn of the spinal cord in the sham group. No

obvious edema was observed (Fig. 3a). CCI induced severe

white matter damage in the dorsal horn of the spinal cord,

including extensive edema, vacuolar degeneration, and

proliferation of meningeal cells (Fig. 3b). In the Tem1

group, reduced edema, decreased proliferation of menin-

geal cells, and no obvious vacuolar degeneration were

found, suggesting that intrathecal tempol injection reduced

the CCI-induced white matter damage in the dorsal horn of

the spinal cord (Fig. 3c). Contrastingly, no obvious

reduction of CCI-induced white matter damage was
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observed following intraperitoneal tempol injection

(Fig. 3d).

No obvious edema or demyelination in the nerve fibers

of the cauda equina in the sham group could be visualized

by toluidine blue staining (Fig. 4a). In the CCI group,

obvious edema in the nerve fibers and local axonal

degeneration were observed, and the structure of the cauda

equina was loose (Fig. 4b). In the Tem1 group, no obvious

axonal degeneration or mild edema in the nerve fibers was

found, suggesting that the intrathecal injection of tempol

reduced the CCI-induced damage of the cauda equina

(Fig. 4c). However, intraperitoneal injection of tempol

caused no obvious improvement in CCI-induced damage of

the cauda equina (Fig. 4d).

Representative electron microscopic findings in the

sham, CCI, Tem1, and Tem2 groups are shown in Fig. 5. In

the sham group, the normal ultrastructure of the spinal

cord, with intact axons and myelin lamellae of myelinated

fibers, was seen. In the CCI group, severe edema, disinte-

grated myelin lamellae of the myelinated fibers, and

obvious interstitial edema were seen. The unmyelinated

fibers showed unclear boundaries (Fig. 5b). In the Tem1

group, the CCI-induced ultrastructural damage was milder

when compared with the CCI group. Local edema and

disintegration of myelin lamellae in the myelinated fibers

were still seen, but to a lesser extent than in the CCI group

(Fig. 5c). Unmyelinated fibers showed mild swelling.

However, in the Tem2 group, intraperitoneal injection of

tempol did not result in an obvious improvement in CCI-

induced ultrastructural damage (Fig. 5d). The ultrastructure

damage scores in the cauda equina were significantly

higher in the CCI group when compared with the sham

group (p\ 0.05, Fig. 5e). Intrathecal tempol injection

significantly reduced the CCI-induced increase in

Fig. 1 The effect of tempol on the MWT (a) and the TWL (b) in rats

in the sham, CCI, Tem1 (intrathecal injection of tempol daily for

7 days beginning 1 day after CCI), and Tem2 (intraperitoneal

injection of tempol daily for 7 days beginning 1 day after CCI)

groups. MWT and TWL tests were performed on preoperative day 3

and postoperative days 1, 3, 5, 7, 10, 14, and 21. C,D. The effect of

tempol on the MWT (c) and the TWL (d) in rats in the CCI, Tem1

(intrathecal injection of tempol daily for 7 days beginning 1 day after

CCI), and PC (intraperitoneal administration of the SOD for 7 days

beginning 1 day after CCI) groups. MWT and TWL tests were

performed on preoperative day 1 and postoperative days 1, 3, 5, and 7.

n = 8. ns not significant, #p\ 0.05 versus sham, *p\ 0.05 versus

CCI
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ultrastructure damage scores in the cauda equina (p\ 0.05,

Fig. 5e). There were no significant differences in the

ultrastructure damage scores between the CCI and Tem2

groups, suggesting that intraperitoneal tempol injection did

not significantly reduce the CCI-induced increase in the

ultrastructure damage scores in the cauda equine (p[ 0.05,

Fig. 5e).

Intrathecal Injection of Tempol Reduces the CCI-

Induced Increase in MDA Levels in the Spinal Cord

The MDA level in the spinal cord was significantly higher

in the CCI group when compared with the sham group

(p\ 0.05, Fig. 6). Intrathecal tempol injection signifi-

cantly reduced the CCI-induced increase in MDA levels in

the spinal cord (p\ 0.05, Fig. 6). There was no significant

difference in MDA levels in the spinal cord between the

CCI and Tem2 groups, suggesting that intraperitoneal

tempol injection did not significantly reduce the CCI-in-

duced increase in MDA levels in the spinal cord (p[ 0.05,

Fig. 6). Additionally, no significant differences were seen

in the plasma MDA levels among the four groups

(p[ 0.05, Fig. 6).

Intrathecal Injection of Tempol Increases SOD

Activities in the Spinal Cord

SOD activity in the spinal cord was not significantly dif-

ferent in the CCI and TEM2 groups when compared with

the sham group (p\ 0.05, Fig. 7). Compared with the CCI

group, SOD activity was significantly higher in the Tem1

group (p\ 0.05), suggesting that intrathecal tempol

injection induced a significant increase in SOD activity in

the spinal cord (p\ 0.05, Fig. 7). In contrast, there was no

significant difference in SOD activity between the sham,

CCI, and Tem1 group’s plasma (p[ 0.05, Fig. 7). Com-

pared with the CCI group, SOD activity was significantly

higher in the Tem2 group (p\ 0.05, Fig. 7), suggesting

that the intraperitoneal tempol injection induced an

increase in SOD activity in the plasma.

Tempol Downregulates NGF Expression

via the p38MAPK Signaling Pathway in the Spinal

Cord

We examined NGF expression in the dorsal horn of the

spinal cord using immunocytochemistry and Western blot

analysis (Fig. 8). In the sham group, weak NGF

immunoreactivity was observed in both the gray and white

matter of the spinal cord (Fig. 7a). In contrast, strong NGF

expression was upregulated in the CCI rats (Fig. 8b, e).

NGF immunoreactivity was observed in the Tem1 group,

and NGF-positive cells were significantly inhibited in the

Tem1 group when compared with the CCI group (Fig. 8c

and e). The significant decrease in the number of NGF-

positive cells in the Tem1 group suggests that intrathecal

tempol injection further downregulates NGF expression in

CCI rats. However, intraperitoneal tempol injection did not

decrease the expression of NGF (Fig. 8d and e).Consistent

with these immunohistochemical findings, Western blot

analysis indicated that intrathecal tempol injection (Tem1

group), but not the intraperitoneal injection of tempol

(Tem2 group), inhibited CCI-induced increases in NGF

expression in the spinal cord (Fig. 8f and g).

We further tested p38MAPK expression in the dorsal

horn of the spinal cord using Western blot analysis. The

expression of p38MAPK was upregulated in the CCI rats

(Fig. 9a, b). Intrathecal tempol injection (Tem1 group) but

not intraperitoneal injection of tempol (Tem2) inhibited

CCI-induced upregulation of p38MAPK in the spinal cord

(Fig. 9a, b). The p38MAPK inhibitor SB203580 inhibited

tempol-induced downregulation of NGF in CCI rats

(Fig. 9c, d).

Fig. 2 The time course of tempol concentration in the cerebrospinal

fluid (a) and whole blood (b). Rats in the Tem1 and Tem2 group

received, respectively, i.t. and i.p. injections of tempol (30 lg), and at

various times after injection. Tempol concentration was determined

with EPR spectroscopy. *p\ 0.05 versus Tem2. n = 4
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Fig. 3 Representative HE staining of transverse sections of the lumbar spinal cord in the sham (a), CCI (b), Tem1 (c), and Tem2 (d) groups.
Magnification 9400. n = 4

Fig. 4 Representative toluidine blue staining of transverse sections of the cauda equina in the sham (a), CCI (b), Tem1 (c), and Tem2 (d) groups.
Magnification 9400. n = 4
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Discussion

We investigated the antinociceptive effects of intrathecal or

intraperitoneal tempol injection on CCI-induced neuro-

pathic pain in rats. We found that intrathecal tempol

administration for 7 days beginning 1 day after CCI sig-

nificantly increased the MWT and TWL on postoperative

days 5 through 21 in CCI rats. This increase in the MWT

and TWL suggested that the intrathecal injection of tempol

produced a persistent antinociceptive effect. In contrast,

intraperitoneal tempol administration for 7 days beginning

1 day after CCI did not reduce CCI-induced neuropathic

pain on postoperative days 1 through 21. Supporting the

results of the neurobehavioral tests, intrathecal tempol

administration reduced CCI-induced structural damage in

the spinal cord, while intraperitoneal administration did

not. We also found that tempol produced a similar

antinociceptive effect as the antioxidant SOD, suggesting

that tempol produced antinociceptive effect as an antioxi-

dant. Consistent with our results, (Tal 1996) Tal found that

tempol, as an SOD mimetic, reduced thermal hyperalgesia

in rats with chronic constriction nerve injury. Furthermore,

we found that the intrathecal injection of tempol reduced

the CCI-induced increase in MDA levels and increased

SOD activity in the spinal cord. Once again, similar results

were not seen in rats given an intraperitoneal

Fig. 5 Representative electron

microscopic images of

myelinated and unmyelinated

fibers in the cauda equina in in

the sham (a), CCI (b), Tem1 (c),
and Tem2 (d) groups. Arrows
indicate locally disintegrated

myelin lamellae and

intracellular edema in

myelinated fibers. Cauda equina

fibers ultrastructure damage

score in the sham, CCI, Tem1,

and Tem2 groups (e).
Magnification 98000. n = 4
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administration of tempol. Finally, intrathecal tempol

injection downregulated NGF expression in the spinal cord,

but intraperitoneal injection did not. The specific

p38MAPK inhibitor prevented tempol-induced downregu-

lation of NGF in CCI rats. These results suggest that the

intrathecal injection of tempol may inhibit CCI-induced

neuropathic pain by increasing SOD activities and

inhibiting NGF expression via the p38MAPK signaling

pathway.

Tempol has a small molecular weight and can easily

cross the blood–brain barrier (Mitchell et al. 1991). Tempol

has been reported to exhibit neuroprotective effects in a rat

model of SCI (Patel et al. 2009; Xiong and Hall 2009).

Consistent with these reports, we found that intrathecal

tempol administration (30 lg) reduced CCI-induced neu-

ropathic pain in rats. However, we found that intraperi-

toneal administration of tempol at an equal dose (30 lg)
did not produce an antinociceptive effect in CCI rats. The

contrast between these results is likely to be because the

intraperitoneal injection of 30 lg tempol did not result in a

spinal concentration high enough ([30 lg) to inhibit the

CCI-induced neuropathic pain or reverse the CCI-induced

structural damage in the spinal cord. Tempol is highly

lipophilic and membrane-permeable, and intraperitoneally

administrated tempol may be sequestered by many of the

target organs, such as the brain (Kato et al. 2003), liver

(Blonder et al. 2000), and kidney (Chatterjee et al. 2000),

leading to a spinal concentration insufficient for pain

inhibition. Intraperitoneal administration of tempol may be

more appropriate to selectively target organs that are able

to accumulate higher concentrations of the molecule. For

instance, it has been reported that intraperitoneal admin-

istration of tempol effectively protects against ischemia–

reperfusion injury in the kidney and liver.

In the present study, we found that the intrathecal

injection of tempol reduced structural damage in the spinal

cord. Histology showed that intrathecal tempol injection

reduced CCI-induced white matter damage, including

edema and vacuolar degeneration in the dorsal horn of the

spinal cord. Examination of spinal cord tissue by electron

microscopy showed that tempol reduced local edema and

disintegration of the myelin lamellae in the myelinated

fibers of the cauda equina. The reduction of CCI-induced

damage in the cauda equina after intrathecal injection of

tempol suggests that the intrathecal injection of tempol

could be used to treat cauda equina syndrome after nerve

injury.

ROS have been reported to contribute to the pathogen-

esis of neuropathic pain (Choi et al. 2012; Kallenborn-

Gerhardt et al. 2013b). MDA is known to be a lipid per-

oxidation marker (Ohsawa et al. 2007). MDA is formed via

degradation of polyunsaturated lipids by ROS and, thus,

may reflect the level of oxidative stress. We found that CCI

induced an increase in spinal cord MDA levels, suggesting

that oxidative stress may contribute to neuropathic pain in

CCI rats. The intrathecal injection of tempol reduced the

CCI-induced increase in MDA levels, suggesting that

tempol may exert antinociceptive effects via a reduction of

oxidative stress in the spinal cord. It has been reported that

tempol exerts anti-oxidative stress activities due to its

ability to scavenge superoxide radicals (O2
-) by acting as a

SOD mimetic (Wilcox 2010). In the present study, we

found that the intrathecal administration of tempol

increased SOD activity in the spinal cord. Our results,

therefore, support the idea that tempol produces antinoci-

ceptive effects via increased SOD activity. Additionally,

we found that the intraperitoneal injection of tempol

increased SOD activity in the plasma, but that the increase

in SOD activity in the plasma was not associated with the

antinociceptive effects of tempol.

NGF, a prototypical neurotrophin, regulates the devel-

opment and maintenance of the central and peripheral

nervous system and has been reported to contribute to

Fig. 6 Spinal cord and plasma MDA levels in the sham, CCI, Tem1,

and Tem2 groups. #p\ 0.05 versus sham, *p\ 0.05 versus CCI.

n = 4

Fig. 7 Spinal cord and plasma SOD levels in the in the sham, CCI,

Tem1, and Tem2 groups. *p\ 0.05 versus CCI. n = 4
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neuropathic pain (Dray 2008). NGF has been reported to

upregulate many pain-related genes in the primary sensory

neurons of dorsal root ganglion including voltage-gate

sodium channels and TPV1 (Fang et al. 2005; Lindsay and

Harmar 1989; Zhu and Oxford 2007). Upregulation of

these ion channels may result in an increase in firing in the

afferent neurons following neve injury, thus leading to

neuropathic pain conditions (Siniscalco et al. 2011). Clin-

ical and animal studies have shown that systemic NGF

administration increases thermal and mechanical

Fig. 8 Spinal cord NGF expression in the sham, CCI, Tem1, and

Tem2 groups (a–d). Representative immunocytochemical staining of

spinal cord NGF in the sham (a), CCI (b), Tem1 (c), and Tem2

(d) groups. e The integral optical density of NGF-positive cells in the

sham, CCI, Tem1, and Tem2 groups. f Western blot results showing

the expression of NGF protein in the spinal cord of rats in the sham,

CCI, Tem1, and Tem2 groups. The relative expression of NGF was

normalized to the expression of b-actin. #p\ 0.05 versus sham,

*p\ 0.05 versus CCI. n = 4
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hyperalgesia (Cahill et al. 2003; Hayashida and Eisenach

2010; Petty et al. 1994). Additionally, Nitya et al. reported

that atorvastatin attenuated neuropathic pain by inhibiting

NGF in the sciatic nerve and spinal cord, suggesting that

NGF inhibition may be a potential therapeutic strategy for

the management of neuropathic pain (Pathak et al. 2013).

We also investigated the effect of tempol on NGF

expression in the spinal cord in CCI rats. CCI induced

persistent mechanical and thermal algesia that was

accompanied by severe structural damage in the spinal

cord. The expression of NGF was significantly increased

following CCI, suggesting that the upregulation of

endogenous NGF expression may contribute to marked

hypersensitivity to both mechanical and thermal stimuli

after CCI. The intrathecal administration of tempol further

decreased the post CCI expression of NGF, and inhibition

of NGF expression was accompanied by decreased neu-

ropathic pain and reduced structural damage. This result

suggests that tempol may exert neuroprotective effects on

the spinal neurons via downregulation of NGF expression.

In this study, we further found that the p38MARK

inhibitor SB203580 blocked tempol-induced downregula-

tion of NGF in CCI rats. Several studies have shown that

NGF activates the p38MAPK signaling pathway, and

subsequently increases the expression of TRPV1, leading

to neuropathic pain (Ji et al. 2002; Julius and Basbaum

2001; Zhu and Oxford 2007). It has been reported that

p38MAPK inhibition reduces neuropathic pain in animal

models (Clark et al. 2007; Gwak and Hulsebosch 2007;

Hains and Waxman 2006; Wen et al. 2007). Our findings

that inhibition of p38MAPK blocked tempol-induced NGF

in CCI rats suggest that the p38MAPK pathway mediates

tempol-induced downregulation of NGF expression in

neuropathic pain.

In summary, we investigated the antinociceptive effects

of intrathecal or intraperitoneal tempol injection in a rat

model of CCI-induced neuropathic pain. We found that

intrathecal, but not intraperitoneal, tempol injection pro-

duced a persistent antinociceptive effect in CCI rats. The

antinociceptive effect of the intrathecal tempol injection

was accompanied by reduced structural damage and

decreased MDA levels in the spinal cord. We also found

that intrathecal tempol administration increased SOD

activity and upregulated the expression of NGF in the

spinal cord, suggesting that tempol might produce

antinociceptive effects by increasing SOD activities or by

upregulating the expression of NGF.

Conclusions

Intrathecal injection of tempol produces antinociceptive

effects and reduces CCI-induced structural damage in the

spinal cord by increasing SOD activities and upregulating

the expression of NGF, and the mechanism is related to

inhibiting p38MAPK. Intraperitoneal administration of

tempol does not exhibit antinociceptive effects.
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