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Abstract X-linked adrenoleukodystrophy (X-ALD) is the
most frequent peroxisomal disorder that is characterized by
progressive demyelination of the white matter, adrenal
insufficiency, and accumulation of very long-chain fatty
acids in body fluid and tissues. This disorder is clinically
heterogeneous with seven different phenotypes in male
patients and five phenotypes in female carriers. An ultimate
treatment for X-ALD is not available. Depending on the
rate of the disease progression and the degree of an indi-
vidual handicap, special needs and challenges vary greatly.
The exact mechanisms underlying the pathophysiology of
this multifactorial neurodegenerative disorder remains
obscure. Previous studies has been related oxidative stress
with the pathogenesis of several disease that affecting the
central nervous system, such as neurodegenerative disease,
epilepsy, multiple sclerosis, Alzheimer, and Parkinson
diseases. In addition, oxidative damage has been observed
in various in vivo and in vitro studies with inborn errors of
metabolism, including X-ALD. In this context, this review
is focused on oxidative stress in X-ALD, with emphasis on
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studies using biological samples from patients affected by
this disease.
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Abbreviations
AASA Aminoadipic semialdehyde

ABCDI1 ATP-binding cassette (ABC) transporter
subfamily D member 1

ABAP 2,2'-Azo-bis-(2-aminidinopropane)

AMN Adrenomyeloneuropathy

ATP Adenosine triphosfate

BMT Bone marrow transplant

C22:0 Docosanoic acid

C24:0 Tetracosanoic acid

C26:0 Hexacosanoic acid

Ca’" Calcium

CAT Catalase

CCER Cerebral childhood ALD

CEL Carboxyethyl-lysine

CML Carboxylmethyl-lysine

CNS Central nervous system

DNA Deoxyribonucleic acid

GPx Glutathione peroxidase

GSA Glutamic semialdehyde

GSH Glutathione

GSHRd Glutathione reductase

GSSG Oxidized glutathione

H,DCFDA  6-Carboxy 2',7'-dichlorodihydrofluorescein

H,0, Hydrogen peroxide

HNE 4-Hydroxynonenal

HO-1 Hemoxygenase-1

HPLC High-performance liquid chromatography

HSCT Hematopoietic stem cell transplantation
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HTZ Heterozygote or female carriers
IEM Inborn errors of metabolism
IFN-y Interferon gamma

IL-12 Interleukin 12

IL-1B Interleukin 1 beta

iNOS Inducible nitric oxide synthase
LA Lipoic acid

LDL Low-density lipoprotein

LO Lorenzo’s oil

MDA Malondialdehyde

MDAL Malondialdehyde—lysine
MnSOD Manganese—superoxide dismutase
MRI Magnetic resonance image
mtDNA Mitochondrial DNA

NAC N-acetyl-cystein

NaPA Sodium phenylacetate

NO Oxide nitric

0, Oxygen

05~ Superoxide radical

OH"® Hydroxyl radical

ONOO™ Peroxynitrite

OXPHOS  Oxidative phosphorylation
PIsEtn Plasmenylethanolamine

PUFA Polyunsaturated fatty acid
RNS Reactive nitrogen species
ROS Reactive oxygen species

RS Reactive species

SOD Superoxide dismutase

TAR Total antioxidant reactivity

TAS Total antioxidant status

TBA-RS Thiobarbituric acid reactive species
TNF-o Tumor necrosis factor alpha

TRAP Total radical-trapping antioxidant potential
VLCFA Very long chain fatty acidy

VPA Valproic acid

X-ALD X-linked adrenoleukodystrophy
Introduction

X-linked adrenoleukodystrophy (X-ALD, OMIM #

300100) is the most frequent peroxisomal disorder that
occurs in approximately 1 in 17,000 live male births
(Bezman et al. 2001). This inborn error of metabolism
(IEM) is characterized by progressive demyelination of the
white matter, adrenal insufficiency, and accumulation of
very long-chain fatty acids (VLCFA), mainly hexacosanoic
acid (C26:0) and tetracosanoic acid (C24:0) in body fluid
and tissues (Moser et al. 2001). This disease is caused by
mutation in ABCD1 gene located in Xq28 chromosome
that provokes a loss of function of adrenoleukodystrophy
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protein (ALDP). ABCDI1 encodes a peroxisomal mem-
brane ATP-binding cassette (ABC) half-transporter, which
imports cytosolic VLCFA or VLCFA-CoA esters into the
peroxisome for degradation by homeostatic B-oxidation
(Bezman et al. 2001; Moser et al. 2001, 2005a, b). The
accumulation of these fatty acids may contribute to the
pathogenesis of X-ALD; however, the role of VLCFA is
poorly known. It was assumed that the excess of VLCFA
was toxic to myelin and to adrenal cortex and testis, since it
was observed the direct toxic effects of C26:0 on adreno-
cortical cells and the disruptive effects of C26:0 on cell
membrane structure, stability, and function (Moser et al.
2001).

This disorder is clinically heterogeneous with seven
different phenotypes in male patients and five phenotypes
in female carriers—heterozygotes (HTZ). The phenotype
cannot be predicted by VLCFA plasma concentration or by
the nature of the mutation. There is no clear pattern of
genotype-phenotype correlation since several phenotypes
may occur in the same family, suggesting involvement of
genetic modifiers and/or environmental, stochastic or epi-
genetic factors. In males, the different phenotypes forms
are (1) childhood cerebral form (CCER), (2) juvenile
cerebral form, (3) adult cerebral form, (4) adreno-
myeloneuropathy (AMN), (5) Addison-only disease, (6)
olivo-ponto-cerebellar, and (7) asymptomatic patients
(Moser et al. 2001). The two most prevalent phenotypes are
CCER form and AMN. The first represents 60 % of male
X-ALD patients and it manifests most commonly before
ten-year old (Berger et al. 2014). CCER involves a rapid
progression of neurological symptoms, including visual
and auditory disturbances, decreased school performance,
adrenal insufficiency, walking difficulties, demyelination
and total disability within three years. The second presents
a late-onset (28 & 9 years) and slowly progression, with
peripheral neuropathy, distal axonopathy in spinal cord,
sphincter disturbances, sexual dysfunction, impaired
vibration, and position sense in the legs. AMN form affects
3040 % of the total male population with X-ALD and
some cases progress over decades. These patients show
little or no inflammatory component, and they may be
wrongly diagnosed with multiple sclerosis or spastic
paraparesis (Moser et al. 2001; Smith et al. 1999; Engelen
et al. 2012 Triantafyllou et al. 2014). The asymptomatic
form includes individuals with biochemical or genetic
abnormalities but without any manifestations of adrenal or
cerebral involvement (Triantafyllou et al. 2014).

Female HTZ for X-ALD can present a wide range of
five phenotypes namely: asymptomatic, mild myelopathy,
moderate to severe myelopathy, cerebral involvement, and
adrenal insufficiency (Moser et al. 2001). Approximately
50 % of female carriers over 40-year old may develop mild
neurological abnormalities such as an impaired vibration
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sense and hyperreflexia in the legs as age advances, and
20 % of carriers over the age of 40 years develop an AMN-
like syndrome (Moser et al. 2001; Maier et al. 2002). In
contrast, the majority of the HTZ younger than 30-year old
are asymptomatic. Cerebral involvement and adrenal
insufficiency are rare (1 %) (Moser et al. 2005a; Berger
and Girtner 2006).

The plasmatic determination of VLCFA is still the best
initial biomarker of X-ALD (Kemp and Wanders 2010).
Therefore, the diagnosis of X-ALD hemizygote and female
carriers consists in the increased concentrations of C26:0
and C24:0 in serum, even as by high C24:0/C22:0 and
C26:0/C22:0 ratios (Moser and Moser 1991). The mutation
analysis is the best method to establish the carrier status in
women, since false-negative results may occur in 15-20 %
of the VLCFA determinations for HTZ (Maier et al. 2002).
For HTZ pregnancies, in whom the risk of having an
affected male is 25 % (or 50 % if the fetus is known to be
male), prenatal diagnosis is achieved by determination of
VLCFA levels in cultured amniocytes or cultured chorionic
villus cells and by mutation analysis (Wanders et al. 1993;
Moser et al. 1999; Kemp et al. 2012). Brain magnetic
resonance imaging (MRI) is always abnormal in neuro-
logically symptomatic males which are approximately
85 % of affected individuals, showing a characteristic
pattern of symmetric enhanced T-2 signal in the parieto-
occipital region with contrast enhancement at the advanc-
ing margin. MRI findings often provide the first clue to
diagnosis, have great value in assessing prognosis, and help
to selection and evaluation of therapeutic approaches
(Moser et al. 2001).

An ultimate treatment for X-ALD is not available.
Depending on the rate of the disease progression and the
degree of an individual handicap, special needs and chal-
lenges vary greatly. At this time, current treatment is
limited on three modes of therapy in childhood form:
adrenal hormone replacement for adrenal insufficiency
(present in about 70 % of male patients), Lorenzo’s Oil
(LO) therapy for asymptomatic X-ALD boys who have
normal cerebral MRI, and hematopoietic stem cell or bone
marrow transplantation (BMT) for boys with early stage of
cerebral involvement (Moser et al. 2005b; Berger and
Girtner 2006; Moser 2006). However, for symptomatic
AMN and HTZ, patients no reasonable treatment is
accessible. Most X-ALD patients, specially AMN and HTZ
symptomatic patients, need the care of a multi-professional
team which includes physiotherapy, urologic consultation
for erectile dysfunction, impaired bladder and bowel con-
trol, prevention and treatment of urinary infections,
endocrinological consultation for the detection and man-
agement of adrenal insufficiency, and psychological
counseling (Moser et al. 2001; Moser 2006, Engelen et al.
2012). Emerging therapies for X-ALD, such as gene

therapy, histone acetyl transferases inhibitors and antioxi-
dant strategies, have been proposed (Berger et al. 2010). A
clinical trial with antioxidants in X-ALD is ongoing in
Spain, since antioxidants reduce oxidative stress biomark-
ers and axonal degeneration in the spinal cord of Abcdl
knockout mice (Galea et al. 2012).

The mechanisms that lead to cerebral demyelination,
axonal degeneration in spinal cord, and adrenal insuffi-
ciency remain obscure, as well as the role played by the
main accumulated VLCFA product (C26:0). Singh and
Pujol (2010) have proposed a hypothesis for neuropathol-
ogy in X-ALD enclosing metabolic disease and axonal
degeneration (excess of VLCFA, lower plasmalogens, and
oxidative stress), induction of inflammation and general
loss of peroxisomal function and neurodegeneration. Galea
et al. (2012) have come up with the idea that X-ALD is
pathogenic continuum of increased severity where multiple
noxious factors accumulate in a highly interactive manner
to cause CCER or AMN and VLCFA-elicited oxidative
stress would be the first hit (reactive oxygen and nitrogen
species generation), followed by inflammation leading to
CCER and perhaps to AMN.

Previous studies have been related oxidative stress to
pathogenesis of several disease that affecting the central
nervous system (CNS), such as neurodegenerative disease,
epilepsy, multiple sclerosis, Alzheimer, and Parkinson
diseases (Halliwell 2006; Halliwell and Gutteridge 2007).
In addition, oxidative damage in some inborn errors of
metabolism has been observed in various in vivo and
in vitro studies (Wajner et al. 2004; Barschak et al. 2006;
Sirtori et al. 2005; Ribas et al. 2010; Negretto et al. 2014)
as well as in X-ALD (Table 1). In the following sections of
this review, we focused on oxidative stress in X-ALD, with
emphasis on studies including X-ALD patients.

Free Radicals, Antioxidant Compounds,
and Oxidative Stress

Free radical is a highly reactive molecule since it pos-
sesses an unpaired electron on the outer atomic or
molecular orbitals, which has a strong tendency to initiate
chain reactions to complete his own orbital (Halliwell
1994). The reactive oxygen and nitrogen species (ROS
and RNS, respectively) comprise both free radicals, like
superoxide anion (O57), hydroxyl radical (OH") and nitric
oxide (NO®), and other molecules, such as hydrogen
peroxide (H,O,) and peroxynitrite (ONOO™) (Fridovich
1999; Halliwell and Gutteridge 2007). Radicals derived
from oxygen and nitrogen are products of normal cellular
metabolism, being ROS the most important class of rad-
ical species generated in living systems (Miller et al.
1990).
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Beneficial effects of ROS occur at low/moderate pro-
duction and involve physiological roles in cellular
responses against infectious agents, in cellular signaling
systems and in gene transcription (Zheng and Storz 2000;
Halliwell and Gutteridge 2007; Valko et al. 2007). In
addition, NO°® produced by endothelial cells and acts as a
relevant oxidative biological signaling, like immune
response. This abundant RNS is crucial to vasoregulation,
leukocyte adhesion, platelet aggregation, angiogenesis, and
neurotransmission (Tarpey and Fridovich 2001; Halliwell
and Gutteridge 2007). However, the overproduction of free
radicals is deleterious and can cause potential oxidative
damage in biomolecules (lipids, proteins, carbohydrate,
and DNA), culminating in cell injury and death.

Lipids can be oxidized, chlorinated, and nitrated by a
range of reactive species (RS) (Halliwell and Gutteridge
2007). Lipid peroxidation is a complex process and com-
prises three distinct mechanisms: free radical-mediated oxi-
dation, non-enzymatic oxidation, and enzymatic oxidation
(Shichiri 2014; Niki et al. 2005). Lipid peroxidation occurs
through a chain reaction, which one initiator free radical can
oxidize either lipid molecules in biological membranes or
low-density lipoproteins (LDL). Lipid peroxidation is com-
monly regarded to harmful process leading to membrane
structural modification like changes in permeability, fluidity,
integrity, and functional loss/modification of biomembranes,
lipoproteins, proteins, and DNA as well as is usually asso-
ciated with cellular dysfunction, generating potentially toxic
products (Halliwell and Gutteridge 2007).

Oxidative damage to proteins can have wide-ranging
damaging effects such as affecting the function of recep-
tors, enzymes, and transport proteins, and perhaps, gener-
ating new antigens that can provoke immune responses and
can contribute to secondary damage to other biomolecules,
for example, inactivation of DNA repair enzymes and loss
of fidelity of damaged DNA polymerases in replicating
DNA (Halliwell and Gutteridge 2007). Protein oxidative
damage results in the formation of carbonyl groups by
oxidation of protein side chains, especially proline, argi-
nine, lysine, and threonine and reduction of sulthydryl
groups of susceptible amino acids (Stadman and Levine
2003; Levine et al. 1990). The majority of cellular sulf-
hydryl groups are protein-bound and the oxidation of these
groups from specific cysteine residues to form disulfide,
potentially alter the redox state of proteins, leading to their
inactivation (Aksenov and Markesbery 2001). Further-
more, protein carbonylation, oxidation of thiol group and
alterations of protein structure by oxidants may affect the
function of different proteins, resulting in a partial or
complete loss of its functionality (Halliwell and Gutteridge
2007; Levine et al. 1990).

DNA subjected to attack by ROS especially by hydroxyl
radical generates a huge range of base and sugar
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modification products (Dizdaroglu et al. 2002). This attack
to purine/pyrimidine bases and or deoxyribose sugar result
in strand breaks, oxidized bases and formation of DNA
adducts, as 8-hydroxy-2'-deoxyguanosine. Therefore, DNA
oxidation can lead to mutations that may disturb DNA
replication (Halliwell and Gutteridge 2007).

Healthy aerobic organisms had developed antioxidant
defense mechanisms aiming to avoid or to reduce the cel-
lular damage provoked by free radical production (or
overproduction) maintaining the balance of ROS produc-
tion (Halliwell and Gutteridge 2007). Antioxidant defense
mechanisms involve both enzymatic and non-enzymatic
strategies. The enzymatic antioxidant system is composed
by superoxide dismutase (SOD), Catalase (CAT), and
Glutathione Peroxidase (GPx). SOD dismutates the O3~ to
H,0,, which is less reactive and can be degraded by other
enzymes, such as CAT or GPx. Both GPx and CAT
detoxify H,O, by reducing it to water (H,O) and oxygen
(O,) (Fridovich 1999; Halliwell and Gutteridge 2007). GPx
belong to selenoperoxidases’ family, which contain
selenocysteine at their active site (Kiihn and Borchert
2002). Besides of H,O, removal, GPx also reduces organic
peroxides into their corresponding alcohols. GPx uses
reduced glutathione (GSH) as a hydrogen donor whereby
GSH is oxidized to glutathione disulfide (GSSG). The
regeneration of GSH is catalyzed by glutathione reductase
(GSHRd) (Halliwell and Gutteridge 2007; Kiihn and
Borchert 2002).

The non-enzymatic antioxidant defenses comprise
endogenous substances, such as metal-binding proteins
(transferrin, ferritin), uric acid, GSH, -ceruloplasmin,
albumin, and dietary antioxidants, such as vitamins (A, C,
E, B1, B2, B6, and B12), a-lipoic acid, mixed carotenoids,
several bioflavonoids, antioxidant minerals (copper, zinc,
manganese, and selenium), and folic acid (Halliwell and
Gutteridge 2007; Davies 2000). GSH, the major thiol
antioxidant and redox buffer of the cell, can be obtained
from dietary sources or by endogenous synthesis from
glutamate, cysteine, and glycine (Fang et al. 2002).

Redox homeostasis is preserved in vivo through equi-
librium between production of oxidant species and
antioxidant response. Nevertheless, under certain condi-
tions, if there is a significant increase in RS generation or a
decrease in radical elimination from the cell by low
antioxidant activities, oxidative cellular stress occurs. The
term oxidative stress is currently defined as an imbalance
between pro- and antioxidants in favor of the former, which
implicates a loss of redox signaling (Halliwell and Gut-
teridge 2007).

Recently, the role of oxidative stress in neurodegener-
ative diseases has received much attention, since brain and
nervous system are more vulnerable to oxidative stress.
Brain processes a large amount of O, in a relatively small
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tissue mass. Additionally, some brain areas are rich in iron
content that is able to catalyze the generation of ROS.
Neuronal membranes are abundant in polyunsaturated fatty
acids (PUFAs), which are particularly prone to RS attack
and lipid oxidative damage due to their possession of
unsaturated double bonds. Other aspects that give to the
brain sensibility to oxidative stress include high calcium
(Ca®") traffic across neuronal membranes, the presence of
excitotoxic amino acids, and high concentrations of
autoxidizable neurotransmitters (dopamine and nora-
drenaline) (Halliwell 2006). Lastly, the brain contains low
to moderate activity of SOD, CAT, and GPx compared to
kidney or liver (Halliwell and Gutteridge 2007).

Regarding to important role of oxidative stress in neu-
rodegenerative diseases, various findings have shown that
oxidative stress participates in the pathophysiology of
some IEM such as aminoacidopathies, organic acidemia,
lysosomal, mitochondrial, and peroxisomal diseases (Wa-
jner et al. 2004; Vargas et al. 2004; Barschak et al. 2006;
Sirtori et al. 2005; Ribas et al. 2010; Negretto et al. 2014).
Although the relation between oxidative stress and IEM
pathophysiology is not well elucidated, the accumulation of
toxic metabolites is appointed as the main reason for the
increase of free radicals.

Oxidative Biomarkers and Antioxidant Defenses
in Biological Samples from X-ALD Patients

In recent years, the role of oxidative stress has been
highlighted in diverse neurodegenerative diseases, and the
imbalance between oxidative stress measures and antioxi-
dant levels in X-ALD is present because of the generation
of ROS/RNS during lipid and protein oxidation (Table 1).

Lipid peroxidation is a critical process that form a large
diversity of products in variable number (Halliwell and
Gutteridge 2007) and is probably the most investigated
area of research when it comes to ROS and its important
role in cell biology and human health (Ayala et al. 2014).
Consequently, mechanisms of lipid hydroperoxides and
biologically active metabolites formation, together with
their effect on cellular structure and function, are getting
more importance in X-ALD pathogenesis study.

Di Biase et al. (2000) have observed in X-ALD patients a
slight alteration of oxidative status and an increased sus-
ceptibility to LDL oxidation, what was protected by sim-
vastatin therapy. Oxidized lipids can affect cell function by
accumulating in the cell membrane causing leakage of the
plasmalemma and interfering with the function of membrane
bound receptors (Cai and Harrison 2000). Moreover, prod-
ucts of lipid peroxidation (e.g., unsaturated aldehydes and
other metabolites) have cytotoxic and mutagenic properties,
and LDL oxidation itself has a specific role in the

pathogenesis of atherosclerosis, diabetes, and Alzheimer
disease (Halliwell and Gutteridge 2007; Seifried et al. 2007).

Lipid peroxidation also leads to the production of con-
jugated diene hydroperoxides and unstable substances that
disintegrate into various aldehydes like malondialdehyde
(MDA), 4-hydroxynonenal (HNE), and thiobarbituric acid
reactive species (TBA-RS). Considering that light emitted
in spontaneous chemiluminescence assay usually arises
from peroxidizing lipids due to an increase in ROS/RNS
production and that TBA-RS assay reflects the amount of
MDA formation (Halliwell and Gutteridge 2007), lipid
peroxidation was verified by chemiluminescence and TBA-
RS in plasma of X-ALD patients. Chemiluminescence was
significantly increased in plasma of CCER patients, and
TBA-RS measurement was significantly increased in
plasma from AMN, CCER, and asymptomatic patients, as
well as in plasma of HTZ for X-ALD (Vargas et al. 2004;
Deon et al. 2006, 2007, 2008). In addition, it was observed
a marked increase of MDA, measured by high-performance
liquid phase chromatography (HPLC), in plasma from
CCER and Addison-only patients before BMT (Rocken-
bach et al. 2012). Besides, it was verified that both human
adrenal cortex and brain from X-ALD patients (juvenile
and adult cerebral X-ALD and AMN) show evidence of
oxidative damage, particularly from lipid peroxidation
(HNE and MDA) immunoreactivity in astrocytes and
microglia (Powers et al. 2005). Importantly, these alter-
ations on oxidative biomarkers were mainly related to
demyelinating cerebral and cerebellar lesions but they were
also detected beyond the demyelinating limit (Powers et al.
2005). Khan et al. (2008) have observed, in CCER patient’s
brain white matter, an increment of reactive lipid aldehydes
(HNE and acrolein). These results strongly indicate that
lipid peroxidation is stimulated in X-ALD.

Lipid peroxidation-mediated membrane defects have
also been implicated in the decreased reactivity of thiol
group membrane proteins (Ohyashiki et al. 1994). It is
widely established that various reactive oxygen species
react with membrane lipids and proteins, altering cell
membrane fluidity, and giving rise to carbonyl group for-
mation into side chains or reduction of sulfhydryl groups of
susceptible amino acids (Levine and Stadman 2001). Thi-
ols and carbonyls content are considered two biomarkers of
protein damage.

Alterations of protein structure may affect the function
of receptors, enzymes, and transport proteins, resulting in a
partial or complete loss of protein functionality (Levine
et al. 1990). Increased formation of carbonyl groups can
also cause an autoimmune response due to the recognition
of altered proteins as exogenous (Halliwell and Gutteridge
2007) which, in turn, can trigger and/or intensify an
inflammatory process. On the other hand, sulfhydryl groups
in proteins may have an antioxidant function since they
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may scavenge oxidants, thus sparing antioxidants and/or
cellular constituents from attack. In this context, Khan
et al. (2008) have reported increased levels of carbonyl
proteins in all CCER brain areas. In addition, it has been
verified a reduced plasma thiols in CCER, AMN and
Addison-only patients and a higher plasma carbonyls in
AMN and CCER patients compared with controls (Rock-
enbach et al. 2012; Petrillo et al. 2013). By contrast, plasma
carbonyl content was not altered in plasma of Addison-
only patients. A significant negative correlation between
thiols content and C26:0 was observed in plasma of
X-ALD individuals, which suggest a potential link between
C26:0 accumulation and protein oxidative damage in
pathogenesis of X-ALD (Rockenbach et al. 2012).

Furthermore, carbonyl compounds derived from the
oxidation of carbohydrates and lipids can react with pro-
teins, leading to the formation of advanced glycation and
lipoxidation end products as malondialdehyde-lysine
(MDAL), carboxylmethyl-lysine (CML), and carboxyethyl-
lysine (CEL). Moreover, glutamic semialdehyde (GSA—
derived from metal-catalyzed oxidation of proline and
arginine) and aminoadipic semialdehyde (AASA—resulted
from lysine oxidation) represent direct oxidation of car-
bonyl residues (Autrup et al. 1999; Boyd-Kimball et al.
2005). Therefore, it has shown that the concentration of
selected protein oxidative biomarkers (GSA and AASA for
carbonylation, CML and CEL for glycoxidation/lipoxida-
tion, and MDAL for lipoxidation), analyzed by CG/MS,
were increased by twofold in fibroblasts and peripheral
mononuclear cells derived from X-ALD patients (Fourcade
et al. 2008; Fourcade et al. 2010).

Oxide nitric (NO®) is a diffusible free radical that per-
forms many roles in diverse physiological and pathological
circumstances. The direct toxicity of NO® is modest,
involving oxidation reactions, since itself is only a weak
oxidant. However, in the presence of superoxide, the over-
production of NO® can be transformed to its most reactive
and harmful derivative, peroxynitrite (ONOQO™). Therefore,
NO-mediated toxicity via peroxynitrite may cause the
inhibition of mitochondrial respiration, formation of iron—
NO complexes in iron containing enzyme systems, inhibi-
tion of antioxidant enzyme systems, induction of lipid per-
oxidation, elevation of toxic VLCFA, oxidation of protein
sulthydryl groups, nitration of proteins, and nitrosylation of
nucleic acids, as well as deamination of DNA bases leading
to strand break (Radi et al. 1991; Kahn et al. 1998; Halliwell
and Gutteridge 2007). The most studied reaction of RNS
with proteins is the conversion of tyrosine to 3-nitrotyrosine
which has been related to inflammatory conditions in neu-
rodegenerative diseases, like Alzheimer, Parkinson, and
Amyotrophic Lateral Sclerosis (Halliwell and Gutteridge
2007). Nitrotyrosine itself could be toxic by undergoing to
redox cycling, by disturbing with signal transduction or by
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being incorporated into the microtubule protein tubulin and
distorting cytoskeleton, leading eventually to cell death
(Halliwell and Gutteridge 2007). Gilg et al. (2000) verified
the presence of inducible nitric oxide synthase (iNOS) in the
astrocytes and microglia/macrophages of ALD inflamma-
tory demyelinative lesions. They also demonstrated the
abnormal nitration of proteins with anti-tyrosine antibodies
in the center of the ALD brain lesions. The abnormal
nitration of proteins is irreversible and prevents phospho-
rylation, which interferes with their normal metabolic
functions. Nitrotyrosylation of proteins is considered to be
strong circumstantial evidence for the presence of the highly
toxic peroxynitrite molecule and free radicals. Powers et al.
(2005) have found the increased iNOS in astrocytes and
macrophages along with nitrotyrosylated proteins in the
demyelinating lesions, which corroborated with findings of
Gilg et al. (2000).

Fourcade et al. (2008) have reported that excess of
C26:0 generates intracellular ROS levels in X-ALD human
fibroblasts, analyzed by ROS-sensitive 6-carboxy-2',7'-
dichlorodihydrofluorescein diacetate (H,DCFDA) probe.
Uto et al. (2008) have observed that X-ALD lymphoblasts
accumulate VLCFA, synthesize higher levels of free radi-
cals and present higher levels of the membrane-anchored
NADPH oxidase subunit gp91 PHOX. Therefore, they
have suggested that accumulation of VLCFA in X-ALD
lymphoblasts may cause the increased levels of the cat-
alytic subunit of NADPH oxidase gp91 PHOX in mem-
brane fractions and total cell homogenate. These data
support previous reports, showing that the accumulation of
VLCFA induces changes in cell membrane properties and
results in cell signaling alteration. It could be implied that
the higher synthesis of free radicals observed in X-ALD
lymphoblasts may be a consequence of the higher levels of
the catalytic subunit gp91 PHOX, probably playing an
important role as modulators of the development/progres-
sion of neuroinflammation in X-ALD disease. NADPH
oxidases have become the focus of attention due to the
discovery that they may play a role in the development/
progression of inflammation in disorders affecting the CNS
(Uto et al. 2008). Moreover, their results also indicate that
X-ALD lymphoblasts produce higher levels of NO® and
cytokines like tumoral necrosis factor alpha (TNF-o)) and
interleukin 1B (IL-1B), which propose additional alter-
ations of other membrane proteins, and support previous
studies reporting that cells derived from X-ALD patients
display an increased proinflammatory response, through
interferon gamma (IFN-y) and interleukin 12 (IL-12)
(Powers et al. 2005).

Most important source of ROS production in many
aerobic cells is usually related to the mitochondrial electron
transport chain, and this ROS production could contribute
to damage of mitochondrial proteins, lipids and DNA
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(Halliwell and Gutteridge 2007). Comparing nuclear DNA
and mitochondrial DNA (mtDNA), the last one seems to be
more sensitive to oxidative stress because of the proximity
between mtDNA and ROS generated during electron
transport and the lack of protective histones (Halliwell and
Gutteridge 2007; Lee and Wei 2005). Lopez-Erauskin et al.
(2013) have observed, in X-ALD patients’ fibroblasts,
which excess of C26:0 generates mtDNA oxidation and
specifically impairs oxidative phosphorylation (OXPHOS)
triggering mitochondrial ROS production from electron
transport chain complexes. They also have detected
increased mtDNA oxidation ratios in the white matter
zones from AMN patients, which show active demyeli-
nating plaques.

The increment of ROS/RNS formation has been specu-
lated to cause antioxidant consumption and thus, a decline
in antioxidant levels or generation of oxidation products
from them (e.g., ascorbyl radical and GSSG) can be mea-
sured as an index of oxidative stress (Halliwell and Gut-
teridge 2007). Antioxidant defense mechanisms involve
both enzymatic and non-enzymatic strategies. Common
non-enzymatic antioxidants include the vitamins A, C, and
E, GSH, mixed carotenoids, coenzyme Q10 (CoQ10),
several bioflavonoids, minerals (copper, zinc, manganese,
and selenium), and cofactors like folic acid, uric acid,
albumin, and vitamins B1, B2, B6, and B12 (Halliwell and
Gutteridge 2007; Davies 2000).

It is known that albumin, urate, and ascorbate make the
major contributions to the total antioxidant capacity of
human plasma, largely because of their high concentrations
relative to other blood antioxidants such as bilirubin, alpha-
tocopherol, and beta-carotene (Shofield and Braganza
1996). Several techniques (colorimetry, fluorescence, and
chemiluminescence) have been developed to assess the
total antioxidant capacity (Lissi et al. 1995; Kampa et al.
2002; Halliwell and Gutteridge 2007).

Vargas et al. (2004) have observed that total radical-
trapping antioxidant potential (TRAP) measurement, which
is indicative of the tissue non-enzymatic antioxidant
defenses, was not altered in plasma of CCER patients.
Since the major contributors of TRAP value in plasma are
urate, plasmatic proteins, ascorbic acid, and vitamin E, it is
feasible that the concentrations of these substances are not
modified in plasma from X-ALD patients (Vargas et al.
2004). However, the known antioxidants do not account for
all the measures of TRAP, since in human plasma it has
been found that unidentified antioxidants contribute up to
35 % to the experimentally determined TRAP value
(Halliwell and Gutteridge 2007).

On the other hand, total antioxidant reactivity (TAR)
measurement, which is a measure of the tissue capacity to
react with free radicals, was markedly reduced in plasma
from CCER patients (Vargas et al. 2004). Also, it was

observed a significant decrease of TAR measurement in
plasma from HTZ patients (Deon et al. 2008). TAR
parameter, a simple method based on luminol-enhanced
chemiluminescence, reflects the capacity of the additive to
engage in the electron transfer processes to luminol-
derived radicals. So, it should be noted that TAR corre-
sponds to an useful index of the capacity of a given tissue
to modulate the damage associated with an increased pro-
duction of free radicals and reflects not only the quantity of
antioxidants (given by TRAP), but also, and particularly,
its quality (given by its reactivity) (Lissi et al. 1995). Deon
et al. (2006) have reported that plasma TAR measurement
was not altered in X-ALD patients not receiving LO
treatment. In this respect, it should be noticed that three out
of four patients were asymptomatic, differently from Var-
gas’ study that utilized only symptomatic CCER patients
and where a significant decrease in plasma TAR was
observed (Vargas et al. 2004). Therefore, it appears that
TAR values were reduced in plasma of symptomatic but
not of asymptomatic X-ALD individuals (Deon et al.
2006).

The non-enzymatic antioxidant defense system has
many components, comprising endogenous substances and
dietary antioxidants (Halliwell and Gutteridge 2007). A
deficiency in any of these components can cause a reduc-
tion in the overall antioxidant status and it has been
implicated in several disease states, such as atherosclerosis,
cancer, diabetes mellitus, and arterial hypertension (Kampa
et al. 2002). Total antioxidant status assay (TAS) enables
assessment of the integrated antioxidant system, which
encompasses all biological components with antioxidant
activity like bilirubin, vitamin C, uric acid, polyphenols,
and proteins (Kampa et al. 2002). TAS measurement,
which represents the quantity of the tissue antioxidants,
was significantly reduced in plasma of CCER and AMN
patients but not in plasma of asymptomatic and HTZ
subjects, when compared to controls (Deon et al. 2007,
2008). Besides, it was found that TAS was significantly
reduced in AMN patients when compared to the CCER
group (Deon et al. 2007). The authors have verified that the
non-enzymatic antioxidant defenses are reduced in plasma
of symptomatic but not in plasma of asymptomatic X-ALD
individuals, and they suggested that these defenses are
possibly preserved in asymptomatic patients because the
amount of non-enzymatic antioxidant defenses is probably
sufficient to counterbalance the free radical generated.

Plasmalogens comprise all plasmenyl phospholipids
containing ethanolamine or choline in the head group of the
glycerol backbone and its biosynthesis are allocated in
peroxisomes. In mammals, the distribution and composi-
tion of plasmalogens varies among different tissues: ner-
vous tissues, kidney, and testis have relatively high levels
of plasmalogens and liver has very low amounts of this
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compound. Plasmalogens have been implicated in several
biological processes where they can affect membrane flu-
idity, mediate signal transduction, and protect against
oxidative stress (Wanders and Waterham 2006). Nervous
tissues, kidney, and testis are also characterized by high
levels of plasmenylethanolamine (PlsEtn), whereas heart
and skeletal muscle have high levels of plasmenyl choline
(Braverman and Moser 2012). PIsEtn in white matter
myelin contains mainly PUFA, including linoleic, arachi-
donic, and docosahexacosanoic acids (Norton 1984). A
drastic reduction in PlsEtn leads PUFA oxidation, and
membrane lipid dysregulation in myelin/oligodendrocytes
may not only cause demyelination/destabilization but also
lead to membrane fragmentation, lipid peroxidation, and
produce chemotactic molecules for vascular immune cells
(Latorre et al. 2003; Gorgas et al. 2006). Kahn et al. (2008)
have observed, in brain white matter of CCER patients, not
only increased levels of VLCFA but also reduced levels of
PIsEtn. They have reported that the loss of PIsEtn was
greatest in the plaque area and lesser, but significant, in
histologically normal-looking areas and that its reduction
was related to oxidative stress. These authors have sug-
gested that peroxisomal dysfunction during a secondary
insult might also contribute to reduced levels of PIsEtn in
CCER brain.

The major thiol antioxidant and redox buffer of the cell,
the tripeptide GSH, in addition to being a cofactor for the
GPx enzyme, is involved in many others metabolic pro-
cesses, including protective role against oxidative stress.
Because GSH blood concentration may reflect GSH status
in other less accessible tissues, measurement of both GSH
and GSSG in blood has been considered essential as an
index of whole-body GSH status (Halliwell and Gutteridge
2007). Fourcade et al. (2008) have observed that the
addition of C26:0 (10 mM) to the medium produced a
marked decrease of GSH in X-ALD fibroblasts. Petrillo
et al. (2013) have proposed to analyze the dysregulation of
the redox homeostasis in the blood of X-ALD patients,
with particular focus on the GSH system. The lymphocyte
concentration of the GSH was significantly decreased and
all the oxidized glutathione forms (GSSG + GS-Pro) were
significantly increased in AMN phenotype. Confirming the
imbalance of the redox status in these patients, the GSSG/
GSH was significantly increased. No significant differences
between CCER and controls were observed in lympho-
cytes; however, in erythrocytes, GSH content was signifi-
cantly decreased.

Activity of GPx, SOD, and CAT in X-ALD patients is
also challenging, since not all three antioxidant enzymes
are affected in all studies or present a similar standard of
variation. In addition, antioxidant enzymes that vary on
condition of oxidative stress in X-ALD remain uncertain,
since antioxidant enzymes like GPx and SOD may be
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induced by oxidative stress (to increase their level or
activity) or consumed (to decrease their level or activity).

A moderate but significant increase of GPx activity was
detected in erythrocytes from CCER patients. CAT and
SOD activities were much greater in fibroblasts from these
patients. The significant increase of these antioxidant
enzyme activities may have been a response to high sus-
tained levels of RS. The increase of CAT and GPx activity
suggests that H,O, is formed in excess, whereas the
increase of SOD suggests that O5~ is formed in excess
(Vargas et al. 2004).

Deon et al. (2006) have also evaluated the CAT, SOD
and GPx activities in erythrocytes from asymptomatic
patients before LO treatment and no significant difference
were observed when compared to controls. So far, they
have also suggested that the enzymatic and non-enzymatic
antioxidant defenses are not significantly altered in X-ALD
asymptomatic patients. Corroborating with the above, GPx
and SOD activity in erythrocytes was similar between
patients and controls in the study of Petrillo et al. (2013).

On the other hand, Powers et al. (2005) have shown an
increased manganese-SOD (MnSOD) activity in astrocytes
from juvenile and AMN patients. Fourcade et al. (2008)
have observed an induction of SOD2 and no induction of
SOD1, CAT, or GPx in fibroblasts from X-ALD patients.
Brose et al. (2012) have reported that the reduced function
variant C47T and the GTAC haplotype in the SOD2 gene
are significantly associated with cerebral demyelination in
adolescent cerebral X-ALD, adult cerebral X-ALD, and
AMN cerebral patients. Considering that X-ALD patients
with cerebral demyelination have reduced SOD2 activity,
SOD2 genotyping, or enzymatic assays may be used as a
predictive measure of cerebral disease development and be
used to determine which patients may benefit from
antioxidant therapy.

According with all exposed, oxidative stress is an
important mediator of neurodegeneration since brain has
relatively low levels of antioxidant defenses, high-lipid
content, specially unsaturated fatty acids and -cate-
cholamines, which are highly susceptible to reactive oxy-
gen species attack (Halliwell and Gutteridge 2007).
Evidences of oxidative stress have been found in blood,
fibroblasts samples and post-mortem brains from X-ALD
patients (Table 1). Also, it was observed signs of oxidative
damage/oxidative stress occurring at pre-symptomatic
stages (asymptomatic X-ALD patients and HTZ) as well as
in symptomatic patients (AMN and CCER). Studies
described here, using different areas of brain from CCER
patients, report that loss of PIsEtn and alterations in cellular
redox are early events that might be involved in the tran-
sitions from metabolic to neurologic disease in X-ALD
patients. These results suggest that oxidative stress is a
generalized phenomenon in different cell types linked to
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the loss of function of the ABCDI transporter/ALD protein
and the accumulation of fatty acids (Fig. 1). Another
interesting issue, that provides proofs of contribution of
oxidative damage to X-ALD pathogenesis, was the in vivo
and in vitro effect of antioxidants in reversing oxidative
damage.

Therapeutics and Oxidative Stress in X-ALD

The absence of curative treatment for X-ALD is well
documented. However, it was demonstrated that dietary
treatment with a 4:1 mixture of glycerol trioleate and
glycerol trierucate (Lorenzo’s Oil, LO) lowers and almost
normalizes plasma VLCFA concentrations (particularly the
C26:0 levels), but did not ameliorate or alter the rate of the
rapid progression of neurological symptoms in the cerebral
variants of X-ALD. In addition, favorable responses occur
only in patients beginning treatment before the appearance
of neurological symptoms (Moser et al. 2005b). Deon et al.
(2006) have investigated and evaluated whether oxidative
stress parameters were altered in plasma and erythrocytes
from asymptomatic and symptomatic X-ALD patients and
whether LO treatment might alter these parameters. This
study reinforces the hypothesis that lipid peroxidation is
induced in plasma from asymptomatic and symptomatic
X-ALD patients. Also, it has demonstrated that LO treat-
ment was not capable to reduce this pathogenic process.

Lovastatin and simvastatin were tested as therapeutic
drugs for normalizing VLCFA levels in plasma and skin
fibroblasts of X-ALD patients (Pai et al. 2000; Singh et al.
1998). Therefore, statins were postulated to be a promis-
sory therapy for X-ALD not only by decreasing VLCFA in
X-ALD patients, but also by inhibiting the neuroinflam-
matory process (Khan et al. 2008). Simvastatin therapy
seemed to protect LDL oxidation (Di Biase et al. 2000) and
lovastatin decreased the synthesis of NO (Uto et al. 2008)
in X-ALD.

Considering the treatment, BMT or hematopoietic stem
cell transplantation (HSCT) has been the only known
method to halt cerebral demyelination of X-ALD in boys.
The mechanism by which BMT is able to halt the
demyelinating process remains unclear (Moser 2006; Ber-
ger and Girtner 2006; Peters et al. 2004). Tolar et al.
(2007) showed that administration of the antioxidant N-
acetyl-L-cysteine (NAC) before and after HSCT in three
boys with advanced X-ALD, whose neurologic status and
brain radiographic findings were stabilized, resulted in
survival of a disease process that would be expected to be
fatal. They concluded that NAC merits investigation as
therapeutic strategy for patients with advanced X-ALD and
has potential to change the lethal disease to a condition
amendable to treatment with BMT (Tolar et al. 2007).
Rockenbach et al. (2012) have observed that BMT was
capable to reduce lipid peroxidation and protein damage in
plasma from X-ALD patients (Rockenbach et al. 2012).
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Since BMT for X-ALD has been proven to be successful,
the authors have speculated that the administration of
antioxidants should be considered as a potential adjuvant
therapy for patients affected by X-ALD which undergone
to BMT.

Furthermore, it has been reported that vitamin E (alfa-
tocopherol) reverses the oxidative damage in fibroblasts
from X-ALD patients (Fourcade et al. 2008). Besides,
Fourcade et al. (2010) verified that the ABCD2 mRNA
levels in peripheral blood mononuclear cells increased
1.2-2.1-fold above baseline levels in patients X-ALD trea-
ted with valproic acid (VPA), a widely used anti-epileptic
drug. It was also measured the oxidative biomarkers in the
mononuclear cells from control individuals and X-ALD
patients, before and after VPA treatment. In X-ALD
patients, before VPA treatment, the levels GSA, AASA, and
MDAL were 1.3-2.4-fold higher, and 6 months of treatment
normalized the values AASA, CML, and CEL, and mark-
edly decreased the levels of GSA and MDAL. Besides, alfa-
tocopherol, NAC, or lipoic acid (LA), individually, nor-
malized C26:0 acid-dependent ROS generation in vitro in
X-ALD human fibroblasts or all antioxidants combining in a
synergistically effects, at low doses, were capable to prevent
fully this ROS accumulation (L6pez-Erauskin et al. 2011).
Lépez-Erauskin et al. (2012) have provided evidence that
oxidative stress induced under galactose conditions leads to
mitochondrial damage in the form of mitochondrial inner
membrane potential dissipation, ATP drop and necrotic cell
death, together with increased levels of oxidative modifi-
cations in cyclophilin D protein in fibroblasts from X-ALD
patients. NAC in vitro treatment rescues mitochondrial
damage markers in fibroblasts from X-ALD patients,
including cyclophilin D oxidative modifications, and
reverses cyclophilin D induction. These results, demon-
strating that antioxidant therapy prevents or rescues axonal
degeneration (Fourcade et al. 2008, 2010; Lopez-Erauskin
et al. 2011, 2012), have led to phase II clinical trial with a
cocktail of antioxidants (NCT01495260) in AMN patients
(Galea et al. 2012; Fourcade et al. 2014). The efficacy of this
clinical trial will be monitored by longitudinal assessment of
oxidative lesions in blood cells and by clinical symptoms
(Galea et al. 2012).

Concluding Remarks

Brain has low antioxidant defenses compared with other
tissues, a fact that makes this tissue more vulnerable to
increased RS. Mounting evidence have shown that oxida-
tive stress has been implicated in the pathophysiology of
common neurodegenerative disorders, such as Parkinsons
disease, Alzheimer’s disease, multiple sclerosis as well as
in epileptic seizures and demyelination. X-ALD is
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clinically characterized by central and peripheral
demyelination and adrenal insufficiency; however, the
mechanisms that underlying the brain damage in X-ALD
are poorly known. X-ALD patients (all phenotypes) are
susceptible to oxidative damage caused by an increase in
free radical production and by depletion in antioxidant
capacity. Findings from literature suggest that oxidative
stress may contribute to the neurological disturbance in
X-ALD and may act synergistically with other underlying
mechanisms involved in the pathophysiology of this dis-
ease. Therefore, the administration of antioxidants should
be considered an adjuvant therapy for X-ALD patients.
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