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Abstract Parkinson’s disease is the second most com-

mon neurodegenerative disorder with selective and pro-

gressive decline of nigral dopaminergic neurons.

Hypericum perforatum L. (H. perforatum, St. John’s wort)

has been traditionally used for management of different

disorders, especially mild-to-moderate depression. This

study was conducted to evaluate the effect of H. perfora-

tum extract against unilateral striatal 6-hydroxydopamine

(6-OHDA) toxicity and to unmask some involved mecha-

nisms. Intrastriatal 6-OHDA-lesioned rats were treated

with H. perforatum hydroalcoholic extract at a dose of

200 mg/kg/day started 1 week pre-surgery for 1 week

post-surgery. The extract attenuated apomorphine-induced

rotational behavior, decreased the latency to initiate and the

total time on the narrow beam task, lowered striatal level of

malondialdehyde and enhanced striatal catalase activity

and reduced glutathione content, normalized striatal

expression of glial fibrillary acidic protein, tumor necrosis

factor a with no significant effect on mitogen-activated

protein kinase, lowered nigral DNA fragmentation, and

prevented damage of nigral dopaminergic neurons with a

higher striatal tyrosine hydroxylase immunoreactivity.

These findings reveal the beneficial effect of H. perforatum

via attenuation of DNA fragmentation, astrogliosis,

inflammation, and oxidative stress.

Keywords Hypericum perforatum L. � Parkinson’s

disease � 6-Hydroxydopamine � DNA fragmentation �
Inflammation � Astrogliosis � Oxidative stress

Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder which selectively affects mes-

encephalic dopaminergic neurons of the substantia nigra

pars compacta (SNC) with classical symptoms including

bradykinesia, postural impairment, resting tremor, and

rigidity (Fearnley and Lees 1991; Yacoubian and Standaert

2009). These motor complications are usually difficult to

manage, and PD patients also develop a diversity of non-

motor symptoms like anosmia, autonomic impairment,

sleep disorder, and cognitive impairment which are

refractory to most current treatments and usually become

the major cause of disability. The complexity of these late-

stage complications necessitates the development of new

neuroprotective strategies which could be applied in early

stages of its development in order to prevent or delay later

complications (Yacoubian and Standaert 2009). Several

contributing factors including mitochondrial dysfunction,

oxidative stress, inflammation, and apoptosis are mainly

responsible for PD pathogenesis (Yacoubian and Standaert

2009; Taylor et al. 2013).

Hypericum perforatum L. (H. perforatum, St. John’s

wort) has been traditionally used for a wide range of dis-

orders including the treatment of mild-to-moderate

depression (Miller 1998; Shelton 2009). In addition, sev-

eral studies have shown anxiolytic (Ara and Bano 2009)

and anti-inflammatory (Hatano et al. 2014) effect of this

plant. Enhancing effect of H. perforatum on sodium

nitroprusside-mediated neuroprotection under a state of
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glucose deprivation in PC12 cells has been reported

(Munoz et al. 2012). In addition, H. perforatum could

minimize oxidative stress, intensify antioxidant defensive

system in restraint stress in mice (Kumar et al. 2010), and

attenuate amyloid beta-mediated toxicity in microglial

cells (Kraus et al. 2007). Meanwhile, it has been shown that

H. perforatum is capable to mitigate striatal astrogliosis,

restore monoamine oxidase-B (MAO-B) activity in

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model

of PD in mice (Mohanasundari and Sabesan 2007), and to

exert protective effect in different toxic conditions (San-

chez-Reus et al. 2007; Mohanasundari et al. 2006; Benedi

et al. 2004; Gomez del Rio et al. 2013). On this foundation,

we designed this study to evaluate the neuroprotective

potential of H. perforatum extract in 6-OHDA-induced

model of PD in the rat and to explore in more detail the

involvement of some underlying mechanisms.

Materials and Methods

Plant Material and Extract Preparation

Hypericum perforatum was procured from Isfahan Natural

Resource Institute in July and authenticated by Dr. Ghaem-

Maghami at Isfahan University Herbarium, and a voucher

specimen number 13,648 was assigned. Aerial parts of the plant

were dried for 1 week at room temperature under shade and

were powdered by an electric grinder. The extract was prepared

with 10 g of powder and 100 ml of 70 % ethanol as the solvent.

The extraction was done using maceration method for 72 h at

room temperature and in a dark place. Afterwards, the solution

was filtered three times and dried on a rotary evaporator at

40 �C, yielding 2.14 g (21.4 %) of extract. The final extract

was kept at -20 �C and further dilution was prepared in cold

normal saline. The major chemical ingredients of the extract

were assessed using high-performance liquid chromatography

(HPLC) (SPD-10AVP; Shimadzu, Kyoto, Japan) with ODS

column and determined as 0.37 % hypericin, 3.1 % hyperforin,

4.3 % flavonoids like isoquercitrin, kaempferol, luteolin,

myricetin, quercetin, and rutin, and 10 % tannins in addition

to polysaccharides including maltodextrins (Darupakhsh

Research Group, Tehran).

Animals

Male adult Wistar rats (205–265 g; n = 48; Pasteur’s

Institute, Tehran, Iran) were kept in a temperature-con-

trolled animal house with 12/12 light–dark cycle. All

protocols for the use and care of animals were approved by

Ethics Committee of Shahed University (Tehran, Iran) in

2013 as stipulated by NIH. Rats were randomly assigned to

4 groups, i.e., sham, H. perforatum-treated sham, lesion

group (6-OHDA), and H. perforatum-treated 6-OHDA. For

induction of PD, the neurotoxin 6-OHDA was injected into

the left striatum of rats (anesthetized with a combination of

ketamine 80 mg/kg and xylazine 8 mg/kg, i.p.) fixed in a

stereotaxic apparatus (Stoelting, USA) and the coordinates

3 mm lateral and 0.2 mm anterior to bregma and ventrally

5 mm below the dura (Paxinos and Watson 1986). The

6-OHDA group received 5 ll of 0.9 % saline containing

2.5 lg/ll of 6-OHDA HCl (Sigma-Aldrich, USA) and

0.2 % ascorbate. The sham group received only ascorbate-

saline solution. The H. perforatum-treated 6-OHDA group

received 6-OHDA in addition to H. perforatum extract i.p.

at a dose of 200 mg/kg/day started 1 week pre-surgery for

1 week post-surgery. Extract dose was chosen from a

previous study on its antidepressant and anxiolytic activity

in diabetic rats (Husain et al. 2011).

Behavioral Assessment

All the behavioral experiments were done 1 week post-

surgery (n = 11–12 for each group) and conducted

between 09 a.m. and 02 p.m.

Rotational Behavior

The rotations were evaluated by a method as described

previously (Roghani et al. 2010). Briefly, the animals were

allowed to be adapted for 10 min in lab room, and 1 min

after the injection of apomorphine hydrochloride (2 mg/kg,

i.p.), full clockwise and counterclockwise rotations were

obtained in a cylindrical container with a diameter of 33 cm

and a height of 35 cm for 1 h. Then, net number of rotations

was calculated as positive scores minus negative ones.

Elevated Narrow Beam Test

The protocol for this test has been described before in the

literature (Allbutt and Henderson 2007). The narrow beam

consisted of a wooden beam with a length of 105 cm, a

width of 4 cm, and a height of 3 cm. It was placed at a

height of 80 cm above the ground. The wooden supports at

the ‘‘starting’’ end of the beam formed a sheer drop, while a

platform was located at the other end, next to which the

home cage of the rat being tested was placed. Beneath the

beam, a soft foam cushion was placed to prevent animal’s

injury on falling. At the starting line, a marker was drawn

20 cm from its end. During the test, the rat was placed

within the starting zone and upon animal release, time was

measured. This time represented the latency to begin the

task. The stopwatch was then stopped when all four feet

were placed entirely upon the finishing line at the opposite

end of the beam. The maximum time allowed for the task

was considered 2 min. The starting line was to be crossed
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within 1 min from the release or the test was canceled, and

maximum time was recorded for that trial. A fall was also

recorded as a maximum time. A testing session consisted of

five trials on the beam.

Oxidative Stress Assessment

One week post-surgery, left and right striatal tissues (n = 7 for

each group) were separately dissected out and 5 % homogenate

was separately prepared in lysate buffer and in the presence of

protease inhibitor cocktail, and the supernatant was aliquoted

and stored at -70 �C for the following experiments.

Determination of MDA, Nitrite, and Protein Content

MDA and nitrite concentration in the supernatant was mea-

sured as described before (Afshin-Majd et al. 2015). For

determination of MDA concentration (thiobarbituric acid-re-

active substances, TBARS), trichloroacetic acid and TBARS

reagent were added to the supernatant, then mixed, and

incubated at boiling water for 90 min. After cooling on ice,

samples were centrifuged at 10009g for 10 min and the

absorbance of the supernatant was read at 532 nm. The results

were obtained on tetraethoxypropane standard curve. For

measurement of nitrite concentration, Griess reagent includ-

ing sulfanilamide and N-naphthyl ethylenediamine was used,

the absorbance was read at 540 nm, and the concentration was

obtained on sodium nitrite standard curve. Bradford method

was used for determination of protein content using bovine

serum albumin as its standard (Bradford 1976).

Assay of Catalase Activity

For this purpose, the Claiborne’s method was used (Clai-

borne 1985). Briefly, H2O2 was added to a mixture of

50 mM potassium phosphate buffer (pH 7.0) and super-

natant, and the rate of H2O2 decomposition was assessed

by measuring the absorbance changes at 240 nm.

Reduced Glutathione Measurement (GSH)

GSH was measured as described before (Sedlak and Lindsay

1968; Ellman 1959). Briefly, the supernatant was centrifuged

with 5 % trichloroacetic acid. To 0.1 ml of homogenate,

2 ml of phosphate buffer (pH 8.4), 0.5 ml of 50,5-dithiobis

(2-nitrobenzoic acid) (DTNB), and 0.4 ml of distilled water

were added, and the absorbance was read at 412 nm.

Determination of Striatal GFAP, MAPK, and TNFa
Expression

The GFAP, MAPK, and TNFa levels (n = 6 for each

group) in the striatal supernatant were measured using

sandwich enzyme-linked immunosorbent assay and com-

mercial kits according to the manufacturer’s instructions

(Cloud-Clone Corp., Houston, USA). The absorbance of

samples was read at 450 nm by Synergy HT microplate

reader (BioTek, USA), and the values were expressed as

their final concentration.

Determination of DNA Fragmentation

DNA breakdown into 200-bp nucleosomal fragments and

DNA condensation are reliable hallmarks of apoptosis

(Cohen 1997). In this series of experiments (n = 6 for each

group), 1 week after the lesion, 5 % supernatant of left

substantia nigra was prepared in cold normal saline and

protease inhibitor cocktail, and DNA fragments were

measured using the Cell Death Detection ELISA kit

(Roche Diagnostics, Germany) to measure histone-associ-

ated DNA fragments (mono- and oligonucleosomes) as an

indicator of induced cell death (apoptosis) as described

before (Morroni et al. 2013) by a microplate reader (Bio-

Tek, USA) to read OD of samples.

Tyrosine Hydroxylase (TH) Immunohistochemistry

Some rats (n = 5 for each group) were deeply anesthetized

with ketamine (150 mg/kg) and transcardially perfused with

normal saline followed by 4 % paraformaldehyde in 0.1 M

phosphate buffer (PB, pH 7.4). After immersion in 30 %

sucrose, 30-lm sections were cut on a freezing microtome

(Leica, Germany). The sections on gelatin-coated slides were

incubated in 0.1 % sodium borohydride in phosphate-buf-

fered saline (PBS, pH 7.4), methanol containing 0.03 %

H2O2, then in Triton X100 (0.03 %), and 0.1 % bovine serum

albumin in PBS, with rinsing 2–3 times in the PBS between

the steps. Then, sections were incubated with primary poly-

clonal rabbit anti-TH antibody (Sigma-Aldrich, USA, 1/200)

in PBS overnight and then with secondary anti-rabbit IgG-

peroxidase antibody raised in goat (Sigma-Aldrich, USA) in

PBS for 2 h. To reveal the bound peroxidase, the sections

were incubated in diaminobenzidine tetrahydrochloride

(DAB; 10 mg/20 ml of PBS and 0.03 % H2O2) for 5–8 min,

rinsed, dehydrated, cleared, and coverslipped.

Histological Evaluation

Counting of TH-positive neurons within SNC was done

according to methods of previous reports (Zare et al. 2015;

Healy-Stoffel et al. 2014). Briefly, using rat brain atlas

(Paxinos and Watson 1986), the borders of the SNC (in-

teraural 2.9–4.2 mm) were carefully outlined in rostro-

caudal sections at low magnification to exclude the pars

reticulata (SNR) and the ventral tegmental area. Neurons

were counted only when the soma was present and within
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the focus. Counting was done blind to the treatments. All

counting was done two times and its average was obtained.

Intensity of striatal TH immunoreactivity on the left side

was measured by a semi-quantitative densitometric analy-

sis method using an image analysis program (ImageJ

software, NIH, MD, USA; Version 1.49) and according to a

previous report (Shinko et al. 2014) with some modifica-

tions. In this regard, at least five sections at 0.2 ± 0.8 mm

relative to the bregma (Paxinos and Watson 1986) were

randomly selected for quantitative evaluation, and their

optical density was calculated.

Statistical Analysis

Data were reported as means ±standard error. For statis-

tical evaluation of data, the parametric one-way ANOVA

test followed by Tukey’s post hoc test was used. In all

analyses, the null hypothesis was rejected at a level of 0.05.

Results

Regarding the rotational behavior, 6-OHDA-lesioned

group exhibited significant contralateral rotations versus

sham (p\ 0.005), and H. perforatum extract significantly

reduced these contralateral rotations versus 6-OHDA group

(p\ 0.05) (Fig. 1). Evaluation of animal performance in

narrow beam test (Fig. 2) showed that the latency and the

total crossing time were significantly higher in 6-OHDA

group versus sham (p\ 0.01–0.005) and H. perforatum

significantly reduced this (p\ 0.05).

Measurement of oxidative stress markers (Fig. 3a–d)

showed that 6-OHDA-lesioned rats have a significantly

elevated level of striatal MDA (p\ 0.05) and significantly

lower striatal catalase activity (p\ 0.05) and GSH content

(p\ 0.01) versus sham with no significant change of stri-

atal nitrite, and H. perforatum treatment of 6-OHDA group

significantly reversed these changes (p\ 0.05) relative to

6-OHDA-lesioned group.

Striatal measurement of GFAP as a specific index of

astrogliosis and MAPK and TNFa as inflammation-related

markers (Fig. 4a–c) revealed that 6-OHDA group has a

significantly higher level of GFAP (p\ 0.01), MAPK

(p\ 0.05), and TNFa (p\ 0.01) as compared to sham and

extract treatment of 6-OHDA group significantly restored

these changes (p\ 0.05) with an exception for MAPK.

Determination of apoptosis with the measurement of nigral

DNA fragmentation indicated that 6-OHDA group has a

significantly higher level of apoptosis relative to sham

(p\ 0.01) and extract treatment significantly attenuated

this (p\ 0.05) (Fig. 4d).

The results of TH immunohistochemistry indicated a

significant reduction in TH-positive neurons in SNC

(Fig. 5) and a significantly lower TH immunoreactivity in

neostriatum (Fig. 6) of 6-OHDA group versus sham

(p\ 0.01), and extract was able to significantly prevent

neuronal loss and caused a significantly higher TH

immunoreactivity (p\ 0.05) relative to 6-OHDA group.

Discussion

In this study, H. perforatum treatment of 6-OHDA group

reduced motor asymmetry and improved animal perfor-

mance in narrow beam task via protection of SNC neurons

with a higher striatal TH immunoreactivity and mitigation

of astrogliosis, apoptosis, inflammation, and oxidative

stress and by potentiation of antioxidant defensive system.

Fig. 1 The effect of H. perforatum extract on net number of

apomorphine-induced rotations/1 h evaluated 1 week after intrastri-

atal 6-hydroxydopamine (6-OHDA) injection. Values are expressed

as mean ± S.E.M. n = 11–12 for each group. *p\ 0.01,

**p\ 0.005 (vs. sham); �p\ 0.05 (vs. 6-OHDA)

Fig. 2 The effect of H. perforatum extract on latency to initiate

crossing and on total time to cross the beam in narrow beam task

1 week after intrastriatal 6-hydroxydopamine (6-OHDA) injection.

Values are expressed as mean ± S.E.M. n = 11 for each group.

*p\ 0.05, **p\ 0.01, ***p\ 0.005 (vs. sham); �p\ 0.05 (vs.

6-OHDA)
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Although it has been shown that the standardized extract

of H. perforatum with antidepressant property could

acutely and dose dependently (at doses from 30 to 90 mg/

kg) increase locomotor activity and decrease immobility

time in forced swimming test (Bukhari and Dar 2013), we

did not observe its significant effect in apomorphine-in-

duced rotational and narrow beam tests in extract-treated

sham group. This discrepancy with our results may be

attributed to its U-shaped dose–response curve and a pos-

sible adaptive mechanism due to its longer exposure in this

research which itself needs more investigation. The neu-

rotoxin 6-OHDA is routinely used for modeling PD in

rodents through selective degeneration of mesencephalic

dopaminergic neurons (Schober 2004). The unilateral

damage of the nigrostriatal dopaminergic system following

intrastriatal injection of 6-OHDA is followed by the

reduction of dopamine level in the striatum and ensuing

upregulation of post-synaptic dopaminergic receptors.

These changes lead to prominent motor asymmetry, as

observed in our study by significant contralateral rotations

in 6-OHDA group (Schwarting and Huston 1997). A lower

rotational behavior in our study may be attributed to the

potential of H. perforatum extract in protection of

dopaminergic neurons and in this way to keep striatal

dopamine level at a level that is not concomitant with

marked motor asymmetry in rotational test. Although we

did not measure striatal dopamine level in this study, it has

been shown that H. perforatum extract low in hyperforin

content could inhibit dopamine re-uptake in rat striatal

slices via inhibition of respective transporters (Ruedeberg

et al. 2010). In addition, H. perforatum extract adminis-

tration for 15 days at a dose of 100 mg/kg to male rats

could have a direct dopaminergic activity and in this way

affect prolactin secretion (Di Carlo et al. 2005). Further-

more, hydroalcoholic extract of H. perforatum could

preferentially increase extracellular dopamine levels in the

rat prefrontal cortex and in this way enhance dopaminergic

transmission (Yoshitake et al. 2004). However, these issues

need further investigation in future studies to find out its

exact mode of action. On the other hand and in consistent

with our finding, H. perforatum extract has been found to

exhibit neuroprotective property in rat rotenone model of

PD through diminishing dopaminergic neuronal death and

inhibition of the apoptotic cascade by decreasing level of

pro-apoptotic Bax (Gomez del Rio et al. 2013). Moreover,

bioactive flavonoid compounds isolated from H. perfora-

tum like hyperoside are capable to protect primary rat

cortical neurons against neurotoxicity induced by amyloid

b protein through inhibition of apoptosis and attenuation of

mitochondrial dysfunction and oxidative stress (Zeng et al.

Fig. 3 The effect of H. perforatum extract on striatal level of

malondialdehyde (MDA)(a), catalase activity (b), nitrite (c), and

reduced glutathione (d) (GSH) 1 week after intrastriatal 6-hydroxy-

dopamine (6-OHDA) injection. The measurements for each sample

were made in duplicate. Data are shown as mean ± S.E.M. n = 7 for

each group. *p\ 0.05, **p\ 0.01 (vs. Sham), �p\ 0.05 (vs.

6-OHDA)
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2011). Other reports also exist on protective potential of

this plant and its active constituents (Breyer et al. 2007;

Mohanasundari and Sabesan 2007; Munoz et al. 2012;

Silva et al. 2008). Assessment of performance of 6-OHDA-

lesioned rats in narrow beam test showed an increase of

latency and total time on the beam relative to sham group,

Fig. 4 The effect of H. perforatum extract on striatal expression of

glial fibrillary acidic protein (a) (GFAP), MAPK (b), and TNFa
(c) and on nigral DNA fragmentation as an index of apoptosis in

ELISA (d) 1 week after intrastriatal 6-hydroxydopamine (6-OHDA)

injection. The measurements for each sample were made in duplicate.

Data are shown as mean ± S.E.M. n = 6 for each group. *p\ 0.05,

**p\ 0.01 (vs. Sham), �p\ 0.05 (vs. 6-OHDA)

Fig. 5 The effect of H. perforatum extract on the number of tyrosine

hydroxylase (TH)-positive neurons on the left side of substantia nigra

pars compacta (SNC) and coronal section photomicrographs through

the midbrain 1 week after intrastriatal 6-hydroxydopamine

(6-OHDA) injection. (SNR substantia nigra pars reticulata). Data

are shown as mean ± S.E.M. n = 5 for each group. *p\ 0.01 (vs.

Sham);�p\ 0.05 (vs. 6-OHDA)

526 Cell Mol Neurobiol (2016) 36:521–530

123



indicating that existing dopamine depletion in the striatum

resulted in both an increased delay in initiating the task and

a lower speed in crossing the beam, which would be

indicating bradykinesia and/or akinesia (Allbutt and Hen-

derson 2007) and that H. perforatum was also able to

attenuate and partly normalize these changes.

Oxidative stress is a critical determinant for the survival

and maintenance of dopaminergic neurons in PD. Excessive

free radical generation may cause cell death. In addition,

auto-oxidation of dopamine may produce dopamine quinine

(Lotharius and Brundin 2002). Formation of free radicals

like semiquinones could damage cellular constituents (und

Halbach et al. 2004). On this basis, some therapeutic

approaches are focused on mitigation of oxidative stress.

Free radical scavengers may also be of benefit in the

maintenance of dopaminergic neurons (Chen and Le 2006).

H. perforatum could have attenuated 6-OHDA neuronal

insult through counteracting oxidative stress that is con-

sistent with previous reports on its antioxidant ability as

well as inhibition of oxidative stress (Kumar et al. 2010;

Munoz et al. 2012; Naziroglu et al. 2014a). In this regard,

part of oxidative stress attenuation by H. perforatum has

been attributed to its effects on modulation of NADPH

oxidase and protein kinase C and modification of gating of

voltage-gated calcium and TRPM2 channels (Naziroglu

et al. 2014a, b). In addition, H. perforatum could alter the

balance between the scavenging capacity of antioxidant

defense system and free radicals in favor of the antioxidant

defensive system (Bayramoglu et al. 2013).

Inflammation is regarded as a causative factor in

pathogenesis of PD (Zhou et al. 2007; Miklossy et al.

2006). Pro-inflammatory cytokines freed from glial cells

could stimulate nitric oxide generation and exert a

damaging effect on dopaminergic neurons by activating

receptors that contain intra-cytoplasmic death domains

involved in apoptotic pathway (Sriram and O’Callaghan

2007). H. perforatum has been shown to exert anti-in-

flammatory effect (Hizli et al. 2014) through inhibition

of lipoxygenase and cytosolic phospholipase A2, two

important enzymes involved in the prostaglandin E2-

mediated inflammatory responses, in this way blocking

pro-inflammatory mediators but not enhancing inflam-

mation-suppressing mediators (Hammer et al. 2008).

Therefore, H. perforatum through lowering the level of

inflammatory mediators within the brain contributes to

neuroprotection in 6-OHDA-induced PD in rats, as

observed in our study by a lower level of striatal TNFa.

Apoptosis is also another contributing factor that plays

an important role when cells are exposed to neurotoxins

like 6-OHDA (Hwang and Chun 2012). In our study, H.

perforatum was able to reduce nigral DNA fragmentation

that has also been reported in literature regarding its

constituents like hyperforin (Gomez del Rio et al. 2013;

Hostanska et al. 2003). In our study, enhanced GFAP

expression was observed in 6-OHDA-lesioned group that

is suggestive of and is related to an inflammatory phe-

nomenon in the injured striatum that has also been

reported before (Calou et al. 2014), and H. perforatum

extract treatment attenuated this inappropriate change

that is to some extent related to its anti-inflammatory

property. Previously, it has been shown that H. perforatum

could inhibit activity of monoamine oxidase-B and reduce

Fig. 6 Semi-quantitative analysis of tyrosine hydroxylase (TH)

immunoreactivity intensity as optical density and representative

photomicrographs of coronal sections through neostriatum showing

TH immunostaining. Data are shown as mean ± S.E.M. n = 5 for

each group. **p\ 0.01 (vs. Sham); �p\ 0.05 (vs. 6-OHDA)
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astrocyte activation following MPTP (Mohanasundari and

Sabesan 2007).

In this study, we administered H. perforatum hydroal-

coholic extract i.p. to hemiparkinsonian rats and observed

an improvement in some behavioral, histological, and

neurochemical variables. One issue that remains to be

answered in such studies is the passage of extract con-

stituents through the blood–brain barrier. The previous

studies have shown that 4 h after feeding an oral dose of an

alcoholic H. perforatum extract, some of its effective

components like quercetin and isorhamnetin/tamarixetin

are present in the rat brain (Paulke et al. 2006). However, it

is noteworthy that its main constituent, i.e., hyperforin,

poorly passes through this barrier (Cervo et al. 2002).

According to existing data, it has been known that H.

perforatum extract is capable to attenuate beta amyloid-

induced histopathology and alleviate memory impairments

in amyloid precursor protein-transgenic mice that is

apparently independent of its main constituent hyperforin

(Hofrichter et al. 2013). Recent studies indicated low

bioavailability of hyperforin after oral administration so

that minute amounts could be detected intracerebrally after

its oral administration (Biber et al. 1998; Keller et al.

2003). Thus, it is possible that its other constituents have

played a beneficial role in our study.

One of the cellular targets for H. perforatum extract

ingredients is microglia. Kraus et al. have reported that

treatment with extract of this may improve microglial

viability, thereby attenuating severity of neurotoxic insults

(Kraus et al. 2007). Research evidence indicates that neu-

roinflammation plays an important role in PD with the

presence of activated microglia and reactive astrocytes

(Teismann and Schulz 2004). A similar inflammatory

pattern has been found in the rat substantia nigra after the

striatal injection of 6-OHDA (Walsh et al. 2011). Acti-

vated microglia, as well as to a lesser extent reactive as-

trocytes, are found in the area associated with cell loss,

possibly contributing to the inflammatory process (Teis-

mann and Schulz 2004). Therefore, microglia may have

been affected by H. perforatum extract in our study.

H. perforatum extract constituents could affect blood–

brain barrier transporters (Mrozikiewicz et al. 2014) and

have interaction with P-glycoproteins of this barrier for

overcoming the passage issue (Ott et al. 2010). However,

little pharmacokinetic data on its main components, par-

ticularly those of their brain distribution and concentra-

tions, and the relationships with blood concentrations exist

to elaborate in more detail (Caccia and Gobbi 2009).

Taken together, our results indicate the protective effect

of H. perforatum hydroalcoholic extract in a model of PD

via attenuation of DNA fragmentation, astrogliosis,

inflammation, and oxidative stress that may be of benefit in

protective strategies for PD at its early stages.
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