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Abstract Chronic cerebral hypoperfusion (CCH) is a

common consequence of various cerebral vascular disor-

ders and hemodynamic and blood changes. Recent studies

have revealed an important role of CCH in neurodegener-

ation and dementia, including vascular dementia and Alz-

heimer’s disease (AD). This article reviews the recent

advances in understanding CCH-induced neurodegenera-

tion and AD-related brain pathology and cognitive

impairment. We discuss the causes and assessment of

CCH, the possible mechanisms by which CCH promotes

Alzheimer-like pathology and neurodegeneration, and

animal models of CCH. It appears that CCH promotes

neurodegeneration and AD through multiple mechanisms,

including induction of oxidative stress, Ab accumulation

and aggravation, tau hyperphosphorylation, synaptic dys-

function, neuronal loss, white matter lesion, and neuroin-

flammation. Better understanding of the mechanisms of

CCH will help develop therapeutic strategies for prevent-

ing and treating neurodegeneration, including sporadic AD

and vascular dementia, caused by CCH.
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Abbreviations

AD Alzheimer’s disease

APP Amyloid b precursor protein

ASK1 Apoptosis signal-regulating kinase 1

BCAS Bilateral common carotid artery stenosis

BCCAO Bilateral common carotid artery occlusion

CaMK-II Calcium/calmodulin-dependent protein kinase

II

CCH Chronic cerebral hypoperfusion

CDK5 Cyclin dependent kinases 5

ERK1/2 Extracellular signal-regulated kinases

GLUTs Glucose transporters

GSK-3b Glycogen synthase kinase-3b
HIF-1 Hypoxia inducible factor-1

IL-1b Interleukin-1b
JNK c-Jun N-terminal kinase

LTP Long-term potentiation

MAPK Mitogen-activated protein kinase

NFTs Neurofibrillary tangles

PP2A Protein phosphatase 2A

PSD95 Postsynaptic density protein 95

TIGAR TP53-induced glycolysis and apoptosis

regulator

UCCAO Unilateral common carotid artery occlusion

VaD Vascular dementia

Introduction

Senile dementia is a progressive loss of cognitive ability,

including memory, attention, language, and problem-solv-

ing, in the elderly and is a serious medical, social, and

economic burden in modern society because of the growing
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aged population. Senile dementia mainly includes Alzhei-

mer’s disease (AD), vascular dementia (VaD), and mixed

dementia. As the most common form of dementia in older

adults, AD is characterized by chronic and progressive

neurodegeneration leading to progressive cognitive

impairment and eventually to the death of patients. AD in

most cases is sporadic, probably caused by multiple fac-

tors, and is characterized histopathologically by the pre-

sence of both intraneuronal neurofibrillary tangles (NFTs)

and extracellular senile plaques together with neurode-

generation in the brain (Braak and Braak 1991). VaD is the

second most common form of dementia (Battistin and

Cagnin 2010) and is caused by problems in the supply of

blood to the brain. Mixed dementia is diagnosed when

patients have evidence of both AD and cerebrovascular

disorder, either clinically or based on neuroimaging evi-

dence of ischemic lesions. In fact, AD and VaD often

coexist in older patients with dementia. It is estimated that

as many as 40 % of AD patients actually have mixed

dementia (Battistin and Cagnin 2010).

Chronic cerebral hypoperfusion (CCH) (Pristera et al.

2013) is one of the major mechanisms of cerebral vascular

disorders and can result from hypertension, diabetes, gen-

eralized atherosclerosis, smoking, and heart diseases.

These factors can affect the cerebral vascular system and

eventually cause decreased blood supply to the brain

(Meyer et al. 2000; Roman 2002; Valerio Romanini et al.

2013). Individuals with CCH usually have cognitive defi-

cits to various degrees (Ruitenberg et al. 2005). The

important role of CCH in dementia has emerged to the

forefront of neurology research (Pluta et al. 2012; Akiny-

emi et al. 2013; Kelleher and Soiza 2013; Pluta et al.

2013a, b; Roh and Lee 2014). Individuals with moderate or

severe intracranial arterial stenosis have a faster decline

in cognition and function relative to those without such

stenosis (Zhu et al. 2014). Studies in the last decade have

suggested that CCH might promote neurodegeneration

through neuronal energy failure, production of reactive

oxygen species, and pro-inflammatory cytokines through

activated microglial cells that, in turn, damage the neurons

and contribute to white matter lesions (Kitagawa et al.

2005; Farkas et al. 2007; Adibhatla and Hatcher 2008;

Urabe 2012; Bang et al. 2013). This article attempts to

review the recent advances focusing on CCH-induced

neurodegeneration and AD-related brain pathology and

cognitive impairment.

Causes and Assessment of CCH

CCH has a variety of causes and plays an important role in the

development of VaD, AD, and subcortical arteriosclerotic

encephalopathy. Three main causes lead to CCH: (i) vascular

structural lesions resulting from artery stenosis or occlusion

caused by atherosclerosis, arteriovenous malformation,

takayasu arteritis, moyamoya disease, and cerebral arterio-

venous fistula; (ii) cerebral hemodynamic changes, including

chronic blood loss, prolonged hypotension, and reduced

cardiac output due to heart failure; and (iii) changes in blood

components resulting from any reasons that lead to an

increase of blood viscosity, such as hyperlipidemia, polycy-

themia, and hyperhomocysteinemia. The major risk factors of

CCH are hypertension, hyperlipidemia, smoking, obesity,

age, hyperhomocysteinemia, and obstructive sleep apnea-

hypopnea syndrome (Sarti et al. 2002).

Modern development of medical techniques has made

the assessment of CCH very practical. In the clinic, cere-

bral hypoperfusion is usually assessed by transcranial

Doppler ultrasonography, computerized tomography angi-

ography, magnetic resonance angiography, computerized

tomography perfusion imaging, perfusion-weighted imag-

ing, or Xenon-CT (computerized tomography). For animal

studies, CCH can be assessed by laser-Doppler flowmetry

(Kitagawa et al. 2005) or by molecular markers such as

hypoxia inducible factor-1 (HIF-1), TP53-induced glycol-

ysis, and apoptosis regulator (TIGAR) or glucose trans-

porters (GLUTs) 1 and 3 (Watanabe et al. 2009; Kimata

et al. 2010; Chan et al. 2011; Iwabuchi and Kawahara

2011; Yan et al. 2011; Yuan et al. 2011; Hoshino et al.

2012; Wang et al. 2012a, b; Zhao et al. 2014).

Possible Mechanisms from CCH to Alzheimer-Like

Pathology and Neurodegeneration

AD and neurodegeneration can be caused by multiple eti-

ological factors. Except for familial, early-onset AD that is

caused by mutations of genes encoding presenilin or

amyloid b (Ab) precursor protein (APP), over 95 % AD

cases are of sporadic nature. Sporadic AD is likely caused

by multiple etiological factors through several pathogenic

mechanisms (Iqbal et al. 2010). The major risk factor for

sporadic AD is aging, and the most consistently identified

AD susceptibility factor is the e4 allele of apolipoprotein E

(Poirier et al. 1993; Strittmatter et al. 1993). Although the

amyloid cascade hypothesis continues to exert an important

influence in the AD field, recent studies suggest that CCH

also promotes Alzheimer-like brain pathology and neuro-

degeneration through several molecular mechanisms

(Fig. 1), as discussed below.

CCH-Induced Oxidative Stress

Oxidative stress reflects an imbalance between the sys-

temic manifestation of reactive oxygen species and the

biological system’s ability to readily detoxify the reactive
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intermediates or to repair the resulting damage. Distur-

bances in the normal redox state of cells can cause toxic

effects through the production of peroxides and free radi-

cals that damage almost all components of the cell,

including proteins, lipids, and DNA. In humans, oxidative

stress is thought to be involved in the development of many

diseases including AD (Singh et al. 1995; James et al.

2004; Halliwell 2007; Valko et al. 2007; de Diego-Otero

et al. 2009; Dean et al. 2011). CCH can cause mitochon-

drial dysfunction (Orsucci et al. 2013) and protein syn-

thesis inhibition, which in turn may disturb the balance of

antioxidases and reactive oxygen species and produce

oxidative damage. At the same time, oxidative injury to

vascular endothelial cells, glia, and neurons could further

impair vascular function and neurovascular coupling, an

orchestrated intercellular communication between neurons,

astrocytes and microvessels, which results in a rapid and

restricted increase in cerebral blood flow in order to

maintain normal brain function in a timely and local

manner. Impairment of vascular function and neurovascu-

lar coupling may result in a vicious cycle of further

reduction of cerebral perfusion (Lyons and Pahwa 2013).

Numerous studies have provided evidence that CCH

leads to oxidative stress and have described the mechanism

by which oxidative damage results in cognitive impair-

ment. Liu et al. described an alternative CCH rat model by

two-stage, three-vessel occlusion and found impaired spa-

tial learning and memory and increased levels of mal-

ondialdehyde, the end products of lipid peroxidation (Liu

et al. 2012). Xi et al. established a CCH rat model through

Fig. 1 Possible mechanisms by

which CCH promotes/causes

Alzheimer-like pathology and

neurodegeneration. CCH can

initiate several pathways that

result in oxidative stress, Ab
overproduction and aggregation,

tau hyperphosphorylation,

synaptic dysfunction, white

matter lesion, and

neuroinflammation. These

neuropathological changes are

all seen in AD brain. They can

interact and exacerbate each

other and eventually promote

neuronal cell death and

neurodegeneration, resulting in

clinical phenotype of memory

loss and dementia
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permanent bilateral common carotid artery occlusion

(BCCAO) and found central cholinergic dysfunction and

increased oxidative damage that is correlated with spatial

learning and memory impairments and working memory

dysfunction (Xi et al. 2014). In the BCCAO model,

reduction of pyruvate dehydrogenase level and increase of

oxidative stress occur in the hippocampus, suggesting that

mitochondrial bioenergetic deficits might affect memory

directly (Du et al. 2013). Apoptosis signal-regulating

kinase 1 (ASK1) appears to be critical to CCH-induced

oxidative stress, because the white matter lesions resulting

from bilateral common carotid artery stenosis (BCAS)

cause oxidative stress-associated cognitive decline in wild-

type mice, but not in ASK1-deficient mice (Toyama et al.

2014). ASK1, also known as mitogen-activated protein

kinase kinase kinase 5, is a member of the mitogen-acti-

vated protein kinase (MAPK) pathway and activates c-Jun

N-terminal kinase (JNK) and p38 MAPK in a Raf-inde-

pendent manner in response to an array of stresses,

including oxidative stress, endoplasmic reticulum stress,

and calcium influx. ASK1 is also involved in neurode-

generative diseases (Hattori et al. 2009). The oxidative

stress-ASK1-p38 cascade appears to play an important role

in the pathogenesis of cognitive impairment caused by

CCH (Toyama et al. 2014).

CCH-Induced Accumulation and Aggravation of Ab

Ab, a peptide of 36–43 amino acids, is the main com-

ponent of the amyloid plaques found in AD brain. Ab is

derived from APP through proteolytic cleavages by b-

and c-secretases. Ab pathological deposition occurs both

in the brain parenchyma and in the vascular structure in

AD brain and in the brains of transgenic animal models

with APP mutations (Games et al. 1995; Hsiao et al.

1996; Sturchler-Pierrat et al. 1997; Bornemann and

Staufenbiel 2000). It has been reported that CCH

accelerates Ab deposition. BCAS-induced CCH can

increase Ab fibrillization and induce Ab deposition in

the intracellular compartment and, therefore, may accel-

erate the pathological changes of AD in APPSwe/Ind-Tg

mice one month after BCAS (Kitaguchi et al. 2009).

CCH induced by permanent unilateral common carotid

artery occlusion (UCCAO) causes spatial learning

impairments that correlate with the number of cortical

Ab plaques in young APPSwe/PS1 mice (Pimentel-Coelho

et al. 2013). In a mouse model of cerebral amyloid

angiopathy [C57BL/6-Tg(Thy1-APPSwDutIowa)], BCAS

increased Ab deposition 12 weeks after BCAS surgery

(Okamoto et al. 2012). CCH may cause Ab deposition in

aged wild-type animals too. Time-dependent accumula-

tion of oligomeric Ab in the hippocampus, especially in

the axonal terminals of aged rats, occurs after CCH

induced by BCCAO (Wang et al. 2010). It is worth

noting that the amyloid deposits as seen nine months

after transient middle cerebral artery occlusion cannot be

stained with Congo red or Thioflavine S (van Groen

et al. 2005), which are routinely used to detect the b-

pleated sheet conformation that is typical of mature Ab
plaques in AD. Thus, acute cerebral ischemia might lead

to Ab deposition that is somewhat different from the

mature Ab plaques seen in AD brain.

Lots of evidences have showed that CCH and other

hypoxia conditions up-regulate b and c secretase-mediated

APP processing (Sun et al. 2006; Li et al. 2009; Zhiyou

et al. 2009; Koike et al. 2010; Pluta et al. 2013a, b). A

possible mechanism by which CCH up-regulates APP

processing and leads to Ab accumulation could be that

CCH induces HIF-1 expression, which then binds to the

promoter of b-secretase and consequently increases its

expression (Zhang et al. 2007). The Ab deposition in small

arteries caused by CCH could further induce cerebrovas-

cular lesion (Thomas et al. 1996) and worsen cerebral

hypoperfusion and finally lead to a vicious circle and

irreversible damages.

CCH-Induced Hyperphosphorylation of Tau

The microtubule-associated protein tau becomes abnor-

mally hyperphosphorylated in the brains of individuals

with AD and several other neurodegenerative disorders

collectively called tauopathies (Grundke-Iqbal et al. 1986).

It has been demonstrated that abnormal hyperphosphory-

lation of tau is crucial to neurodegeneration in AD and

probably also in other tauopathies (Gong and Iqbal 2008;

Iqbal et al. 2013). Tau hyperphosphorylation can be pro-

moted by several factors. One of these factors could be

CCH-induced decrease of brain glucose metabolism

because the latter leads to down-regulation of tau O-Glc-

NAcylation that in turn results in tau hyperphosphorylation

(Liu et al. 2004; Li et al. 2006; Liu et al. 2009). In a mouse

model of CCH induced by UCCAO, we recently found

decreased levels of O-GlcNAcylation, increased levels of

tau phosphorylation at several AD-relevant sites, selective

neurodegeneration in the brain, and significant short-term

memory deficits and mild long-term spatial memory

impairment (Zhao et al. 2014).

Several protein kinases, such as glycogen synthase

kinase-3b (GSK-3b), extracellular signal-regulated kina-

ses (ERK1/2), cyclin dependent kinases 5 (CDK5),

cAMP-dependent protein kinase (PKA), calcium/calmo-

dulin-dependent protein kinase II (CaMK-II), and JNKs,

have been implicated in hyperphosphorylation of tau in

AD (Gong et al. 2010). Tau phosphorylation is also

regulated by protein phosphatase 2A (PP2A) (Gong et al.

2000), which accounts for over 70 % of total tau
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phosphatase activity in the mammalian brain (Liu et al.

2005). Increased tau hyperphosphorylation with concur-

rent activation of GSK-3b, CDK5, and CaMK-II, as well

as inhibition of PP2A is observed in a rat model of

CCH, which shows spatial learning/memory deficits (Yao

et al. 2012). It appears that CCH can induce abnormal

hyperphosphorylation of tau through several pathways.

Tau hyperphosphorylation and Ab overproduction

appear to be very sensitive to cerebral hypoperfusion.

Koike et al. have reported that a single, mild, cerebral

hypoperfusion has profound and long lasting effects on tau

hyperphosphorylation and Ab overproduction in 3xTg-AD

mice (Koike et al. 2010). It is thus reasonable to speculate

that repeated transient cerebral ischemia could contribute

to the development of AD.

CCH-Induced Synaptic Dysfunction

Synapses are the functional unit of information transfer

between neurons and comprise presynaptic membrane,

synaptic cleft, and postsynaptic membrane. Synaptic

integrity is essential for normal brain functions, including

learning and memory. The severity of clinical symptoms

correlates highly with synaptic loss in the brain in AD

(Scheff et al. 2011). Synaptic integrity can be studied by

using electron microscopy and also indirectly through

electrophysiology and studies of various synaptic proteins,

such as synapsin, synaptophysin, synaptobrevin, synapto-

tagmin, synaptoporin, and postsynaptic density protein 95

(PSD95). Altered levels of these synaptic proteins have

been seen in the brains of both individuals with AD (Mu-

kaetova-Ladinska et al. 2000) and mouse models of AD

(Chen et al. 2012, 2013).

Decreased levels of PSD95 and synaptophysin are

found in rat brains, especially in the axonal terminals of

the hippocampus, 5 weeks after BCCAO (Wang et al.

2010). These rats also show alterations of synaptic

ultrastructure in the CA1 area of the hippocampus, as

evaluated by electron microscopy. Thus, these synaptic

alterations might be the molecular basis of the memory

deficits observed in these animals. In a recent study, we

also found increased pre-synaptic protein synapsin and

post-synaptic protein PSD95, as well as decreased pre-

synaptic protein synaptophysin, in the cerebral cortex and

the hippocampus of CCH mice 2.5 months after UCCAO

(Zhao et al. 2014). These studies confirmed the important

role of synaptic integrity in CCH-induced cognitive def-

icits. The CCH-induced dysfunction of neural plasticity

can be observed directly by determination of long-term

potentiation (LTP) in CCH animal models. LTP has been

found to be inhibited in the hippocampal CA1 region of

rat models of CCH for 3 and 6–7 months (Sekhon et al.

1997; Hai et al. 2009).

CCH-Induced Neuronal Loss

Synaptic and neuronal loss in AD correlates directly to the

severity of dementia symptoms (Mukaetova-Ladinska et al.

2000; Scheff et al. 2011) and is also seen after chronic

cerebral ischemia (Wang et al. 2010; Zhao et al. 2014).

Animal studies have shown apoptotic morphology and

DNA strand breaks in hippocampal pyramidal neurons

27 weeks after BCCAO, and the working memory

impairment correlates strongly to the number of apoptotic

neurons in the CA1 region, suggesting that apoptotic loss

of pyramidal neurons may underlie memory impairment

associated with CCH (Bennett et al. 1998). Hippocampal

atrophy with pyknotic and apoptotic cells is also seen in the

brain 8 months after BCAS (Nishio et al. 2010).

The neuronal loss in the CA1 subfield, together with the

decrease of central acetylcholine levels in the cortex, stri-

atum, and hypothalamus, appears 4 months, but not

1 month, after permanent BCCAO, suggesting that the

neuronal loss caused by CCH might result from a long

period of failure of neuronal excitation transmission (Ni

et al. 1995). Significant numbers of degenerative neurons

are detected with Fluoro-Jade staining in the ipsilateral

hippocampus and cerebral cortex, especially in the granule

cells of the crest of the dentate gyrus, of the CCH mice

2.5 months after UCCAO (Zhao et al. 2014). This study

also suggests that the dentate gyrus is the most vulnerable

area in the brain for CCH-induced neurodegeneration.

Interestingly, CCH-induced neurodegeneration is associ-

ated with tau hyperphosphorylation (Zhao et al. 2014),

suggesting that the CCH-induced neuronal degeneration

might be caused by or associated with abnormal hyper-

phosphorylation of tau.

CCH-Induced White Matter Lesion and Glial

Activation

White matter damage and glial cell activation are seen in

both human brains with CCH and in the brains of animal

models of CCH (Fernando et al. 2006; Scherr et al. 2012;

Thiebaut de Schotten et al. 2014). The degree of ischemic

damage correlates positively to the degree of white matter

lesions (Shibata et al. 2004; Kitaguchi et al. 2009). White

matter damage with increased levels of pro-inflammatory

cytokines, such as interleukin-1b (IL-1b) and IL-6, and

decreased level of anti-inflammatory cytokines, such as IL-

4 and IL-10, is seen in the corpus callosum of the mouse

brains 30 days after UCCAO (Yoshizaki et al. 2008). In rat

models, CCH appears to cause more severe white matter

damage in the corpus callosum than in the striatum (Wakita

et al. 1994). This finding is consistent with the more glial

activation in the corpus callosum under CCH (Yoshizaki

et al. 2008). The activation of glial cells is closely
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associated with white matter damage (Wakita et al. 1994;

Shibata et al. 2004; Nakaji et al. 2006) and may worsen

white matter lesions (Wakita et al. 1995).

Two possible mechanisms have been considered for

white matter lesion induced by CCH. First, chronic cere-

bral ischemia results in oxidative stress and increases

reactive oxygen species, which cause white matter damage.

A large number of inflammatory glial cells are activated

immediately after white matter damage occurs (Wakita

et al. 1994; Petito et al. 1998). Second, CCH causes blood–

brain barrier damage that facilitates the entry of inflam-

matory cells into the brain parenchyma and causes the

generation of inflammatory immune response and the

release of a large number of serine proteases, matrix

metalloproteinase-2, elastase, collagenase, IL-1b, and

tumor necrosis factor-a, which in turn lead to white matter

damage (Farkas et al. 2005; Crawford et al. 2008).

Animal Models of CCH for the Studies

of Neurodegeneration and AD

Several animal models of CCH have been produced by

restricting cerebral blood flow in rodents in order to

investigate the roles and mechanisms of CCH in cognitive

impairment and to evaluate the therapeutic efficacy of

potential drugs. The most commonly used model is a rat

model with permanent BCCAO/2-vessel occlusion

(BCCAO/2-VO) (Pappas et al. 1996; Ji et al. 2010; Shon-

esy et al. 2012). Because of the bridging blood supply from

posterior communicating arteries, an approximately 50 %

decrease of frontal cerebral blood supply can be achieved

using this procedure (Tanaka et al. 1996). Numerous

studies have reported spatial memory deficits in this CCH

model (Wang et al. 2010; Shu et al. 2013). Progressive

spatial memory deficits as tested by using Morris water

maze, decreased synaptic density and alterations of syn-

aptic ultrastructure in the CA1 area of hippocampus,

decreased levels of PSD-95 and synaptophysin, and time-

dependent accumulation of oligomeric Ab in the hippo-

campus are found 30 days after the occlusion surgery

(Wang et al. 2010). Deficits of both short-term non-spatial

working memory and long-term spatial memory are

observed eight weeks after BCCAO (Shu et al. 2013).

Neuroinflammation with microglial and astroglial activa-

tion and white matter lesions also occur six weeks after

BCCAO (Choi et al. 2011).

UCCAO is a procedure used to produce CCH in mice. A

35–55 % decrease of cerebrocortical perfusion was repor-

ted in the ipsilateral hemisphere in mice 28 days after

UCCAO (Kitagawa et al. 2005). After UCCAO for

2.5 months, these mice develop significant short-term

memory deficits and mild long-term spatial memory

impairment, as well as decreased level of protein O-Glc-

NAcylation, increased level of tau phosphorylation, dys-

regulated synaptic proteins and insulin signaling, and

selective neurodegeneration in the brain (Zhao et al. 2014).

UCCAO of the transgenic mouse models with APP muta-

tions exacerbates cognition deficits (Yoshizaki et al. 2008;

Lee et al. 2011; Pimentel-Coelho et al. 2013).

BCAS is also used for producing CCH in mice. This

approach is theoretically better than the two approaches

above, but practically, it is more difficult to achieve the

same level of cerebral hypoperfusion due to the more

challenging technique of BCAS. Mice after BCAS develop

learning and memory impairment (Nishio et al. 2010).

Proliferation of activated microglia and astroglia is

observed in the white matter after 3 days, and white matter

lesions occurred after 14 days of BCAS (Shibata et al.

2004). Impaired reference and working memory, as well as

hippocampal atrophy with pyknotic and apoptotic cells, is

found 8 months after BCAS (Nishio et al. 2010). BCAS

induces more severe cognitive impairment in the APPSw/

Ind-Tg mice (Shibata et al. 2004; Nakaji et al. 2006; Shibata

et al. 2007; Kitaguchi et al. 2009; Nishio et al. 2010).

Rarefied white matter, proliferated astroglia, and Ab1-40

immunoreactivity appear in some axons in the white matter

of APP-Tg mice soon after BCAS, whereas Ab1-42 accu-

mulates later in the scattered cortical neurons and their

axons (Kitaguchi et al. 2009). BCAS also exacerbates Ab
aggregation, neuronal loss, and learning impairment in

APP-Tg mice (Yamada et al. 2011).

The above approaches are aimed to reduce cerebral

perfusion. However, some of the alterations in these ani-

mals might be partially caused by other factors associated

with or as the consequence of the procedures. Some artery

occlusion paradigms are confounded by parallel damage to

pyramidal and cholinergic neurons (Volpe et al. 1988;

Mizobuchi 1989; Sugai 1989; Volpe et al. 1992; Ni et al.

1997), making it challenging to know whether it is hypo-

perfusion or the consequent neuronal damage that causes

the cognitive dysfunction.

Concluding Remarks

CCH caused by vascular structural lesions, cerebral

hemodynamic changes, or increased blood viscosity is

common in the elderly and often contributes to memory

impairment, neurodegeneration, and sporadic AD (Fig. 1).

Because CCH rarely exists alone and is usually accompa-

nied by other brain pathologies, it is challenging to dissect

the exact role of CCH in neurodegeneration and sporadic

AD. As discussed in this article, many studies have shown

an active and even causative role of CCH in Alzheimer-like

brain pathology and neurodegeneration. On the other hand,
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there is evidence showing cerebrovascular lesions in AD

brain and transgenic mouse models of AD (Gold et al.

2007; Tang et al. 2009; Austin et al. 2011), which in turn

could lead to CCH. It is highly likely that both scenarios

are true and may be co-existing. CCH could be a major

contributing or even a causative factor for AD in some

patients and the consequence of AD in others.

Future research should focus on dissecting the major

molecular mechanisms by which CCH causes or promotes

cognitive impairment and neurodegeneration. Better-char-

acterized animal models and detailed studies of the time-

dependent changes during CCH in the brain will shed new

light on the roles and mechanisms of CCH in cognitive

impairment and neurodegeneration. Creating CCH in ani-

mal models of other conditions of neurodegeneration and

memory loss, such as AD mouse models, will help eluci-

date the contributions of CCH to those disorders. These

studies will help identify potential therapeutic targets to

prevent and treat cognitive impairment in individuals with

CCH.
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