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Abstract The pathogenesis of multiple sclerosis (MS) is

as yet unknown. Commonly, MS is assumed to be due to an

autoimmune inflammation of the central nervous system

(CNS). Neurodegeneration is regarded to be a secondary

reaction. This concept is increasingly being challenged.

Human endogenous retroviruses (HERV) that could be

locally activated in the CNS have been proposed as an

alternative concept. HERV-encoded envelope proteins

(env) can act as strong immune stimulators (superantigens).

Thus, slow disease progression following neurodegenera-

tion might be induced by re-activation of HERV expression

directly, while relapses in parallel to inflammation might

be secondary to the expression of HERV-encoded super-

antigens. It has been shown previously that T-cell super-

antigens are capable to induce a cellular inflammatory

reaction in the CNS of experimental animals similar to that

in MS. Furthermore, B-cell superantigens have been shown

to activate blood leucocytes in vitro to produce immuno-

globulin in an oligoclonal manner. It remains to be estab-

lished, whether the outlined hypothesis accords with all

known features of MS. Furthermore, anti-HERV agents

may be taken into consideration to enrich and improve MS

therapy.

Keywords Human endogenous retrovirus (HERV) �
Envelope protein � Superantigen � Multiple sclerosis �
Pathogenesis � Therapy

The Autoimmune Concept of Multiple Sclerosis

Multiple sclerosis (MS) is a neurodegenerative disease with

unresolved pathogenesis. Up to now, an autoimmune attack

against myelin autoantigens is considered to be the primary

and main event in the pathogenesis of MS (Hemmer et al.

2003; Pender and Greer 2007). Molecular mimicry has

been considered to be the potential trigger for central

nervous system (CNS) autoimmunity (Chastain and Miller

2012). The anti-inflammatory therapeutic approach is in

line with these assumptions (Hohlfeld and Wekerle 2004;

Steinman 2007). It is presumed that the immune therapy is

able to prevent secondary neurodegeneration. Therefore, an

early onset of immune-directed therapy has been recom-

mended (Coyle and Hartung 2002; Hartung et al. 2005).

Paradigm Shift

Recently, the autoimmune concept for MS pathogenesis

has been challenged from different directions: (i) Despite

multiple attempts to substantiate a role of myelin autoan-

tigens in MS, no unequivocal proof has been supplied for

this idea. In fact, T-cells that specifically recognize pep-

tides of myelin proteins have been shown to be equally

present in healthy subjects and in MS patients (Pette et al.

1990; Holmøy 2007). Evidence is also lacking for the

hypothesis that a defective immune regulation would play a

role in MS (Goverman 2009). (ii) Several lines of evidence

suggest that inflammation in MS could be a secondary

phenomenon. No immune cells have been found by histo-

pathology in developing MS lesions at the onset of an MS

relapse (Barnett and Prineas 2004). The latter finding has

been limited to few cases that had been available for

pathological analysis. It has been discussed, however, that
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the MS plaque may be subjected to some kind of meta-

morphosis (Kornhuber 2006) with inflammation as a sec-

ondary event: 3 months prior to the onset of contrast

enhancement, subtle but significant alterations take place at

the plaque site in the brain tissue as detected by magneti-

zation transfer imaging (Filippi et al. 1998). As contrast

enhancement is taken as a correlate of inflammation (Smith

et al. 1993), it seems to be likely, that non-inflammatory

events occur within the MS plaque before immune cells

come into play. In contrast, inflammation parameters in the

blood display quite a different time course. They rise

within a few weeks before the acute attack (Beck et al.

1988). This rise could be due to various types of systemic

infections, which are well known to contribute to an acute

attack (Correale et al. 2006). Lesion metamorphosis would

also be in line with different types of plaques that have

been detected by histopathology (Lucchinetti et al. 2000).

Thus, different types of MS need not necessarily be taken

into consideration to explain this phenomenon. In fact, the

postulation of diverse separate subtypes of MS disagrees

with the results of epidemiologic studies which suggest that

all known clinical subtypes are part of one and the same

disease process (Confavreux and Vukusic 2006a). A pri-

mary neurodegenerative process would also fit the finding

that 20 % of the axons in the cerebral white matter have

been lost already when MS is diagnosed. N-acetyl-aspartic

acid has been shown to be significantly reduced in the

cerebral white matter of MS patients with early disease

compared to control subjects by magnetic resonance

spectroscopy (De Stefano et al. 2002; Filippi et al. 2003).

This diffuse axonal loss can hardly be attributed to the few

MS lesions that are commonly present on magnetic reso-

nance images in this early state of the disease (De Stefano

et al. 2002; Filippi et al. 2003). In addition, axonal loss and

demyelination have been demonstrated to progressively

decrease irrespective of an ongoing immunomodulatory

therapy (Anlar et al. 2003; Parry et al. 2003).

Immune Therapy and Progression of the Disease

Excess mortality of patients with MS as compared with the

general population has declined significantly since 1950

(Llorca et al. 2005, Brønnum-Hansen et al. 2006). An

influence of immune therapy on this phenomenon has not

yet been unequivocally established, and there may be fur-

ther factors of influence such as improvements of economic

status and general health care including symptomatic MS

treatment. Provided that inflammation is the driving force

of the disease, disability would follow the inflammatory

activity. Such correlations are weak at best, and not given

when the disease progresses steadily (Confavreux et al.

2003). Moreover, the inflammatory activity in MS does not

exert a detectable influence on the ongoing process of

cerebral atrophy (Cheriyan et al. 2012). It is common

knowledge that MS patients with a progressive course from

onset do not benefit from any immunomodulatory therapy.

Actually, the impact of immune modulation in MS segre-

gates into a moderate effect on relapses and a lacking or at

most weak effect on disease progression (Kornhuber et al.

2005). Accordingly, it has been shown, that a longer lasting

therapy with interferon beta has no influence on disability,

neither in patients with a relapsing-remitting type of dis-

ease (Confavreux and Vukusic 2006b; Shirani et al. 2012),

nor in patients with secondary progression (Confavreux

and Vukusic 2006b; La Mantia et al. 2012). This finding

has been attributed by some authors to the relatively short

study periods or to imprecise clinical scales (Hohlfeld

2012). However, if MS is considered to be a primary

neurodegenerative disease, the failure of immune therapy is

consistent.

Alternative Hypothesis: HERV/Superantigen

Pathogenesis

In our eyes, the hypothesis of MS as a primary autoimmune

disease is hardly tenable any more. Therefore, alternative

concepts have to be developed that better fit the real find-

ings in MS patients that have been gathered over the last

decades. Actually, simple and attractive views in agree-

ment with the dualism of degeneration and inflammation in

MS are already available: A clear and reproducible asso-

ciation of human endogenous retroviruses (HERVs) in MS-

patients has been shown previously (for review see e.g.,

Perron and Lang 2010; Nexø et al. 2011). In 1989, Perron

and coworkers detected retroviral activity in an MS patient

(Perron et al. 1989). Consequently, the concept of an MS-

associated retrovirus (MSRV) has been developed (Perron

et al. 1997). Today, of the more than 30 HERV-families,

few have been considered to be associated with MS (Perron

and Lang 2010; Christensen 2010; Nexø et al. 2011; Tai

et al. 2008).

At least 8 % of the human genome is composed of

endogenous retroviral sequences. These sequences were

integrated into the human genome in the course of the

evolution and are now transmitted from generation to

generation like other genes. Some of these sequences are

involved in normal physiological functions (Dupressoir

et al. 2012). HERVs have been found to be associated with

different diseases, e.g., endogenous psychoses, psoriasis,

diabetes mellitus type 1, rheumatoid arthritis and diverse

malignant tumors (Dolei 2006; Balada et al. 2009). The

majority of HERVs integrated in our genome is not com-

petent to replicate and most HERV sequences are pre-

sumably silent. Thus, harmful properties of HERVs
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possibly depend on the circumstances and the organ in

which they are expressed. In comparison to healthy indi-

viduals, MS patients have been shown to display genetic

differences in the promoter region of HERV-Fc1 (Nexø

et al. 2011). Such differences might contribute to the dif-

ferential expression of HERVs in MS patients as compared

with healthy subjects (Nexø et al. 2011). Other factors have

been reported to influence HERV expression (Table 1). For

example, estradiol primes human breast cancer cells for

subsequent progesterone-induced HERV-K expression

(Ono et al. 1987). Similarily, it was shown that HERV

expression in keratinocytes increases under the influence of

UV light (Hohenadl et al. 1999). Due to the impact of

endogenous and exogenous factors in MS, it would be

worth to investigate further such factors (sexual hormones,

light exposure) in the context of HERV expression. Envi-

ronmental parameters could also play a role in regard to the

distribution of MS prevalence in different geographical

regions.

It is well known that the gammaherpesvirus Epstein Barr

virus (EBV) plays a role in MS. Actually, MS has been

shown to become manifest within a few years after EBV-

infection (Levin et al. 2010). When HERVs are thought to

be involved in the pathogenesis of MS, there should be

Table 1 Activators of HERV expression

Factor Endogenous

retrovirus

Model References

Azacytidine HERV-K Melanoma cell lines Stengel et al. (2010)

Aspirin HERV-W Neuroblastoma cell line Liu et al. (2013)

Caffeine HERV-W Neuroblastoma cell line Liu et al. (2013)

Epstein Barr virus—CD21

interaction

HERV-K18 Resting B cells Hsiao et al. (2006)

Epstein Barr virus LMP2A HERV-K18;

HERV-K18

Lymphoblastoid cell lines, Burkitt lymphoma cell lines;

HERV-K18-transgenic murine B cell lymphoma cell line

Sutkowski et al. (2004),

Hsiao et al. (2009)

Glial cell missing 1 HERV-W Choriocarcinoma cell lines Yu et al. (2002)

Herpes Simplex virus 1 HERV-K;

HERV-W

Teratocarcinoma cell lines;

Neuroblastoma cell line, SV40 large T antigen-transformed

brain microvasculature endothelial cells

Kwun et al. (2002),

Ruprecht et al. (2006)

Human Cytomegalovirus Multiple

viruses

Varying cancer cell lines, endothelial cells, monocytes Assinger et al. (2013)

Human Herpesvirus 6A HERV-K18 T lymphoblastoid leukemia cell line Tai et al. (2009)

Human Herpesvirus 6B HERV-K18 Peripheral blood mononuclear cells Turcanova et al. (2009)

Human Immunodeficiency

virus 1 tat

HERV-K Peripheral blood lymphocytes, T cell leukemia cell lines Gonzalez-Hernandez et al.

(2012)

Human T lymphotropic

virus 1 tax

Multiple

HERV

T cell leukemia cell line Toufaily et al. (2011)

Hypoxia HERV-R

(ERV3)

Hodgkin’s lymphoma cell lines Kewitz and Staege (2013)

Influenza A virus HERV-W Tumor cell lines, primary fibroblast cultures Li et al. (2014)

Ionizing radiation HERV-R

(ERV3)

Embryonic kidney cell line, Keratinocyte cell line Lee et al. (2012)

Microphthalmia-associated

transcription factor M

HERV-K Melanoma cell lines, Embryonic kidney cell line Katoh et al. (2011)

PPARgamma signaling HERV-W Primary cytotrophoblast cultures, Choriocarcinoma cell lines Ruebner et al. (2012)

Retinoic acid HERV-W Primary cytotrophoblast cultures, Choriocarcinoma cell lines Ruebner et al. (2012)

Toxoplasma gondii Multiple

HERV

Ewing sarcoma cell lines Frank et al. (2006)

Tumor necrosis factor alpha HERV-W Glioma cell line Mameli et al. (2007)

Ultraviolet B Multiple

HERV;

HERV-K

Primary keratinocytes, Keratinocyte cell line;

Melanoma cell lines

Hohenadl et al. (1999),

Schanab et al. (2011)
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some link between EBV and HERV activation. Indeed,

HERVs can be transactivated by herpes viruses including

Herpes simplex virus 1, cytomegalovirus and EBV (Sut-

kowski et al. 2001; Nellåker et al. 2006; Assinger et al.

2013). The potent transactivating activity of HSV has been

attributed to the HSV alpha gene product immediate early

protein 0 (ICP0) (Everett 1984; Gelman and Silverstein

1985; O’Hare and Hayward 1985).

Furthermore, it was shown that ICP0 of HSV-1 trans-

activates the LTR-directed transcription of the human

endogenous retrovirus K (Kwun et al. 2002). In addition to

molecular mimicry and epitope spreading triggered by an

excessive and prolonged immune stimulation, transactiva-

tion of HERVs by EBV and subsequent superantigenic

stimulation of T cells might be involved in autoimmune

phenomena (Dreyfus 2011). Transactivation by HSV-1 of

the retrovirus of the LM7 cell line that was later termed

MSRV has been shown as early as 1993 (Perron et al.

1993).

T-Cell Superantigens

If HERVs would play a causative role in MS, all MS

features should fit into this scenario. First of all, a cellular

inflammation takes place in MS plaques. Actually, gene

products encoded by endogenous retrovirus sequences have

been shown to induce clonal deletion of lymphocytes in a

V-beta specific manner resembling that known for super-

antigens (SAgs) (MacDonald et al. 1988). It has been

shown previously that the envelope protein of MSRV leads

to polyclonal expansion of Vbeta16 T-lymphocytes in vitro

(Perron et al. 2001). Furthermore, SCID-mice engrafted

with human peripheral blood mononuclear cells intraperi-

toneally developed T-lymphocyte dependent brain hemor-

rhage albeit without encephalitis after i.p. injection of

MSRV-virions (Firouzi et al. 2003). Of course, superanti-

gens have been tested in the context of experimental

autoimmune encephalomyelitis (EAE). However, contro-

versial results have been presented with both, augmentation

or attenuation of EAE (Rott et al. 1992; Perron et al. 2013).

To test, if SAgs could induce inflammation similar to that

in MS within central nervous tissue directly and not by the

detour of EAE, we have previously used bacterial exo-

toxins (Kornhuber et al. 2002; Emmer et al. 2008, 2010). In

healthy rodents without prior immune stimuli, SEA present

locally within the brain does not induce a major inflam-

matory response (Kornhuber et al. 2002). The latter can be

markedly amplified, however, after i.v.-injection of spleen

cells that had been non-specifically activated by Conca-

navalin A (Kornhuber et al. 2002). Similarly, acute attacks

in MS could be triggered by non-specific immune stimuli

i.e., stress or infectious diseases. Interestingly,

CD8-positive T-cells dominate the SEA-driven perivascu-

lar round cell reaction (Emmer et al. 2010). This type of

lymphocyte has been found to predominate also in

inflammatory MS lesions (Friese and Fugger 2009). The

oligoclonal expansion of T-cells in the cerebral tissue of

MS patients (Junker et al. 2007) appears to accord to a

superantigenic stimulus. Furthermore, inflammation is

detectable in non-myelinated areas such as the retina.

While this finding is well in accord with a superantigenic

stimulus, it would not be expected when a myelin auto-

antigen is involved in the MS pathogenesis. Again, no

separate disease entity can be proposed based on whether

the retina is involved or not in MS patients. Thus, it has

been shown, that MS patients with or without retinal

involvement do not show any differences (Schmidt et al.

2001).

B-Cell Superantigens

Beside cellular inflammation, a humoral immune reaction

is an essential feature of MS: oligoclonal bands (OCB) can

be detected in over 90 % of MS-patients by isoelectric

focusing in the cerebrospinal fluid. It has been reported,

that only 1 % of these OCB contain antibodies that are

directed against CNS antigens (Kaiser et al. 1997; Owens

et al. 2009). In contrast, the spectrum of antigen specific-

ities that is present in OCB is so diverse, that the term

‘‘nonsense antibodies’’ has been used for this phenomenon

(Mattson et al. 1980). If SAgs play a role in the patho-

genesis of MS, evidence should be presented that OCB

may be induced by them. In fact, preliminary results sup-

port the notion, that B-cell SAgs can induce OCB in

in vitro cultures of peripheral blood leukocytes from

human blood donors (Emmer et al. 2011). Thereby, the

envelope glycoprotein 120 (gp120) of human immunode-

ficiency virus (HIV) was capable to activate blood leuko-

cytes to form antibodies against unrelated antigens

including Measles virus, Varicella-zoster virus and Rubella

virus (Emmer et al. 2011).

Antigen-Presentation

As far as we can see, the effects of HERV-encoded enve-

lope proteins have not been studied in the context of

cerebral antigen presenting cells (APCs) such as microglial

cells or astrocytes or eventually also monocytes or den-

dritic cells (DC) that may enter the CNS during states of

inflammation (D’Agostino et al. 2012). Nevertheless,

interactions of conventional SAgs such as e.g., Staphy-

loccal enterotoxins or toxic shock syndrome toxin-1

(TSST-1) with different APCs have been reported.
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For cerebral APCs only few studies are available so far.

Treatment of primary microglia with purified Staphylo-

coccal enterotoxin B (SEB) has been shown to augment the

TNF-a production in response to the TLR2 ligand Pam3-

Cys (Vidlak et al. 2011). SEB and TSST-1 have been

reported to bind with high affinity to MHC class II antigen

expressing astrocytes (Hassan-Zahraee et al. 2000). Con-

trasting results have, however, been reported by Rott et al.

(1993).

Toxic shock syndrome toxin-1 (TSST-1) has been

shown to potently induce IL-1 in human monocytes

(Ikejima et al. 1984; Parsonnet et al. 1986). SEA, SEB, and

TSST-1 were shown to activate and induce IL6 in perito-

neal macrophages from lipopolysaccharide-responsive

C3HeB/FeJ mice (Fleming et al. 1991). Furthermore, SEB

and TSST-1 have been demonstrated to induce IL-1 and

TNF secretion in human monocytes and monocytic cell

lines (Trede et al. 1991). Eventually, the activation of

monocytes by TSST-1 is mediated by tyrosine phosphor-

ylation (Scholl et al. 1992). The maturation process that has

been induced by systemic administration of SEB was

shown to be accompanied by upregulation of CD40, CD80

and CD86 expression in splenic interdigitating dendritic

cells (IDCs) but not in other APCs such as macrophages

and B cells (Yoon et al. 2001). Beside the known binding

of SAgs by MHC class II molecules on the surface of

APCs, SAgs have been demonstrated to be taken up in DCs

by transportation and trafficking (Ganem et al. 2013). It has

been speculated that this SAg uptake might increase the

local SAg concentration and thus enhance their presenta-

tion on the cell surface, e.g., to lymphocytes (Ganem et al.

2013). Furthermore, SAgs up-regulate monocyte surface

toll-like receptor (TLR) 2 and TLR 4 expression through

MHC class II signaling (Hopkins et al. 2005, 2008). The

SAg SEC1 has been suggested to play a role in the dif-

ferentiation of bovine peripheral blood mononuclear cells

into DC (Seo et al. 2009).

Beside stimulatory effects on APCs, SAgs have been

shown to lead to APC apoptosis. Thus, SEB was shown to

selectively increase the number of apoptotic CD80(-)

monocytes, presumably via CD95 dependend pathway

(Takahashi et al. 2001). Furthermore, a significant deple-

tion of Langerhans cells has been reported to be induced by

SEA or exfoliative toxin but not by TSST-1 (Pickard et al.

1994).

From the above cited reports it becomes apparent that

the interaction of SAgs locally expressed in the brain such

as HERV-encoded envelope proteins might lead to the

activation of cerebral APCs. In fact such activated APCs

such as microglial cells are typically seen in the context of

widespread demyelination of cerebral tissue of MS patients

(Lassmann 2013). By way of contrast, microglia has been

found to be not or at most mildly activated during the

course of EAE (Vainchtein et al. 2014). Furthermore, the

SAg–APC interaction might lead to the liberation of

cytokines such as IL1, IL6, and TNF-a. This in turn could

lead to reactions of the cerebral endothelial cells and to

enhanced recruitment of immune effector cells, i.e., to the

initiation of an inflammatory response.

Superantigens and HLA-Association

In MS patients, certain HLA-types have been shown to be

significantly more common than in the general population

(Ramagopalan et al. 2009). This HLA-association is com-

plex and does hardly allow any conclusion with respect to

the cause of the disease. Like other antigens, T-cell-SAgs

bind to HLA-molecules which present them to the T-cell

receptor in a Vb-dependent manner. If a role for HERV-

encoded SAgs is assumed within the MS pathogenesis,

then differences in the HLA-association should be present

between patients with a relapsing-remitting type of course

and those who show slow progression from the disease

onset. Actually, such differences have been repeatedly

found (Madigand et al. 1982; Van Lambalgen et al. 1986;

Francis et al. 1987; Olerup et al. 1989). Furthermore, an

association between the HLA-type and the disease course

could be expected especially in those patients who actually

show signs of inflammation in form of relapses, and who

respond to immune modulating therapy. Contradictory

results have been reported regarding this issue. Neverthe-

less, as a reproducible finding that may hint in this direc-

tion, the manifestation age of MS depends on the presence

of the HLA DRB1*15:01 allele (Masterman et al. 2000;

Sawcer et al. 2011). If the HLA DRB1*15:01 allele is

absent, MS becomes manifest at a higher age. If this

relation holds true, it could be that the different types of

MS course form a continuum in which patients with a

primary type of course from onset would experience their

first relapse at an advanced age. In this case, it would be

difficult to distinguish with certainty a relapse from the

ongoing disease process.

HERV and Neurodegeneration

How could primary degeneration in the CNS agree with a

HERV-pathogenesis? Oligodendrocyte apoptosis has been

detected in MS plaques in an early plaque stage with

immune reactivity against caspase 3 (Prineas and Parratt

2012). Apoptosis of oligodendrocytes has been described

in the context of diverse viral diseases, e.g., in progressive

multi-focal leukoencephalopathy in JC-virus infection

(Merabova et al. 2008). Furthermore, axonal loss and de-

myelinisation is a feature of HIV-encephalopathy (Bell
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1998). Certain proteins of HIV may induce apoptosis

markers like caspase 3 or TUNEL (Hauser et al. 2009).

Overexpression of the HERV-W env has been reported to

be associated with elevated levels of small conductance

Ca(2?)-activated K(?) channel protein 3 (SK3) in human

neuroblastoma cells. This finding has been discussed in the

context of neuronal excitotoxicity (Li et al. 2013). These

findings suggest that other retroviruses, eventually includ-

ing HERVs might be capable to induce degeneration of

oligodendrocytes or axons, too. Indeed, cytotoxic effects of

HERV products on oligodendrocytes have been described

(Antony et al. 2004; Kremer et al. 2013). In addition to a

direct cytopathic effect of HERV, SAg-activated T cells

might be able to destroy bystander cells. Under certain

circumstances, strong activation of T cells can induce non-

HLA restricted cytotoxic activity against innocent bystan-

der cells (Dick et al. 1993; Staege et al. 1996, 1998, 2000,

2003). Such bystander lysis could contribute to secondary

neurodegeneration.

Despite the fact that many researches stick to EAE as

their favorite model for MS, the concept of MS as an

autoimmune disease driven by anti-myelin autoantigenic

mechanisms is hardly tenable any more. Alternatively, a key

role in MS pathogenesis might be played by HERVs that are

not safely silenced. In fact, such HERVs have been shown to

become locally activated in the CNS of MS patients. In this

context, it is not far to speculate that HERV-encoded

envelope proteins act as SAgs and thereby cause a cerebral

inflammatory reaction as has been established for bacterial

SAgs already. Notably, the super-stimulatory effects would

be expected to concern both, T-cells (inflammatory plaques)

and B-cells (oligoclonal bands). Which consequences for

MS therapy evolve, if a HERV/SAg pathogenesis is taken

into account? (i) If MS is caused by HERVs, immune sup-

pression or modulation can hardly be expected to influence

slow disease progression. (ii) A substantial attenuation of

neurodegeneration would require effective suppression of

HERV-activation. (iii) It is readily explicable that immune

therapy can reduce the rate and severity of relapses, while

disease progression is hardly influenced. (iv) The extensive

and expensive use of immune modulating therapies from the

disease onset without taking the disease dynamics and

Fig. 1 A model for HERV/superantigen mediated neurodegeneration

and neuroinflammation. HERVs constitute an integral part of our

genome. Under normal conditions, expression of HERVs is switched

off epigenetically (0). Triggered by diverse factors (see Table 1),

reactivation of HERVs expression can be induced (1). The majority of

HERV-encoded RNAs contain point mutations and deletions that

hinder synthesis of HERV-encoded proteins. Such RNAs might be

involved in dysregulation of RNA metabolism (2). HERV-encoded

RNAs with intact open reading frames can be translated into proteins

(3). In rare cases, complete virions can be formed (4) which might

have direct cytopathic effect. In addition, single proteins can act as

antigens or superantigens for T cell stimulation (5). Such superan-

tigens can lead to depletion of V beta families but also to activation of

proliferation of oligoclonal T cells (6). Activated T cells secrete

cytokines which can lead to immune dysregulation (7). In addition,

activated T cells might be able to interact and kill other cells

including the superantigen expressing cells (8). However, bystander

cell killing can be independent from the expression of the superan-

tigen which was responsible for the induction of the immune response

(9)
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progression characteristics into account seems to be ques-

tionable (Fig. 1). (v) The development of ever new immune

modulators does not warrant the necessary progress in the

sense to avoid disability on the long term. By way of con-

trast, to develop mechanisms of silencing HERV expression

poses an attractive base for a future therapy of this disabil-

itating disease. If in turn efficacy of such a therapy could be

proven in progressive forms of MS, this would strongly

support a HERV driven pathogenesis.
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Human endogenous retrovirus type W envelope protein inhibits

oligodendroglial precursor cell differentiation. Ann Neurol

74:721–732

Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002) Transactivation

of the human endogenous retrovirus K long terminal repeat by

herpes simplex virus type 1 immediate early protein 0. Virus Res

86:93–100

La Mantia L, Vacchi L, Di Pietrantonj C, Ebers G, Rovaris M,

Fredrikson S, Filippini G (2012) Interferon beta for secondary

progressive multiple sclerosis. Cochrane Database Syst Rev

1:CD005181

Lassmann H (2013) Multiple sclerosis: lessons from molecular

neuropathology. Exp Neurol. doi:10.1016/j.expneurol.2013.12.

003

Lee JR, Ahn K, Kim YJ, Jung YD, Kim HS (2012) Radiation-induced

human endogenous retrovirus (HERV)-R env gene expression by

epigenetic control. Radiat Res 178:379–384

Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010)

Primary infection with the Epstein-Barr virus and risk of

multiple sclerosis. Ann Neurol 67:824–830

Li S, Liu ZC, Yin SJ, Chen YT, Yu HL, Zeng J, Zhang Q, Zhu F (2013)

Human endogenous retrovirus W family envelope gene activates

the small conductance Ca2?-activated K? channel in human

neuroblastoma cells through CREB. Neuroscience 247:164–174
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