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Abstract Current reports on trace elements, oxidative

stress, and the effect of antiepileptic drugs are poor and

controversial. We aimed to review effects of most common

used antiepileptics on antioxidant, trace element, calcium

ion (Ca2?) influx, and oxidant systems in human and

experimental animal models. Observations of lower blood

or tissue antioxidant levels in epileptic patients and animals

compared to controls in recent publications may commonly

support the proposed crucial role of antioxidants in the

pathogenesis of epilepsy. Effects of old and new antiepi-

leptics on reactive oxygen species (ROS) production in

epilepsy are controversial. The old antiepileptic drugs like

valproic acid, phenytoin, and carbamazepine induced ROS

overproduction, while new epileptic drugs (e.g., topiramate

and zonisamide) induced scavenger effects on over pro-

duction of ROS in human and animals. Antioxidant trace

element levels such as selenium, copper, and zinc were

generally low in the blood of epileptic patients, indicating

trace element deficiencies in the pathogenesis of epilepsy.

Recent papers indicate that selenium with/without topira-

mate administration in human and animals decreased

seizure levels, although antioxidant values were increased.

Recent studies also reported that sustained depolarization

of mitochondrial membranes, enhanced ROS production

and Ca2? influx may be modulated by topiramate. In

conclusion, there is a large number of recent studies about

the role of antioxidants or neuroprotectants in clinical and

experimental models of epilepsy. New antiepileptic drugs

are more prone to restore antioxidant redox systems in

brain and neurons.
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Abbreviations

AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazole-

propionic acid

Cu Copper

GSH Glutathione

GSH-Px Glutathione peroxidase

MDA Malondialdehyde

NFkB Nuclear factor kappa B

NMDA N-methyl-D-aspartate

PTZ Pentylenetetrazole

ROS Reactive oxygen species

Se Selenium

SOD Superoxide dismutase

Introduction

Epilepsy is a common chronic neurological disorder with

various etiological factors which affects about 2–3 % of the

general population with approximately 50 million people

worldwide (Azam et al. 2012). Epilepsy has been divided

into idiopathic, symptomatic, and cryptogenic forms and the

oxidative stress has important role on etiology of the epi-

lepilectic forms (Hayashi 2009; Seven et al. 2012).

The brain is particularly susceptible to oxidative stress

because it utilizes the highest amount of oxygen compared with

other bodily organs. The brain also contains high concentra-

tions of polyunsaturated fatty acids that are prone to lipid
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peroxidation, is rich in iron, which can catalyze hydroxyl rad-

ical formation, and is low in catalase activity (Shin et al. 2011;

Nazıroğlu 2012). Additionally it produces high amount of

reactive oxygen species (ROS) such as superoxide, hydrogen

peroxide, and hydroxyl radical, owing to high aerobic metab-

olism. Eventually these products make the brain most sensitive

to oxidative injury (Nazıroglu 2007; Ozmen et al. 2007).

A number of experimental and clinical reports suggest the

involvement of oxidative stress in pathophysiology of epilepsy

(Nazıroğlu et al. 2009; Rowley and Patel 2013). Increased free

radicals in membrane lipid peroxidation and decreased gluta-

thione (GSH) concentrations in the epileptic focus (Jesberger

and Richardson 1991) were reported. Further, the involvement

of free radicals in seizures is also supported by reports which

indicate that exogenously administered antioxidant protects

the brain against seizures (Gupta et al. 2003). Growing evi-

dence indicates that long-term antiepileptic drug treatment

leads to an increase in oxidative stress which is similar to that

observed during epileptogenesis although the topics on the

antiepileptic drugs are conflicting (Table 1). For example,

valproic acid has been found to increase lipid peroxidation in

patients receiving it (Martinez-Ballesteros et al. 2004). Con-

trary to this observation some anti-epileptic agents like phe-

nytoin have been shown to decrease oxidative stress

demonstrated by increase in glutathione reductase activity in

patients receiving it (Stanton and Moskal 1991).

Main antioxidant trace elements are copper, zinc, and

selenium. For example, selenium, an essential trace element

in humans, has antioxidant properties; and prevents neuronal

cell bodies from oxidation and keeps them biologically

healthy. To date, approximately 30 types of selenoproteins

have been identified. Some of these selenoproteins have vital

enzymatic functions (Rayman 2000). The importance of

selenium is because of the 21-amino-acid selenocysteine,

one of the selenoproteins (Martinez-Ballesteros et al. 2004).

Brain contains a high quantity of selenium, especially in gray

matter (Nazıroğlu et al. 2009). The most important function

of GSH-Px, a selenium-dependent enzyme, is reducing

hydrogen and organic peroxides in the presence of reduced

GSH (Weber et al. 1991). There is direct relationship

between antioxidant trace elements and epilepsy. For

example, correlation between selenium or GSH-Px defi-

ciency and epilepsy has been shown (Schweizer et al. 2004).

The aim of this review paper is to investigate the role of

antiepileptic drugs in relationship with oxidative stress,

antioxidant redox systems, and trace elements in epilepsy.

Oxidative Stress and Epilepsy

Initiation and progression of epilepsy are induced free oxygen

radicals and, therapies aimed at reducing oxidative stress may

ameliorate tissue damage and favorably alter the clinical

course (Azam et al. 2012). At the cellular level, intense sei-

zure activity typically initiates a massive influx of calcium

ions via voltage-gated calcium channels and glutamate

receptors, such as kainate, alpha-amino-3-hydroxy-5-methyl-

4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspar-

tate (NMDA)-dependent cation channels. Elevated intracel-

lular Ca2? leads to biochemical cascades which trigger acute

hippocampal cell death after epilepsy (Nazıroğlu et al. 2009).

Additionally, high levels of intracellular Ca2? can induce

generation of ROS, uncoupling of mitochondria and activa-

tion of a wide range catabolic enzymes that are capable of

interfering with cell function (Pariente et al. 2001; Patel 2004;

González et al. 2006, 2007). On the other hand, exposure of

mitochondria to high cytosolic-free Ca2? was shown to

increase formation of ROS through depolarization of mito-

chondria (Fig. 1). Sustained depolarization of mitochondrial

membranes and enhanced ROS formation could impair pro-

duction of nicotinamide adenine dinucleotide phosphate

(NADPH) and ATP. Indeed, rises in NAD(P)H auto-fluo-

rescence associated with single seizure-like events in slices,

decline with time during status epilepticus (Schuchmann

et al. 1999). Moreover, in vivo studies suggested a failure of

ATP production after prolonged status epilepticus (Gupta

et al. 2001). Today, free radicals are known to be both the

cause and the consequence of epileptic seizures (Patel 2004).

Transient receptor potential (TRP) cation channels have six

subfamilies and some TRP channels such as TRPM2 and

TRPV1 are activated by oxidative stress (Naziroglu 2011;

Nazıroğlu et al. 2012). These channels may play a role in the

etiology of epilepsy due to their oxidative stress-dependent

mechanisms. The subject should be clarified by future studies.

Oxidative stress is defined as an imbalance between higher

cellular levels and ROS such as superoxide radical, hydrogen

peroxide, nitric oxide, and cellular antioxidant defense

(Nazıroğlu 2012; Cardenas-Rodriguez et al. 2012; Espino et al.

2012). Neuronal cell death may be both a cause and conse-

quence of epileptic seizures. Oxidative stress occurs when the

productions of ROS exceed the removal capacity through the

antioxidant redox system and results in excessive levels of free

radical intermediates (Patel 2002). Liang and Patel (2004) have

demonstrated oxidative damage to susceptible targets (protein,

lipids, and DNA) caused by persistent seizures (status epi-

lepticus). Neuronal cytosolic Ca2? influx induces mitochon-

drial depolarization. Several studies have demonstrated an

increase in mitochondrial oxidative stress and subsequent cell

damage after persistent seizures (Weber et al. 1991; Pariente

et al. 2001; González et al. 2006, 2007).

Antioxidant Trace Elements

There have been numerous reports on the association of

trace elements and epilepsy. The cascade of neurotoxic
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events that lead to epileptic seizures is highly complex, but

the main event involves the accumulation of ROS (Hayashi

2009). The ROS formation has been found to be both the

cause and the result of epileptic seizures in human (Yuksel

et al. 2001; Hamed et al. 2004). Selenium, zinc, and copper

are three trace elements that are involved in the metabolism

of ROS. For example, selenium is involved in the reduction

of peroxide by participating in the structure of GSH-Px,

which is a very important antioxidant enzyme (Hamed

et al. 2004).

Selenium

The equilibrium of trace elements is essential for a healthy

nervous system because most of them contribute to the

activation of specific enzymes that play important roles in

many pathways of the central nervous system. Antioxidant

defense mechanisms are an important pathway involving

trace elements. GSH-Px, which is a selenium-dependent

enzyme that is involved in antioxidant defense mecha-

nisms, controls the intracellular levels of hydrogen

Table 1 Effects of antiepileptic drugs on oxidative stress and trace elements in humans and animals

Antiepileptic drug Subject/material Value/effect References

Phenytoin Rat/brain MDA/increase Reeta et al. (2009)

GSH/decrease

Human/blood MDA/increase Liu et al. (1997)

Cu, Zn–SOD/increase

Cu/increase

GSH/decrease

Sodium valproate Children/plasma GSH-Px/increase Kurekci et al. (1995)

Children/erythrocyte GSH-Px/increase Yuksel et al. (2001)

SOD/increase

Adult/blood Se–GSH-Px/increase Hamed et al. (2004)

Children/blood GSH-Px/no effect Ashrafi et al. (2007a)

Adult/blood Se–GSH-Px/no effect Verrotti et al. (2002)

Adult/erythrocyte GSH-Px/no effect Yis et al. (2009)

SOD/increased

MDA/increased

Carbamazepine Adult/plasma Se–GSH-Px/no effect Hamed et al. (2004)

Children/erythrocyte GSH-Px/no effect Ashrafi et al. (2007b)

Adult/blood Se–GSH-Px/no effect Verrotti et al. (2002)

Children/erythrocyte MDA/increase Yuksel et al. (2001)

SOD/increase

Zonisamide Mice brain/cultured neurons GSH/increase Asanuma et al. (2010)

PC12 cells GSH-Px/increase Yürekli and Naziroglu (2013)

GSH/increase

MDA/decrease

Caspase-3/decrease

Cytosolic Ca2?/decrease

Topiramate Rat brain/microsomes GSH-Px/increase Nazıroğlu et al. (2008)

Rat/erythrocytes GSH-Px/increase Nazıroğlu et al. (2009)

Rat/hippocampus GSH-Px/increase Muriach et al. (2010)

Rat/brain cortex MDA/decrease Nazıroğlu et al. (2008, 2009)

Rat/erythrocyte and plasma GSH-Px/increase Nazıroğlu et al. (2009)

GSH/increase

Vitamin C, vitamin E/increase

Mice/brain GSH/decrease Agarwal et al. (2011)

MDA/increased

Human/blood GSH, GSH-Px, vitamin A and vitamin C/increase Yürekli and Naziroglu (2013)

Se selenium, Cu copper, Se selenium, MDA malondialdehyde, GSH glutahhione, GSH-Px glutathione peroxidase, SOD superoxide dismutase
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peroxide and hydroxyl radical (Nazıroğlu et al. 2009). It is

well known that increased production of free radicals due

to oxidative stress or the decreased functioning of antiox-

idant defense systems may lead to seizures or increase the

risk of their recurrence (Savaskan et al. 2003; Hamed et al.

2004; Ashrafi et al. 2007a), because oxidative stress pro-

duces peroxidated membrane lipids and damages the cells

(Hayashi 2009). Low levels of selenium and GSH-Px have

been found in patients with epilepsy (Yuksel et al. 2001;

Ashrafi et al. 2007b). Selenium-deficient rats have been

found to be more susceptible to excitotoxicity (Savaskan

et al. 2003).

The GSH-Px deficiency was reported in children with

intractable epilepsy (Weber et al. 1991; Ramaekers et al.

1994). They found administration of selenium can help to

treat the children following discontinuation of anticonvul-

sive drugs. Ashrafi et al. (2007a) reported that serum

selenium level in intractable epilepsy patients was lower

than that in healthy children, and they concluded that

measurement of serum selenium in intractable epilepsy is

helpful in recognizing the condition. In another study,

Ashrafi et al. (2007b) found the patients affected by epi-

lepsy have lower GSH-Px activity than the healthy chil-

dren. Wirth et al. (2010) showed that cerebral selenium

deficiency is associated with the incidence of seizure in

mice through reduced activity of GSH-Px. Oztas et al.

(2007) found that the damage to the blood–brain barrier in

male rats due to seizure is increased if there is selenium

and vitamin E deficiency; they concluded that management

of seizure attacks with selenium has beneficial effects on

reducing breakdown of the blood–brain barrier. Savaskan

et al. (2003) observed a increased seizure rate in selenium-

deficient rats due to greater susceptibility to kainate-

induced excitotoxicity and the authors concluded that

selenium has a fundamental role in neuronal susceptibility

to excitotoxic lesions and seizure attacks. However, a study

reported no significant change of serum selenium level in

epilepsy patients as compared to healthy control patients

Fig. 1 Free radical generation and Ca2? uptake induce seizure

activity by direct activation of Ca2? channels although topiramate-

induced modulator role in Ca2? influx through voltage-gated Ca2?

channels (VGGC) and glutamate receptors namely AMPA, kainate,

and N-methyl-D-aspartate (NMDA). During the physiological process,

superoxide radicals (O2
-) produces and the radicals converted

hydrogen peroxide (H2O2) by copper (Cu) and zinc (Zn) superoxide

dismutase enzyme. The hydrogen peroxide (H2O2) is converted to

water (H2O) by Cu- and Zn-dependent catalase (CAT) and selenium

(Se)-dependent glutathione peroxidase enzyme (GSH-Px) enzymes.

Mitochondria were reported to accumulate Ca2? provided cytosolic

Ca2? rises or provided mitochondrial uptake exceeds mitochondrial

Ca2? extrusion, thereby leading to depolarization of mitochondrial

membranes. On the other hand, exposure of mitochondria to high free

Ca2? was shown to increase formation of ROS. The sustained

depolarization of mitochondrial membranes and enhanced ROS

production may be modulated by topiramate. Transient potential

(TRP) or TRP melastatin 2 (TRPM2) channel activity-induced Ca2?

influx increases may be modulated by topiramate. The molecular

pathway may be a cause of epileptic seizures and represents a fruitful

subject of topiramate for further study. - Decrease, ? increase

592 Cell Mol Neurobiol (2013) 33:589–599

123



during seizure attacks (Hamed et al. 2004). Mahyar et al.

(2010) reported lower selenium level in children with

simple febrile seizures than in febrile children without

seizure. Recently, Seven et al. (2012) reported a significant

decrease in selenium levels in patients with idiopathic

intractable epilepsy. It has been suggested that antiepileptic

drug therapies deplete total body selenium stores and

failure to give appropriate selenium supplementation,

especially to patients receiving valproic acid during preg-

nancy may increase the risk of neural tube defects or other

free radical-mediated damage (Arakawa and Ito 2007).

Febrile seizures are the most common brain-related

disease in children (Castano et al. 1997). Although the

pathophysiology of febrile seizures is still unknown, sev-

eral studies have indicated that multiple factors can be

involved in the pathogenesis of febrile seizures, including

elements such as iron and zinc (Tütüncüoğlu et al. 2001;

Daoud et al. 2002). The role of other elements in devel-

oping febrile seizures and brain disorders, including sele-

nium, has been reported in some studies (Tütüncüoğlu et al.

2001; Schweizer et al. 2004). Ramaekers et al. (1994) and

Weber et al. (1991) investigated GSH-Px activity in chil-

dren with intractable and they found administration of

selenium can help to treat the children following discon-

tinuation of anticonvulsive drugs. Nazıroğlu et al. (2008)

reported on use of selenium for control or inhibition of

seizure caused by excitotoxic agents.

Copper and Zinc

Zinc is an essential trace metal in humans and animals.

Zinc deficiency results in defects of the central nervous

system as well as peripheral neuropathy (Oki et al. 2012).

Some evidence has indicated a relationship between zinc

and seizure activity, but the detailed significance of zinc in

convulsive activity is not clear (Seven et al. 2012). Clinical

manifestations of zinc deficiency, such as memory deficits,

learning disorders, and alterations in emotional behavior

suggest hippocampal dysfunction (Oki et al. 2012). Chan-

ges in levels of trace elements have been proposed to

underlie febrile seizures. Particularly, low zinc levels have

been proposed as related factor of febrile seizure. The

mechanism underlying the role of zinc levels in seizures

has been examined in studies on mouse models and in vitro

studies. Numerous reports have suggested that zinc mod-

ulates specific GABA receptors, and this mechanism is

known to contribute to seizure inhibition (Andre et al.

2010; Amiri et al. 2010).

Amiri et al. (2010) reported decreased serum selenium,

zinc, and copper levels in the children with febrile convul-

sion and in the control group. Ganesh et al. (2011) compared

serum zinc levels in children (22 with epileptic seizures, 23

with simple febrile seizures and 22 controls) and they

showed decreased serum zinc levels in children with febrile

seizures than in those with epileptic seizures and normal

children. Recently, Wojciak et al. (2013) assessed the serum

zinc and copper concentrations in 23 children with initial

recognition of epilepsy before beginning of pharmacological

therapy in comparison with a healthy control group of 25

children. They demonstrated that epilepsy decreased zinc

level although it increased copper levels in the patients.

On the other hand, Verrotti et al. (2002) assessed whether

epileptic children have abnormal values of serum copper,

zinc, selenium, GSH-Px and superoxide dismutase (SOD).

They evaluated the effect of long-term therapy with sodium

valproate and carbamazepine on these parameters in 36

epileptic patients before the beginning of therapy and after

1 year of therapy with sodium valproate or carbamazepine.

After 1 year of therapy, patients treated with sodium val-

proate and carbamazepine continued to show normal values.

They demonstrated that epilepsy per se and treatment with

sodium valproate and carbamazepine do not affect levels of

copper, zinc, and SOD values (Verrotti et al. 2002). Similarly

Kurekci et al. (1995) investigated the effect of long-term

antiepileptic drugs therapy on copper, zinc, manganese,

magnesium, and SOD in the plasma in children with epi-

lepsy. They reported plasma copper, zinc, manganese, and

magnesium concentrations of patients were not different

from those of control subjects during treatment with val-

proate or carbamazepine monotherapy. However, they

observed serum sodium valproate levels were correlated

with the increase of plasma zinc level in the patients.

Oxidative Stress and Antiepileptic Drugs

As it was mentioned above, free oxygen radicals are

physiological products of the cellular metabolism. For

examples, phagocytes are producing free oxygen radicals

for killing ingested bacteria and virus. However, when the

production of free radicals increases or defense mechanism

of the body decreases, they cause cellular dysfunction by

attacking at the polyunsaturated sites of the biological

membranes leading to lipid peroxidation (Naziroglu 2007).

As it was mentioned above, antioxidant enzymes are SOD,

catalase, and GSH-Px in the brain. SOD dismutases

superoxide radical to hydrogen peroxide. Catalase is an

enzyme responsible for detoxification of the hydrogen

peroxide formed by the action of SOD. The catalase

activity in the rodent brain is very low. The involvement of

free radicals in seizures is also supported by reports which

indicate that exogenously administered antioxidant protects

the brain against seizures (Gupta et al. 2003). Some papers

indicate that long-term treatment with old antiepileptic

drugs leads to an increase in oxidative stress which is
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similar to that observed during epileptogenesis (Chang and

Abbott 2006). However, the idea was not further confirmed

(Hamed et al. 2004; Ashrafi et al. 2007).

Hence, results on the subject are also conflicting. For

example, sodium valproate has been found to increase lipid

peroxidation in patients receiving it (Martinez-Ballesteros

et al. 2004). Contrary to this observation some antiepileptic

agents like phenytoin and topiramate have been shown to

decrease oxidative stress, which were demonstrated to

increase in glutathione reductase and GSH-Px activities in

patients (Stanton and Moskal 1991; Nazıroğlu et al. 2009;

Ganesh et al. 2011).

Topiramate

Topiramate, a sulfate-substituted monosaccharide, is a

novel compound that has a broad spectrum against anti-

epileptic activity. Mechanisms that are likely to account for

the anticonvulsant activity of topiramate include a negative

modulatory effect on the a-amino-3-hydroxy-5-methyl-4-

isoxazol propionic acid (AMPA)/kainate subtype of glu-

tamate receptors, a positive modulatory effect on GABAA

receptors, a use- and time-dependent blockade of voltage-

activated Na?-channels, a negative modulatory effect on a

neuronal L-type high voltage-activated Ca2?-channel and

is also inhibitor of the carbonic anhydrases, particularly

subtypes II and IV (White 2005). There are scarce report

about interactions between oxidative stress and topiramate.

Most of the papers indicated the antioxidant role of topi-

ramate in brain and neurological cells. On the subject,

Cardenas-Rodriguez et al. (2012) observed dose-dependent

ROS scavenger effects of topiramate in different cell lines.

The effect of introperitoneal topiramate was investigated

by Kubera et al. (2004) (40 and 80 mg/kg) on the fully

developed kainate (15 mg/kg)-induced status epilepticus in

the rat. The topiramate at a dose of 80 mg/kg in frontal

cortex of the rats reduced the kainate-induced lipid per-

oxidation (Kubera et al. 2004). Our group has also inves-

tigated the effects of selenium administration (0.3 mg/kg/

day) on topiramate (50 mg/kg/day) and pentilentetrazol

(60 mg/kg)-induced brain toxicity in rats. We have proved

that topiramate administration with or without selenium

caused decreased lipoperoxidation levels in the brain cor-

tex (Nazıroğlu et al. 2008). Vitamin E (alpha tocopherol) is

a lipid soluble strong antioxidant that interferes with the

chain reaction of oxidative stress (Nazıroglu et al. 2004)

although Vitamin C (ascorbic acid) is water soluble mol-

ecule that can scavenge several radicals (Ekmekcioğlu

et al. 2008). Similarly, in another study of our group

(Nazıroğlu et al. 2009) indicated that topiramate and vita-

min E treatment caused a decrease in serum nitric oxide,

erythrocyte and plasma lipoperoxidation levels and brain

spike numbers, whereas GSH-Px, GSH, vitamin C and

vitamin E levels and latency to the first spike of EEG were

increased by the topiramate treatment.

Armagan et al. (2008) indicated that topiramate and

vitamin E have protective effects on pentylenetetrazol-

induced nephrotoxicity by inhibition of free radicals and

support of the antioxidant redox system. In doses of 50 and

100 mg/kg/day topiramate and 150 mg/kg vitamin E

caused an increase of kidney SOD and catalase enzyme

activities in the same study.

We have previously investigated the effects of selenium

and topiramate on pentylenetetrazole (PTZ)-induced blood

toxicity in rats. We have found that selenium and topira-

mate induced protective effects on the PTZ-induced blood

toxicity by inhibiting free radical supporting antioxidant

redox system (Nazıroğlu et al. 2008).

Nuclear factor kappa B (NFkB) is known to respond to

oxidative stress and to act as a regulator of apoptotic pro-

cesses (Schreck et al. 1992). Muriach et al. (2010) inves-

tigated GSH, GSH-Px, and caspase 3 values for checking

the influence of oxidative stress on NFkB response, and the

possible induction of NFkB activation-related apoptosis in

an experimental model of cocaine administration in rats.

They concluded that topiramate had a modulatory role

against necrosis NFkB activation in the frontal cortex and

against NADPH positive cells in the hippocampus (Muri-

ach et al. 2010).

Cardile et al. (2001) reported that topiramate (1–100 lg/

ml) increased the oxidative stress in astrocytes. Agarwal

et al. (2011) compared the effects of lamotrigine, ox-

carbazepine, and topiramate on cognition during experi-

mental epileptogenesis in mice. Topiramate administration

(10 mg/kg) to kindled as well as non-kindled animals

increased lipid peroxidation and malondialdehyde (MDA)

production, and decreased GSH levels. It was reported that

lamotrigine and oxcarbazepine did not show significant

alteration in oxidative stress values (Agarwal et al. 2011).

Recently, our group investigated effects of topiramate

and selenium supplementation on antioxidant and oxidant

stems in patients with epilepsy and refractory epilepsy

(Yürekli and Nazıroğlu 2013) and we observed a modu-

latory role of topiramate and selenium supplementation on

GSH, GSH-Px, total antioxidant capacity, vitamins A and

vitamin C in the blood of epileptic patients.

Sodium Valproate and Carbamazepine

Sodium valproate is an effective drug for treating simple

and complex epileptic seizures as a monotherapy and as a

component of polytherapy. The effects of sodium valproate

on oxidant status are conflicting in different studies. Chang

and Abbott (2006) showed that oxidative stress has a
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potential role on sodium valproate-induced hepatotoxicity.

Solowiej and Sobaniec (2003) reported insignificant ele-

vations of MDA concentrations in patients treated with

sodium valproate and carbamazepine. Michoulas et al.

(2006) also reported higher urinary levels of 15-F2T-iso-

prostane, a marker of oxidative stress in epileptic children

treated with sodium valproate. On the other hand, Verrotti

et al. (2002) found that sodium valproate therapy does not

appear to cause oxidative stress in epileptic children who

remained non-obese during treatment. Yis et al. (2009)

found that GSH-Px activity does not change during treat-

ment with sodium valproate and they found elevated levels

of superoxide dismutase in patients with newly diagnosed

idiopathic epilepsy. They also showed a positive correla-

tion between duration of treatment and SOD activities (Yis

et al. 2009).

In another study, Cengiz et al. (2000) evaluated the

effects of sodium valproate and carbamazepine therapy on

erythrocyte GSH, GSH-Px, SOD, and lipid peroxidation in

epileptic children. They found that GSH levels were

reduced and GSH-Px increased in the sodium valproate and

carbamazepine groups (Cengiz et al. 2000). Reduction in

the GSH amount may result in an increase of organic

hydroperoxides. Yuksel et al. (2001) determined changes in

the antioxidant system in epileptic children receiving long-

term antiepileptic drugs. In their study 16 patients were

treated with sodium valproate and 14 with carbamazepine;

13 months later these parameters were retested. Their

results showed that SOD and lipid peroxidation levels were

increased but the GSH-Px levels were decreased in epi-

leptic children on sodium valproate therapy compared with

the control group and the results before treatment. No

significant differences of these parameters were reported in

epileptic children undergoing carbamazepine therapy

compared with the control group, although lipid peroxi-

dation level was slightly higher in epileptic patients before

treatment. They concluded that antioxidant systems in

epileptic children on carbamazepine therapy are better

regulated in comparison with epileptic children on sodium

valproate therapy (Yuksel et al. 2001).

Levetiracetam

Levetiracetam, the S-enantiomer of a-ethyl-2-oxo-1-pyr-

rolidine acetamide, is an antiepileptic drug that has broad-

spectrum effects on partial and generalized seizures in

several models of epilepsy. The clinical effectiveness of

LEV has been reported in patients with partial refractory

epilepsy (Oliveira et al. 2007). The therapeutic mechanism

of levetiracetam remains unclear, some studies considering

that is unrelated to any modulation of neuronal voltage-

gated Na? or low-voltage-activated Ca2? (T type) channels

(Oliveira et al. 2007). Meanwhile, other in vitro and in vivo

studies suggested a role of both calcium channels N-type

and GABAergic in the activity of levetiracetam (Lukyanetz

et al. 2002; Poulain and Margineanu 2002). Oliveira et al.

(2007) study indicated that levetiracetam may alter pilo-

carpine-induced changes in catalase and reduced GSH

levels, in lipid peroxidation level, and nitrite–nitrate for-

mation in mice hippocampus and they observed that lipid

peroxidation, nitrite/nitrate formation, and changes in

antioxidant brain enzymes are involved in the pathophys-

iology of pilocarpine-induced seizures and status epilepti-

cus (Oliveira et al. 2007). Except its antiepileptic potential,

Stettner et al. (2011) indicated that levetiracetam may also

act as a histone deacetylase inhibitor, suggesting that this

drug exhibits both anti-inflammatory and anti-oxidative

effects, and it may be potentially useful for treating oxi-

dative stress and inflammation in the peripheral nerve

(Stettner et al. 2011).

Zonisamide

Zonisamide is originally synthesized in Japan and has been

used for over 10 years to treat intractable epilepsy. Zon-

isamide has significant effects on T type Ca2? channels and

oxidative stress (Murata 2004). To our knowledge, there is

not enough study about the effects of zonisamide on oxi-

dative stress, trace elements and epilepsy. Asanuma et al.

(2010) investigated changes in GSH and GSH synthesis-

related molecules, and the neuroprotective effects of zon-

isamide on dopaminergic neurodegeneration using 6-hy-

droxydopamine-injected hemiparkinsonian mice brain and

cultured neurons or astrocytes. They observed protective

effects of zonisamide on GSH levels in astroglial C6 cells

by enhancing the astroglial cystine transport system and/or

astroglial proliferation via S100beta production or secre-

tion. Yurekli et al. (2012) investigated the effect of zon-

isamide on the oxidative stress, cell viability, Ca2?

signaling, and caspase activity that induced by the MPP?

model of Parkinson’s in neuronal PC12 cells. Lipid per-

oxidation and cytosolic-free Ca2? concentrations were

higher in the MPP? group than in control, although their

levels were lower in zonisamide and the zonisamide plus

MPP? groups than in control. Reduced GSH and gluta-

thione GSH-Px were lower in the MPP? group, although

they were higher in the zonisamide and the zonisamide plus

MPP? groups than in control (Yurekli et al. 2012).

Phenytoin

Phenytoin was introduced nearly 60 years ago for use in

epilepsy and is still widely prescribed for partial and
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generalized seizures. Similar to carbamazepine, it blocks

voltage-dependent neuronal sodium channels (Yaari et al.

1986). Other effects of phenytoin include diminishing

synaptic transmission, limiting fluctuation of neuronal

ionic gradients via sodium–potassium ATPase, and

affecting second messenger systems by inhibiting Ca2?-

calmodulin protein phosphorylation (Delgado-Escueta and

Horan 1980; Holland et al. 1993).

Phenytoin is effective in the treatment of both general-

ized tonic-colonic and focal onset seizures (Miller et al.

2004). However, phenytoin has a narrow margin of safety

and its use in epileptic patients has occasionally been

associated with disturbances in the blood antioxidant

defense systems and increased lipid peroxidation (Herzog

et al. 2005; Hirsch et al. 2008). Many authors have sug-

gested that phenytoin initiates oxidative damage and cog-

nitive impairment in experimental animals and epileptic

patients taking phenytoin monotherapy or receiving mul-

tiple drugs (Reeta et al. 2009). Reeta et al. (2009) measured

the levels of MDA and GSH in rat brain after phenytoin

treatment. MDA levels in the rat brain were significantly

increased and the GSH levels were significantly reduced in

the phenytoin-treated rats (Reeta et al. 2009). Liu et al.

(1997) measured the serum MDA, serum copper, serum

zinc, copper/zinc SOD, and reduced GSH concentrations in

20 female epileptics with phenytoin monotherapy com-

pared with 12 female epileptics without anticonvulsant

therapy and 20 female healthy controls. For the female

epileptics with phenytoin monotherapy, serum MDA con-

centration, copper/zinc SOD, and serum copper content in

their study were increased whereas GSH level was signif-

icantly decreased. They observed also that the level of

serum MDA was associated with the elevation of copper/

zinc SOD activity and serum copper content in all the

samples collected from epileptics and controls. They con-

cluded that oxidative stress was enhanced in the female

epileptics with phenytoin monotherapy (Liu et al. 1997).

Phenytoin is also known to deplete vital nutrients, such

as calcium, folic acid, vitamin D, vitamin K, biotin, car-

nitine, copper, selenium, and zinc (Thaakur and Push-

pakumari 2007). In the literature there is not enough

information about selenium and phenytoin interaction. On

the subject, Ozolins et al. (1996) suggested that selenium-

dependent and -independent GSH-Px detoxifies hydrogen

peroxide and lipid hydroperoxides may mediate the tera-

togenicity of phenytoin and related xenobiotics. They were

the first to demonstrate selenium-dependent GSH-Px

activities in embryonic tissues of CD-1 mice with dietary

selenium-deprivation. Their results implicated ROS and

lipid hydroperoxides in the mechanism of phenytoin tera-

togenicity and suggested that GSH-Px are important em-

bryoprotective enzymes (Ozolins et al. 1996).

Lamotrigine

Lamotrigine is an antiepileptic drug, also known as a mood

stabilizer, that inhibits presynaptic voltage-gated Na?

channels and reduces the presynaptic release of glutamate

in pathological states (White 2005). Scarcely studies are in

the literature about the effects of lamotrigine on oxidative

stress. Arora et al. (2010) observed the effect of lamotri-

gine and carbamazepine on cognitive function and oxida-

tive stress in brain during chemically induced

epileptogenesis in rats. They indicated that lamotrigine

treatment had no effect on oxidative stress parameters

alone, while it significantly decreased oxidative stress in

the PTZ-kindled group as compared to the PTZ-kindled

carbamazepine-treated group (Arora et al. 2010). In a

similar study as mentioned above Agarwal et al. (2011)

assessed the effect of three anticonvulsants, lamotrigine,

oxcarbazepine, and topiramate on cognitive function and

oxidative stress during pentylenetetrazole kindling in mice.

MDA, GSH levels, SOD, and catalase activity were mea-

sured as an indicator of oxidative stress. Lamotrigine and

oxcarbazepine did not show significant alteration in oxi-

dative stress parameters and cognitive functions tests

(Agarwal et al. 2011). Neuroprotective effects of this drug

have also been demonstrated in cerebral ischemia models

(Tufan et al. 2008). Literature connecting lamotrigine and

trace elements is scarce. In a traumatic brain injury model

in rats, Hellmich et al. (2007) suggested that lamotrigine

treatment inhibits presynaptic release of glutamate and

reduces neurotoxic zinc levels after traumatic brain injury.

Conclusion and Future Directions

The existing knowledge about the impact of epilepsy and

antiepileptic drugs on trace elements and free radical/

antioxidant system is poor and controversial. There are four

main future directions. (1) Information on trace element

and new antiepileptic drugs, such as zonisamide and lam-

otrigine, is scarce. In addition, reports of old and new

antiepileptic drugs are conflicting on antioxidant levels in

human and animals relationships between old and new

antiepileptic drugs. Hence, effects of the new drugs on the

oxidant and antioxidant values such as MDA, GSH-Px, and

SOD should be investigated by further experiments. (2)

The second topic is calcium ion signaling and transient

receptor potential (TRP) channels in epileptic hippocampal

neurons. There is no report on the oxidative stress-depen-

dent activation of TRP cation channels in epileptic patients

and animals via over production of free oxygen radicals.

Hence, these subjects should be clarified by future

experiments.
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Clinical reports suggest that both epilepsy and antiepi-

leptic drugs, especially older generation antiepileptics, have

negative effect on cognition which affects the life quality of

epileptic patients. However, it is not clear whether it is epi-

lepsy or oxidative stress or both which contribute to the

decline of cognitive function. It is well known that older

generation antiepileptic drugs cause cognitive impairment

oxidative stress could be the triggering mechanism involved

in cognitive impairment during experimental epileptogene-

sis as well as during drug treatment. Third, on new antiepi-

leptic drugs, particularly topiramate and zonisamide, further,

clinical and biochemical studies are required, to demonstrate

a correlation between cognitive dysfunction and oxidative

stress during epilepsy and antiepileptic drug therapy.

Fourth, in different studies low serum zinc levels were

determined but there are poor evidences that zinc, copper,

and selenium supplementations are able to reduce the

incidence of febrile seizure, and further investigation is

necessary. Present studies do not catch the full complexity

trace elements deficiencies in epileptogenesis, and we

believe that further studies will have a huge clinical con-

tribution to in improving the life quality of of epileptic

patients.
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