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Abstract Mesenchymal stem cells (MSC) have emerged

as a new therapeutic tool for a number of clinical appli-

cations, because they have multipotency and paracrine

effects via various factors. In the present study, we inves-

tigated the effects of adipose-derived MSC (Ad-MSC)

transplantation via intrathecal injection through the cisterna

magna on cell proliferation and differentiation of endoge-

nous stem cells in the hippocampal dentate gyrus (DG)

using Ki-67 (a marker for proliferating cells), and dou-

blecortin (DCX, a marker for neuroblasts). The trans-

planted Ad-MSC were detected in the meninges, not

in the hippocampal parenchyma. However, the number of

Ki-67-immunoreactive cells was significantly increased by

83% in the DG 2 days after single Ad-MSC injection, and

by 67% at 23 days after repeated Ad-MSC treatment

compared with that in the vehicle-treated group after

Ad-MSC transplantation. On the other hand, the number of

DCX-immunoreactive cells in the DG was not changed at

2 days after single Ad-MSC injection; however, it was

significantly increased by 62% 9 days after single Ad-MSC

injection. At 23 days after repeated Ad-MSC application,

the number of DCX-immunoreactive cells was much more

increased (223% of the vehicle-treated group). At this time

point, DCX protein levels were also significantly increased

compared with those in the vehicle-treated group. These

results suggest that the intrathecal injection of Ad-MSC

could enhance endogenous cell proliferation, and the

repeated Ad-MSC injection could be more efficient for an

enhancement of endogenous cell proliferation and differ-

entiation in the brain.
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Introduction

Mesenchymal stem cells (MSC), also termed multipotent

mesenchymal stromal cells, are a phenotypically and

functionally heterogeneous cell population which has been

traditionally isolated from the bone marrow (Horwitz et al.

2005; Dominici et al. 2006; Yang et al. 2009). Recent

reports have detailed the isolation of cells with MSC

characteristics from a variety of tissues including cord

blood, peripheral blood, fetal liver and lung, adipose tissue,

skeletal muscle, amniotic fluid, and synovium (Erices et al.

2000; Campagnoli et al. 2001; Liu et al. 2009).

MSC have emerged as a new cell source of therapy,

because they possess multipotency and can be easily

expanded in culture (Erices et al. 2000; Caterson et al. 2001;

Ito et al. 2001; Cheng et al. 2003; Pavlichenko et al. 2008;

Komatsu et al. 2010). Indeed, these cells have differential

capacities as well as paracrine effects via the secretion of

growth factors, cytokines, antifibrotic, or angiogenic

mediators (Kinnaird et al. 2004a; Gnecchi et al. 2008). It

has been reported that exogenous cell transplantation

enhances endogenous cell proliferation and neurogenesis as

well as repairing process in the CNS (Mahmood et al. 2004;

Madhavan et al. 2009; van Velthoven et al. 2010).

There are some distinct regions of active proliferation in

adult mammalian brains, which are known to continuously

generate neurons throughout life (Picard-Riera et al. 2004).

The hippocampal dentate gyrus (DG) is one of the neuro-

genic sites in the adult brain (Gould et al. 1997; Kempermann

et al. 1997). Newly generated cells in the subgranular zone

(SGZ) of the DG can proliferate, migrate, and differentiate

finally into neurons termed granule cells, which extend

axonal and dendritic projections and establish new synaptic

connections to the existing hippocampal circuitry (Ramirez-

Amaya et al. 2006; Kee et al. 2007).

Neurogenesis is a dynamic process that is positively and

negatively regulated by environmental, endocrine, and

pharmacological stimuli (Bain et al. 2004; Terada et al.

2008; Veena et al. 2009). Secretive properties of MSC may

be mainly influenced by local microenvironments (Kinnaird

et al. 2004a). Recent reports have revealed that MSC

undergoing hypoxia environment or gene manipulation in

vitro can produce several cytokines such as insulin-like

growth factor-1, vascular endothelial growth factor, and

hepatocyte growth factor, which are capable of promoting

the survival of surrounding cells via paracrine mechanisms

(Kinnaird et al. 2004a; Dominici et al. 2006).

It has been attempted to deliver drug and cells to the

CNS by intrathecal route (Hylden and Wilcox 1980; Taiwo

et al. 2005). The intrathecal application improves the

transplant of MSC in some neurodegenerative diseases

(Habisch et al. 2007; Morita et al. 2008), because the

application avoids some brain damage produced by a

needle or cannula, which is known to induce expression of

stem cell factors (Sun et al. 2004). In addition, the intra-

thecal injection of bone marrow stromal cells shows some

therapeutic benefit without any marked adverse effect in

clinical trial (Saito et al. 2008).

Stem cell therapy is one of major topic in the veterinary

field (Fortier and Travis 2011). Experimental and clinical

stem cell trials on various diseases such as diabetes,

arthritis, and spinal cord injury have been increased in the

veterinary field using MSCs (Minguell et al. 2010; Fortier

and Travis 2011; Lee et al. 2011; Zhu et al. 2011).

Recently, some benefit and therapeutic effects of adipose

tissue derived-MSC (Ad-MSC) from the dog have been

reported (Neupane et al. 2008; Vieira et al. 2010). In the

present study, therefore, we investigated the effects of

intrathecal Ad-MSC transplantation on cell proliferation

and neuroblast differentiation in the SGZ of the DG of

normal rats.

Materials and Methods

Experimental Animals

Twelve-week-old male Wistar rats were purchased from

Orient Bio Inc. (Seongnam, South Korea). They were

housed in a conventional state under adequate temperature

(23�C) and humidity (60%) vehicle with a 12-h light/12-h

dark cycle, and free access to food and water. The proce-

dures for handling and caring for the animals adhered to the

guidelines that are in compliance with the current inter-

national laws and policies (NIH Guide for the Care and Use

of Laboratory Animals, NIH Publication No. 85-23, 1985,

revised 1996). All of the experiments were conducted to

minimize the number of animals used and the suffering

caused by the procedures used in the present study, and

they were approved by the Institutional Animal Care and

Use Committee (IACUC) at Seoul National University.

Cell Preparation

Canine Ad-MSC (RNLBio, Seoul Korea) was maintained

in Dulbecco’s Minimum Essential Medium (DMEM:

Hyclone, VT, USA) supplemented with 10% fetal bovine

serum (Hyclone), and penicillin (100 U/ml), streptomycin

(100 lg/ml). All the cell cultures were maintained at 37�C

in a humidified 5% CO2/air atmosphere. For the labeling of

the Ad-MSC, CM-DiI (Invitrogen, Carlsbad, CA, USA)

was used before their injection, which is a lipophilic
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fluorescent dye that binds irreversibly to the cell membrane

and is not transferable to other cells. Images of CM-DiI-

labeled Ad-MSC was taken through an inverted fluores-

cence microscope (IX 71, Olympus, Japan) equipped with a

digital camera (DP71, Olympus) (Supplementary Fig. 1).

Surgical Procedure for Cell Transplantation

The animals were divided into four groups; single vehicle-

treated group (vehicle-group, n = 30), single Ad-MSCs-

treated group (Ad-MSC group, n = 30), four times (once a

week) vehicle-treated group (Four vehicle-group, n = 10),

and four times (once a week) Ad-MSC-treated group (Four

Ad-MSC-group, n = 10). The animals that received a

single injection were sacrificed at 2, 9, and 23 days after

the single injection, and the animals that received four

times injection a week were sacrificed at 2 days after the

last injection. The Ad-MSC (2 9 106) suspended in 5 ll

phosphate-buffered saline (PBS) were transplanted intra-

thecally into the cisterna magna. Same volume of vehicle

(PBS) was injected in the same way of Ad-MSC treatment.

The technique of intrathecal injection was used by previ-

ously reported (Habisch et al. 2007). In brief, the back

around the site of intrathecal injection was shaved, wiped

with alcohol, and allowed to dry. A needle (gauge 30,

Hamilton, Point Style 4) was positioned over the midline of

the atlanto-occipital membrane to form an angle of 60

degrees with the horizontal line. There were no obvious

behavioral sequelae (e.g., locomotor, feeding, or drinking)

due to chronic intrathecal injections at either volume used.

Tissue Processing for Histology

The animals in each group were sacrificed at 2, 9, and

23 days after the last injection. For histology, the animals

(n = 5 each group) were anesthetized with 1 g/kg urethane

(Sigma, St. Louis, MO). They were, then, perfused tran-

scardially with 0.1 M PBS (pH 7.4) followed by 4%

paraformaldehyde in 0.1 M phosphate-buffer (PB, pH 7.4).

The brains were removed and postfixed in the same fixative

for 6 h. The brain tissues were cryoprotected by infiltration

with 30% sucrose overnight. Thereafter, frozen tissues

were serially sectioned on a cryostat (Leica, Wetzlar,

Germany) into 30 lm coronal sections, and then, the sec-

tions were collected into six-well plates containing PBS.

Migration of Ad-MSC into the Brain Parenchyma

To identify migration of transplanted Ad-MSC into hip-

pocampal parenchyma, ten sections per animals were

selected from the corresponding area (Bregma -3 *
-4.08 mm of rat brain atlas) (Paxinos and Watson 2005).

The sections were mounted on gelatin-coated slides with

4,6-diamidino-2-phenylindole, dihydrochloride (DAPI, a

cell marker) containing mount medium (Vector) to identify

the nuclei of the cells, and we examined under LSM 510

META NLO confocal microscope (Carl Zeiss, Göttingen,

Germany). A series of high magnification images was

collected at 0.7 lm intervals with excitation by 488,

770 nm lasers and bright field light to create a stack in the

Z axis.

Immunohistochemistry

To obtain the accurate data for Ki-67 (a marker for pro-

liferating cells) and DCX (a marker of neuroblasts)

immunoreaction, the sections from vehicle- and Ad-MSC-

groups were used at designated times under the same

conditions. The sections were sequentially treated with

0.3% hydrogen peroxide (H2O2) in PBS for 30 min and

10% normal horse serum in 0.05 M PBS for 30 min. They

were then incubated with diluted rabbit anti-Ki67 antibody

(1:1,000, Abcam, Cambridge, UK) or goat anti-DCX

antibody (1:50, Santa Cruz Biotechnology, Santa Cruz,

CA) overnight at 4�C and subsequently exposed to bio-

tinylated rabbit anti-goat IgG (diluted 1:200, Vector, Bur-

lingame, CA) for anti-DCX and goat anti-rabbit IgG

(diluted 1:200, Vector) for anti-Ki-67. The sections were,

then, exposed to streptavidin peroxidase complex (diluted

1:200, Vector), and visualized with reaction to 3,30-diam-

inobenzidine tetrachloride (Sigma) in 0.1 M Tris–HCl

buffer (pH 7.2) and mounted on gelatin-coated slides. A

negative vehicle test was carried out using pre-immune

serum instead of primary antibody to establish the speci-

ficity of the immunostaining.

In order to quantitatively analyze Ki-67- and DCX-

immunoreactive cell numbers, 15 sections per each animal

were selected corresponding to Bregma -3 * -4.08 mm

of rat brain atlas (Paxinos and Watson 2005). Images of all

Ki-67 and DCX-immunoreactive structures were taken from

three layers (molecular, granule cell, and polymorphic lay-

ers) through a light microscope (Olympus, Japan) equipped

with a digital camera (DP71, Olympus, Japan) connected to a

PC monitor. The number of DCX- and Ki-67 positive cells in

the SGZ was counted by Optimas 6.5 software (Cyber

Metrics, Scottsdale, AZ). Cell counts were obtained by

averaging the counts from the sections taken from each

animal: A ratio of the count was calibrated as percent.

Western Blot Analysis

To confirm changes in the DCX levels in the DG of rats, five

animals in each group were sacrificed and used for western

blot analysis. After sacrificing them and removing the hip-

pocampus, it was serially and transversely cut into 400 lm

thickness on a vibratome (Leica, Wetzlar, Germany), and
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the DG was dissected with a surgical blade. The tissues were

homogenized in 50 mM PBS (pH 7.4) containing 0.1 mM

ethylene glycol bis(2-aminoethyl ether)-N,N,N0,N0 tetra-

acetic acid (EGTA) (pH 8.0), 0.2% nonidet P-40, 10 mM

ethylenediamine tetraacetic acid (EDTA) (pH 8.0), 15 mM

sodium pyrophosphate, 100 mM b-glycerophosphate,

50 mM NaF, 150 mM NaCl, 2 mM sodium orthovanadate,

1 mM phenylmethylsulfonyl fluoride (PMSF), and 1 mM

dithiothreitol (DTT). After centrifugation, the protein level

was determined in supernatants using a Micro BCA protein

assay kit with bovine serum albumin as the standard (Pierce

Chemical, Rockford, IL). Aliquots containing 50 lg of total

protein were boiled in loading buffer containing 150 mM

Tris (pH 6.8), 3 mM DTT, 6% SDS, 0.3% bromophenol

blue, and 30% glycerol. Then, each aliquot was loaded onto

a 10% polyacrylamide gel. After electrophoresis, the gels

were transferred to nitrocellulose transfer membranes (Pall

Crop, East Hills, NY). To reduce background staining, the

membranes were incubated with 5% non-fat dry milk in PBS

containing 0.1% Tween 20 for 45 min. The membranes

were, then, incubated with goat anti-DCX antibody (1:100)

or mouse anti-beta actin antibody (1:2,000, Sigma), and

peroxidase-conjugated rabbit anti-goat IgG (Sigma) for

DCX or peroxidase-conjugated goat anti-mouse IgG

(Sigma) for beta actin and an ECL kit (Pierce Chemical).

The result of the western blot analysis was scanned, and

densitometric analysis for the quantification of the bands

was done using Scion Image software (Scion Corp., Fred-

erick, MD), which was employed to count relative optical

density (ROD). DCX protein levels were normalized by the

corresponding beta-actin protein level: A ratio of the ROD

was calibrated as %, with 2d-vehicle-treated group desig-

nated as 100%.

Statistical Analysis

Data are expressed as the mean ± SEM. Differences

among the means were statistically analyzed by one-way

ANOVA followed by Duncan’s new multiple range

method. Differences among the means were statistically

analyzed by two-way ANOVA with treatment times and

days as the two factors to elucidate differences between the

2d Ad-MSC and 4 Ad-MSC groups. Statistical significance

was considered at P \ 0.05.

Results

Migration of Ad-MSC into the Brain Parenchyma

To investigate the migration of transplanted Ad-MSC into

the brain parenchyma, we examined the brain tissue

directly under a fluorescence microscope (Supplementary

Fig. 2). No CM-DiI-labeled Ad-MSC were observed in

the brain parenchyma and the ventricular system in the

brain after Ad-MSC. However, abundant CM-DiI-labeled

Ad-MSC were observed in the subarachnoid region in the

diencephalon, midbrain, cerebellum, medulla oblongata,

and spinal cord (Supplementary Fig. 2 and Fig. 1).

Effects of Ad-MSC Transplantation on Cell

Proliferation

In the vehicle-groups, a few Ki-67-immunoreactive cells were

detected in the SGZ of the DG (Fig. 2a, c, e, g). The number of

Ki-67-immunoreactive cells was not changed after 9 and

23 days after the vehicle injection (Figs. 2c, e, g, 3).

In the single-Ad-MSC-group, the number of Ki-67-

immunoreactive cells was significantly increased by 83%

2 days after MSC injection compared with that in the

vehicle-group in the SGZ (Figs. 2b, 3). However, in this

group, the number of Ki-67-immunoreactive cells was

similar to that in the vehicle-group 9 and 23 days after

Ad-MSC injection (Figs. 2d, f, 3).

Twenty-three days after Ad-MSC transplantation, in the

four Ad-MSC-groups, Ki-67-immunoreactive cells were

also observed in the SGZ of the DG (Fig. 2h). The number

of Ki-67-immunoreactive cells was similar to that in the

2d-Ad-MSC-group, and the number of the cells was

increased by 67% compared with that in the vehicle-group

(Fig. 3).

Effects of Ad-MSC Transplantation on Neuroblasts

In the vehicle-groups, many doublecortin (DCX)-immu-

noreactive neuroblasts were easily detected in the SGZ of

the DG (Fig. 4a, b, e, f, i, j, m, n). They had well-developed

processes which extended into the molecular layer. In the

vehicle-groups, the number of DCX-immunoreactive cells

was not changed 9 and 23 days after the vehicle injection

(Figs. 4e, f, i, j, m, n, 5).

In the single-Ad-MSC-group, DCX-immunoreactive

cells were also observed in the SGZ (Fig. 4c, d, g, h, k, l).

Two days after single Ad-MSC transplantation, the number

of DCX-immunoreactive cells was similar to that in the

vehicle-group (Figs. 4c, d, 5); however, DCX-immunore-

active cells were significantly increased (162 and 147% of

the vehicle-group, respectively) 9 and 23 days after single

Ad-MSC injection (Figs. 4g, h, k, l, 5). Twenty-three days

in the four Ad-MSC-group, a distinctive increase of DCX-

immunoreactive cells, which had strong DCX immunore-

activity in their somata and processes, was observed in the

SGZ of the DG (Fig. 4o, p): the number of DCX-immu-

noreactive cells was markedly increased (223% of the

vehicle-group) compared with that in the single-Ad-MSC-

group (Fig. 5).
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Effects of Ad-MSC Transplantation on DCX Protein

Levels

We found that the results of western blot analysis in the DG

of the vehicle- and Ad-MSC-groups were similar to the

pattern of immunohistochemical change: DCX protein

levels in the homogenates were not changed 2 days after

Ad-MSC transplantation; however, DCX protein levels at 9

and 23 days after Ad-MSC-injection were significantly

increased (163 and 160% of the vehicle-group, respec-

tively) compared with the vehicle-group (Fig. 6). In addi-

tion, DCX protein levels in the four Ad-MSC-group were

much more increased (257% of the vehicle-group) com-

pared with that in the single Ad-MSC-group (Fig. 6).

Discussion

In this study, we investigated the changes in cell prolifer-

ation and neuroblast differentiation in the rat DG after the

intrathecal Ad-MSC transplantation. We did not find any

Ad-MSC in the parenchyma of the hippocampus and in the

ventricle around the hippocampus after the intrathecal

transplantation via the cisterna magna. However, we found

abundant Ad-MSC in the subarachnoid space in the dien-

cephalon, midbrain, medulla oblongata, and spinal cord.

This finding is not consistent with previous studies that

intrathecally transplanted various stem cells migrated into

the parenchyma in some CNS disease models, such as

animal models of amyotrophic lateral sclerosis, traumatic

brain, and ischemic spinal cord injury (Lepore et al. 2005;

Habisch et al. 2007; Liu et al. 2008; Kim et al. 2010). The

difference in the distribution and migration of the trans-

planted stem cells may be associated with conditions of the

brain, e.g., intact or damaged brain because the migration

of transplanted stem cells is influenced by various factors,

such as cell death and inflammatory cytokines under a

disease condition (Sugaya 2003; Nervi et al. 2006; Newby

2006). However, under the normal condition, transplanted

stem cells have a limited and non-targeted migration as

well as differentiation in the brain and other tissue organs

(Shear et al. 2004; Canola et al. 2007; Guzman et al. 2008).

Adult neurogenesis continues in the DG of the adult

(Kuhn et al. 1996; Ramirez-Amaya et al. 2006). Ki-67 is an

endogenous marker for cell proliferation in the initial phase

of adult neurogenesis because Ki-67 is expressed during

mitosis in all mammalian species from rodents to humans

(Kee et al. 2002; Lagace et al. 2010). In the present study,

Fig. 1 Fluorescence detection of CM-DiI-labeled Ad-MSC in the

cerebellum (a–h) and the medulla oblongata (i–p) 23 days after

Ad-MSC transplantation. Low magnification photos of the engrafted

CM-DiI-labeled Ad-MSC (red, a, i), the cerebellum and medulla

oblongata (bright field, b, j). High magnification photos of box in

panel c (d–g) and k (l–o): DAPI-(a marker for nucleus) stained cells

(blue, d, l), CM-DiI-labeled Ad-MSC (red, e, m) and brain structures

(bright field, f, n). Three dimensional orthogonal views (h, p) of

white box in panel c and k show double-labeled Ad-MSC with DAPI.

Green line (x axis) and red line (y axis), and the blue line repre-

sents the position of the central panel image in the z stack (h and p).

Bar = 350 lm (a–c), 25 lm (d–h), 500 lm (i–k), 20 lm (l–p) (Color

figure online)
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we observed many Ki-67 positive cells in the DG of the

vehicle-treated group. A significant increase in the number

of Ki-67-immunoreactive cells was found 2 days after the

single Ad-MSC treatment and 23 days after the repeated

Ad-MSC treatment. It was reported that MSC transplan-

tation into an injured region induced by an ischemia

enhanced endogenous cell proliferation and repair pro-

cessing (van Velthoven et al. 2010).

The DCX is expressed in migrating neuroblasts and

immature neurons during development. Hence, DCX can

be employed to label the cell bodies, processes and growth

cones of newborn neurons (Nacher et al. 2001; Couillard-

Despres et al. 2005). Therefore, an increase of DCX-

immunoreactive cells may reflect that newly generated

cells differentiate into neuroblasts. In the present study, we

found that significant increases in DCX-immunoreactive

cells and protein levels were also observed in the DG

9 days after the single Ad-MSC transplantation and

23 days after the repeated Ad-MSC transplantation com-

pared withthose in the vehicle-group. We also observed

that DCX-immunoreactive cells and protein levels in the

four Ad-MSC- group were higher than those in the single-

Ad-MSC-group. These results are consistent with previous

articles that reported that repeated MSC injection was much

more effective than single MSC injection in some brain and

heart disease models (Poh et al. 2007; Diederichsen et al.

2008; van Velthoven et al. 2010).

In the present study, the number of Ki-67-immunoreac-

tive cells was significantly increased 2 days after the single

Ad-MSC administration, but DCX-immunoreactive cells

were increased much later after the Ad-MSC administra-

tion. This delayed increase of the DCX-immunoreactive

Fig. 2 Immunohistochemical

staining for Ki-67 in the

vehicle- (a, c, e, g) and

Ad-MSC-groups (b, d, f, h). In

the vehicle-group, Ki-67-

immunoreactive cells are

detected in the SGZ of the DG

(a, b). Ki-67-immunoreactive

cells are increased 2 days after

Ad-MSC transplantation (b, h).

Arrows indicate Ki-67-

immunoreactive cells (a–h).

GCL granule cell layer;

ML molecular layer; PoL
polymorphic layer. Bar 200 lm
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cells may be related with the different expression time

points of the protein during neurogenesis: Ki-67 is expres-

sed in neural precursor cells during mitosis; however, DCX

is shortly expressed after exiting the cell cycle, and the

expression continues for 2–3 weeks (Scholzen and Gerdes

2000; Kee et al. 2002; Couillard-Despres et al. 2005).

On the other hand, we found that increases in

Ki-67-immunoreactive cells and DCX-immunoreactive

neuroblasts in the DG after the intrathecal Ad-MSC

administration, although the Ad-MSC did not migrate into

the hippocampal parenchyma. This effect may be associ-

ated with the paracrine effect of the Ad-MSC, which

migrated into the meninges of the brain after the trans-

plantation. It was reported that intrathecal stem cell trans-

plantation led to an increase of pre-symptomatic motor

performance in the ALS mice with a limited migration of

transplanted stem cells into the brain parenchyma and a

Fig. 3 Relative number of Ki-67-immunoreactive cells in the DG of

the vehicle- and Ad-MSC-group (n = 5 per group; *P \ 0.05,

significantly different from the corresponding vehicle-group, #P \
0.05, significantly different from the 2d-Ad-MSC-group, �P \ 0.05,

significantly different from the 23d single-Ad-MSC-group). Data are

expressed as the means ± SEM

Fig. 4 Immunohistochemistry for DCX in the vehicle- (a, b, e, f, i, j,
m, n) and Ad-MSC-groups (c, d, g, h, k, l, o, p). In the vehicle-

groups, DCX-immunoreactive cells are not changed with time. DCX-

immunoreactive cells at 2 days after Ad-MSC transplantation is

similar to the vehicle-group; however, DCX-immunoreactive cells are

markedly increased 9 and 23 days after Ad-MSC injection. GCL,

granule cell layer; ML, molecular layer; PoL, polymorphic layer.

Bar = 200 lm (a, c, e, g, i, k, m, o), 50 lm (b, d, f, h, j, l, n, p)
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very low survival rate (Habisch et al. 2007; Kim et al.

2010). In addition, emerging evidences suggest that MSC

regulates the survival, migration, and differentiation of

endogenous stem cells through the production of growth

factors, chemokines, and extracellular matrix molecules

(Kinnaird et al. 2004a, b; Prockop 2007).

In conclusion, our results indicate that the intrathecal

Ad-MSC administration could enhance endogenous cell

proliferation in the DG. In addition, the repeated Ad-MSC

injection could be more beneficial for the enhancement of

endogenous stem cell proliferation in the DG.
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