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Abstract Glutamate neurotoxicity has been postulated to

play a prominent role in glaucoma. In this study the pos-

sible roles of two subunits of glutamate receptors during

the early phase of retinal ganglion cell (RGC) loss in a rat

chronic ocular hypertension (COH) model were investi-

gated. COH was induced by applying argon laser to the

episcleral and limbal veins of the right eye of rats, the

observation times were at 4, 14 and 28 days after the first

laser. RGCs were retrogradely labeled by putting Fluoro-

Gold (FG) on the surface of both side superior colliculus.

Immunohistochemical staining using specific antibodies

against N-methyl-D-aspartate receptor 1 (NR1) or gluta-

mate receptor 2/3 (GluR2/3) was performed on the retinal

sections of normal and COH eyes. Fluorescent images were

captured using confocal laser scanning microscope and the

number of NR1 and GluR2/3 labeled cells were counted

and cell size was measured using Stereo Investigator.

During the observation period, the numbers of NR1 and

GluR2/3 positive RGCs in the RGC layer were reduced

parallel to the loss of RGC. The dramatic loss of GluR2/3

immunoreactive neurons occurred starting immediately

after the first laser to 4 days while the dramatic loss of NR1

immunoreactive neurons occurred from 14 to 28 days after

the first laser. Size difference was detected in NR1

immunoreactive RGCs, large ones were more sensitive to

the high ocular pressure. These results suggest that both

NR1 and GluR2/3 are involved in the mediation of RGC

death in the early stage of COH.
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Introduction

Glaucoma is an aging-related neurodegenerative disease

associated with irreversible loss of retinal ganglion cells

(RGCs) and their axons. It is the second leading cause of

blindness worldwide (Resnikoff et al. 2004). Clinically,

glaucoma patients have characteristic visual field loss,

suggesting that a subpopulation of the RGCs is more vul-

nerable to injury. Morphologically, large RGCs which are

related to the magnocellular pathway are selectively dam-

aged in human and experimental glaucoma in monkey

(Glovinsky et al. 1991, 1993; Quigley et al. 1989). How-

ever, the mechanism of differential loss is not known yet

and glutamate neurotoxicity has been postulated to play a

prominent role (Luo et al. 2001; Zhou et al. 2008). The

elevated level of glutamate in the vitreous body of glau-

comatous eyes was detected in the animal models using

rats, monkeys and dogs (Dreyer et al. 1996; Brooks et al.
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1997). Both in vivo and in vitro exposure to glutamate or

NMDA can cause damage in RGCs (Lam et al. 1999; Zhou

et al. 2008), and their toxic effects can be blocked by

antagonist of NMDA, MK-801(Chaudhary et al. 1998).

Glutamate exerts its toxic effect on RGCs through the

glutamate receptor subtypes. Glutamate receptors are divi-

ded into ionotropic and metabotropic (G protein-coupled)

receptor subtypes. According to their preferred ago-

nists, ionotropic glutamate receptors are subdivided into

N-methyl-D-aspartate (NMDA) and non-NMDA receptors.

The latter includes a-amino-3-hydroxyl-5-methyl-isoxazol-

4-propionic acid (AMPA) and kainate subtypes. In addition,

many subunits of the subtypes have been identified. They are

NMDA receptor 1 (NR1), NR2A-D and NR3A-B of NMDA

receptors; glutamate receptor 1-4 (GluR1-4) of AMPA

receptors; GluR5-7 of kainate receptors; and metabotropic

glutamate receptor 1-8 (mGluR1-8) (Hollmann and Heine-

mann 1994; Nakanishi et al. 1998; Chatterton et al. 2002).

All subunits of NMDA and AMPA receptors are distributed

in the RGCs and amacrine neurons of the rat retina visualized

with immunohistochemistry (Grunder et al. 2000a, b). We

hypothesize that the distribution and function of the gluta-

mate receptor subunits (NR1 and GluR2/3) might be

involved in the RGC vulnerability at early stage of ocular

hypertensive insult.

Using the laser photocoagulation induced rat chronic

ocular hypertension (COH) model (Chan et al. 2007; Ji

et al. 2004; Li et al. 2006), retrograde labeling and

immunohistochemical analysis were used together to detect

the temporal change of NR1 or GluR2/3 labeled RGC at

early stage of this COH model. Result showed that the

dramatic loss of GluR2/3 immunoreactive neurons occur-

red before that of the NR1 immunoreactive neurons. Loss

of NR1 immunoreactive RGCs were positively related with

the cell size under COH.

Materials and Methods

Experimental Glaucoma Model

Twenty normal adult female Sprague-Dawley (SD) rats

(250–280 g) were obtained from the Laboratory Animal

Unit of the LKS Faculty of Medicine, The University of

Hong Kong, and were maintained in a temperature-con-

trolled room with a 12 h light/dark cycle. Handling

of animals adhered to the ARVO statement for the use

of animals in ophthalmic and vision research and was

approved by the University of Hong Kong Committee for

the Use of Live Animals in Teaching and Research

(CULATR). Prior to IOP or any other operation, the rats

were anesthetized with an intra-peritoneal injection of

a ketamine/xylazine mixture (ketamine 80 mg/kg and

xylazine 8 mg/kg; Alfasan, Woerden, Holland). One drop

of proparacaine hydrochloride (0.5% alcaine, Alcon-Cou-

vreur, Belgium) was applied to the eyes as a topical

anesthetic.

Experimental glaucoma was induced in the right eye of

each animal using laser photocoagulation according to our

previous publications (Chiu et al. 2007; Ji et al. 2004; Li

et al. 2006; Fu et al. 2008). Left eye of each rat did not

receive laser treatment and served as contralateral control

for IOP. Briefly, the limbal vein and the three radical

episcleral aqueous humor drainage veins (superior nasal,

superior temporal and inferior temporal) were photocoag-

ulated (power 1,000 mV; spot size 50–100 lm; duration,

0.1 s) using an Argon laser (Ultima 2000SE Argon Laser,

Coherent, USA). About 60 laser spots around the limbal

vein (except the nasal area) and 15–20 laser spots on each

episcleral aqueous humor drainage vein were applied. To

maintain high IOP, a second laser treatment at the same

setting was applied 7 days later to block any reconnected

vascular flow. After each laser treatment, ophthalmic

Tobrex ointment (3% tobramyxin, Alcon-Couvreur, Bel-

gium) was applied topically to prevent infection.

Five rats were used as normal control and experimental

glaucoma was induced in the right eye of other fifteen rats.

The animals survived for 4, 14 and 28 days (n = 5) after

the first laser photocoagulation. IOP was measured with a

Tonopen XL tonometer (Mentor�, Norwell, USA) before

and on day 2, 4, 8, 14, 21, 28 after the first laser treatment.

To avoid diurnal variation and the effect of anesthesia, all

IOP measurements were taken at 10 a.m. and within

15–30 min after anesthesia using a ketamine and xylazine

mixture (i.p.). Every time an average of ten records was

used to determine the IOP of each eye.

About 7 days prior to euthanization, a small piece of gel

foam (Upjohn, Kalamazoo, MI, USA) soaked with 6%

Fluoro-Gold (FG; Fluorochrome, Denver, CO, USA) was

placed over the entire surface of superior colliculus (SC)

for retrograde labeling of the surviving RGCs (Chan et al.

2007; Chiu et al. 2008; Ji et al. 2004). Analgesic rimadyl

(0.025 mg/ml) was applied in drinking water for 5 days

after the surgery. Rats were killed with an over-dose of a

mixture of ketamine/xylazine and transcardiac infused with

0.9% normal saline to flush out the blood. Both eyes were

enucleated and then post-fixed with 4% paraformaldehyde

in 0.1 M PB (pH 7.4) at 4�C overnight and then immersed

in 30% sucrose. Ten-micron-thick retinal sections con-

taining whole-length retinas and optic nerve heads were cut

using a cryostat (CM1900, Leica) and mounted. Three

consecutive sections containing optic nerve head were

collected from each retina.
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Immunofluorescence Staining of Retina

Immunofluorescence histochemistry was carried out fol-

lowing our previous method (Ng and Yung 2001). Briefly,

the radial sections of retina were washed with 0.01 M PBS

for 5 min and incubated in a mixture of 4% normal goat

serum (NGS) and 0.01 M PBS containing 0.1% Triton

X–100 for 20 min at room temperature. The sections were

incubated in the primary antibodies of NR1 (1:200; Chem-

icon) or GluR2/3 (1:200; Chemicon) overnight at 4�C. The

specificity of antibody was tested by omission of the primary

antibody. After washing, the sections were incubated in the

secondary antibodies of Alexa 568 (conjugated with anti-

rabbit IgG, 1:1,000; Molecular Probe, Invitrogen, Calsbad,

USA) for 2 h at room temperature. After thorough

washes, the retinal sections were mounted using fluorescent

mounting medium (Dako, Glostrup, Denmark) and retinal

sections were scanned by a LSM-510 laser scan confocal

microscope (Carl Zeiss). Confocal images from four areas in

each retinal section from all groups were captured. The four

areas are selected from both sides of the optic nerve head at

1,000 lm (paracentral) and 3,000 lm (peripheral) from the

central of the optic nerve head. The length of the retina

measured in each visual field was 225 lm. The cell size

in each image was measured using Stereo Investigator�
(MicroBrightField, Colchester, USA).

Statistical Analysis

The cell counts for each marker of all the groups were

statistically analyzed with one-way ANOVA and Turkey

test. Only cells labeled with FG were counted and there-

fore, amacrine cells were excluded from the analysis. The

percentage of NR1 or GluR2/3 positive RGCs was calcu-

lated by obtaining the ratio of number of NR1 or GluR2/3

positive RGCs/total number of FG labeled RGCs. To

analyze the correlation of the cell size and cell loss, the

data were divided into two groups: normal and glaucoma.

SigmaStat� was used to perform the linear regression

analysis between cell number and cell size of RGCs in the

control and glaucomatous retinas.

Results

Intraocular Pressure

In consistence with our previous study using the same

animal model (Chan et al. 2007; Fu et al. 2008; Ji et al.

2004; Li et al. 2006), the average IOP of normal eyes was

around 15 mmHg. After photocoagulation using argon

laser, the IOP of the right experimental eyes was increased

on the second day after operation and reached the highest

level (*27 mmHg) after the second laser treatment. The

IOP was maintained at a high level (*22 mmHg) for

1 month after the first laser. At the same time, the IOP of

the contralateral left control eyes remained at a much lower

level (*15.5 mmHg; Fig. 1a). The IOP of laser treated

eyes was significantly elevated compared with those of

control eyes (* P \ 0.001).

Loss of RGC in the Ocular Hypertension Rat Eyes

It is well known that about 98% of RGCs project to the

contralateral SC in rat (Forrester and Peters 1967).

Applying FG on both side of SC retrogradely labels the

RGCs and provides an useful tool for investigating cell

survival in the retina. On the flat mounted retina, the

Fig. 1 The changes of IOP and RGCs after the first laser photoco-

agulation. a IOP of the glaucomatous right eyes increased at second

day after the first laser and the elevated IOP can be maintained for

1 month after two consecutive laser treatments on the limbal and

episcleral drainage veins. IOP of the left eyes remained at normal

level. At the same time point, the means of IOP from right eyes

compared with that of contralateral left eyes were statistically

different (* P \ 0.01). b Density of RGC (per mm2) significantly

decreased after the first laser photocoagulation. Compared with

normal retina, there was significant percentage of RGC loss starting

from 2 weeks after the first laser photocoagulation (* P = 0.011).

Error bars represent the SEM
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density of RGCs in the normal control eyes was

2,241 ± 27 cells/mm2 (Fig. 1b) and this was comparable

with our previous reports (Li et al. 2006; Yip et al. 2006).

Compared with normal retina, there was significant loss of

RGC in the experimental eyes starting at 2 weeks after the

first laser treatment (* P = 0.011) and there was about

1,964 RGCs/mm2 left at 1 month after the first laser

(#P = 0.002, Fig. 1b). The loss of RGC was about 17% of

the normal retina.

Same trend of RGC loss in the experimental glauco-

matous retina was also observed in the radial retinal sec-

tions, there was progressive loss of FG labeled RGC in the

retinal ganglion cell layer (RGCL) starting from 4 days and

statistically significant from 14 days after the first laser

photocoagulation (* P \ 0.05, Fig. 2a).

Differential Loss of NR1 or GluR2/3 Labeled RGC

in the Ocular Hypertension Eyes

In normal retinal section, about 80% of the FG labeled

RGCs expressed NR1 (Figs. 2b, 3c) while about 85% of

FG labeled RGCs expressed GluR2/3 (Figs. 2b, 4c). A

few of NR1 or GluR2/3 positive neurons in the RGCL

that were small in size did not contain FG particles in the

cytoplasm, which might be displaced amacrine cells

(Figs. 3, 4).

NR1 positive neurons were detected in both the RGCL

and the inner nuclear layer (INL) (Fig. 3b, e, h, k, arrow-

heads). At 4 days after the first laser, the number of NR1

positive neurons in the RGCL was similar to normal retina

(Figs. 2a, 3c, f, arrows). NR1 positive RGC was signifi-

cantly reduced starting from 14 days (#P \ 0.05, Figs. 2a,

3i, l). When calculated the percentage of NR1 positive FG

labeled RGC loss, there was an upregulation at 4 days in

the surviving RGCs after the first laser. The dramatic loss

of NR1 positive RGCs mainly occurred from 14 to 28 days

after the first laser (Fig. 2b).

The similar localization of GluR2/3 immunoreactive

neurons could be found in the RGCL and the INL of retina

(Fig. 4b, e, h, k, arrowheads). FG and GluR2/3 double

labeled RGCs were mainly localized in the small to med-

ium sized neurons in the RGCL (Fig. 4c, f, i, l, arrows).

The loss of GluR2/3 positive RGCs started immediately

after the first laser (Fig. 2b). In COH retina, the largest

reduce in the number of GluR2/3 positive RGCs was from

immediate after the first laser to day 4 (Fig. 2) and there

was significant loss at 14 days after the first laser

(* P \ 0.05, Figs. 2a, 4i, l). Quantitatively, at 28 days

after the first laser, there was an overall 5.8% loss of

GluR2/3 immunoreactive RGC and 26.7% loss of NR1

immunoreactive RGC in the COH eye compared with the

normal control eye.

Loss of NR1 Immunoreactive RGCs was Size

Dependent

In the radial retinal sections the size of FG retrograde

labeled RGCs was different, ranging from 50 to 350 lm2.

Most of lost RGCs were larger than 150 lm2 while the

RGCs smaller than 150 lm2 was relatively increased in the

glaucomatous retinas (Fig. 5). NR1 positive large ganglion

cells are more sensitive to the elevated IOP. The loss of

NR1 positive RGCs was limited to cells larger than

100 lm2 (Fig. 6). And regressive analysis of NR1 positive

RGCs in the glaucomatous retinas showed that correlating

factor was 0.76, indicating that there was a positive cor-

relation (#P \ 0.05) between the loss of cell and cell size.

The size of GluR2/3 positive neurons was relatively small

with largest at 250 lm2 and the majority at around

Fig. 2 Effects of ocular hypertension on the survival RGCs labeled

with FG, NR1 and GluR2/3. a The number of FG labeled RGCs

reduced from 4 to 14 (P \ 0.05) and 28 days (P \ 0.01). Compared

with the normal control, NR1 positive RGCs was significantly

decreased in the 14 and 28 days glaucoma (P \ 0.01); GluR2/3

immunoreactive RGCs was statistically reduced in 14 and 28 days

glaucoma (P \ 0.01). b Percentage of NR1 positive RGCs was

relatively increased at 4 days after the first laser and then dramaticaly

decreased at 14 and 28 days after the first laser. Percentage of Glu2/3

positive RGCs decreased right after the first laser and stabilized since

14 days after the first laser (spotted line)
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Fig. 3 Confocal micrographs of FG and NR1 positive RGCs in

normal and glaucomatous retinas. FG labeled RGCs (a, d, g, j),
immunohistochemical staining of NR1 (b, e, h, k, arrowheads) and

merged (c, f, i, l, arrows) in normal control (a–c) and glaucomatous

retinas (d–l). Some of the large RGCs were double labeled by FG and

NR1 (yellow in c, f,) while reduced in 14 and 28 days glaucoma (i, l).
Scale bar 20 lm. INL, inner nuclear layer; IPL, inner plexiform layer;

RGCL, retinal ganglion cell layer. (Color figure online)
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Fig. 4 Confocal micrographs of FG and GluR2/3 positive RGCs in

normal and glaucomatous retinas. FG labeled RGCs (a, d, g, j),
immunohistochemical staining of GluR2/3 (b, e, h, k, arrowheads)

and merged (c, f, i, l, arrows) in normal control (a–c) and

glaucomatous retinas (d–l). Most of the double labeled RGCs by

FG and GluR2/3 are medium in size (yellow in c, f, i, l). Scale bar
20 lm. INL, inner nuclear layer; IPL, inner plexiform layer; RGCL,

retinal ganglion cell layer. (Color figure online)
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100 lm2. And the loss of GluR2/3 positive RGCs was not

significantly related with cell size (R = 0.56, P [ 0.36,

Fig. 7).

Discussion

Glutamate and its agonists are involved in the RGC loss in

the pathology of glaucoma. The neurotoxic effect of glu-

tamate is mediated by various subunits of glutamate

receptors. The mRNA of the glutamate receptor subunits

NR1, NR2A-C, KA2 and GluR6–7 are shown to be

expressed in the RGCL of the rat retina using in situ

hybridization (Brandstatter et al. 1994). Our study using

retrograde labeling and immunohistochemical methods

identify simultaneously FG and NR1 or GluR2/3 in the

same neuron has enabled us to study the distribution of

NR1 or GluR2/3 in the surviving RGC in the normal and

glaucomatous retinas.

In normal rat retina, about 80.4% RGC expressed NR1

and 85.4% RGC expressed GluR2/3 (Fig. 2a). Most of the

NR1 positive RGCs were medium to large sized (Figs. 3,

6). While, the size of the RGCs labeled with GluR2/3 were

of small to medium size (Figs. 4, 7). These findings suggest

that there are selective expressions of glutamate receptor

subunits in the RGCs and for a certain portion of RGCs,

there were both NR1 and GluR2/3 expression.

NR1 is the major NMDA receptor subunit that is known

to form the NMDA ion channel (Kutsuwada et al. 1992;

Meguro et al. 1992; Monyer et al. 1992; Moriyoshi et al.

1991). A functional NMDA channel is suggested to be one

of the key players to mediate glutamate neurotoxicity (Choi

1994). During the 28 days period of COH, the loss of NR1

positive RGC was about 26.7%. Compared with the 5.8%

loss of GluR2/3 positive RGC and the overall loss of RGC

at about 17%, the present results indicate that the sub-

groups of RGCs that are NR1-immunoreactive are more

vulnerable to degeneration in the early phase of COH.

However, the loss of NR1-positive RGCs did not start until

around 4 days after the first laser and the expression of

NR1 in RGCs was increased at the very first stage of onset

of glaucoma (Fig. 2b). The upregulation of NR1 expression

in the RGCs at early onset of ocular hypertension was

consistent with the finding that the mRNA of NR1 was

upregulated in the 1 week glaucomatous rat retina in the

cauterization model (Kim et al. 2007). The excessive

expression of NR1 in the RGCs may be involved in the

Fig. 5 Sectional area of FG labeled RGCs showing the number of

RGCs was decreased in the glaucomatous retinas. It shows that the

number of the small RGCs relatively increased while the large RGCs

decreased severely but the correlation between the number of cell loss

and cell size in the glaucomatous retinas was not significant

(R = 0.13, P [ 0.5)

Fig. 6 Sectional area of NR1 positive RGCs showing the number of

RGCs was decreased in the glaucomatous retinas. Positive correlation

between the cell size and the number of cell loss was shown by the

regression line (R = 0.76, P \ 0.05)

Fig. 7 Sectional areas of GluR2/3 positive RGCs showing that most

of GluR2/3 positive RGCs were medium to small sized. It shows that

the number of small to large GluR2/3 positive RGCs was slightly

reduced in the glaucomatous retinas. There was no significant positive

correlation between cell size and the number of cell loss (R = 0.52,

P [ 0.05)
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course of cellular degeneration of the RGCs in the early

stage of glaucoma and leading to progressive RGC loss

thereafter. This was proved in the monkeys chronic

experimental glaucoma model with 21 to 416 weeks sur-

vival time, not only NR1 but also GluR2 positive neurons

with neurofilament labeling were dramatically reduced

over long observation period (Hof et al. 1998).

Compared with the upregulation of NR1 in RGCs during

the first 4 days after the first laser, there was loss of GluR2/3

expression in RGCs. After that, the loss of GluR2/3 positive

RGCs was stabilized at about 5.8% till the 28th day after the

first laser. This may be related to the fact that GluR2 is

considered as a ‘‘molecular switch’’ of the AMPA channel

related to Ca2? permeability in neurons (Bennett et al. 1996;

Vandenberghe et al. 2000). With the expression of GluR2

subunit, the AMPA channels are less permeable to Ca2?. The

neurons with a low Ca2? permeability, i.e., those displayed

GluR2/3 immunoreactivity in this case, are likely to be less

susceptible to glutamate-induced neurotoxicity. Internali-

zation and/or downregulation of GluR2 were found in the

early stage of ischemic or degenerative disease, that may

related to excitotoxic neuronal death (Liu et al. 2006; Zhao

et al. 2008). Similarly, in our study those RGCs showing

down regulated expression of GluR2/3 at 4 days after the

first laser might link to the switching on the NR1 overex-

pression in the same RGC and lead to dramatic loss of RGCs

in the following time points.

The selective cell death, where by large RGCs were

selectively lost in human and experimental glaucoma has

been demonstrated previously by Glovinsky et al. (1991).

Furthermore, glutamate or NMDA has been found to be

more toxic to large RGCs both in tissue culture and in the

intact rat eye while cells smaller than 10 lm diameter were

relatively unaffected by glutamate or NMDA (Dreyer et al.

1994). Vickers et al.(1995) reported that large ganglion cells

labeled with neurofilament specific antibodies were severely

damaged in the glaucomatous eyes. Our study further con-

firmed these findings and demonstrated that compared with

GluR2/3 positive RGCs, the NR1 positive RGCs were more

vulnerable to increased intraocular pressure and the loss of

NR1 positive RGCs were size dependent.

In summary, our data showed that NR1 positive large

RGCs were the most vulnerable type under the stress of

ocular hypertension. Early down regulation of GluR2/3 in

the RGCs may trigger up regulation of the NR1 in the same

RGC and involved in the early phase of ocular hyperten-

sion. However, the RGC death in glaucoma is a very

complicated process involving the interaction of two or

more receptors. Further works are needed to elucidate the

mechanism of RGC death in glaucoma.
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