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Abstract  The removal of contaminants in water 
purification is limited by the adsorption equilib-
rium, while the efficiency of photocatalytic oxida-
tion is highly dependent on the adsorption process 
at the surface of photocatalysts. What would hap-
pen if photocatalytic oxidation were combined with 
biopolymer-based adsorbents? In this work, nano-
sized TiO2 was employed as a model photocatalyst 
and incorporated in our previously developed highly 
efficient adsorbents - cellulose acetate (CA)/chi-
tosan (CS) fibrous membranes by one-step electro-
spinning to continuously and synergistically remove 
humic acid (HA) from aqueous solutions. The effect 
of TiO2 contents on the structure and properties of 
TiO2-CA/CS composites was studied by scanning 
electron microscopy (SEM), Fourier transform infra-
red spectroscopy (FTIR), and tensile testing, and the 
adsorption-photocatalysis experiment was carried out 
as a function of TiO2 content, pH level, fiber com-
position, and irradiation time. The results indicated 
that TiO2 was uniformly fixed in the electrospun CA/
CS fibers. When the content of TiO2 was 2 wt %, the 
composite fabric exhibited the highest tensile strength 
(21.84 ± 0.85  MPa) and could continuously remove 
HA (87.79% in 3  h without obvious saturation or 

fiber damage) at a low adsorbent dosage of 0.3 g/L. 
The HA removal efficiency of the TiO2-CA/CS fib-
ers under UV irradiation was higher than those of 
TiO2-CA and CA/CS fibers, which also indicated a 
successful synergistic strategy.

Keywords  Electrospinning · Adsorption · 
Photodegradation · Synergistic effect · Humic acid 
removal

Introduction

The demand for clean and readily available water is 
increasing, especially in the face of rapid industriali-
zation and population growth. However, challenges 
for water supply systems, such as climate change, 
water scarcity, and urbanization, are still evolving. 
The World Health Organization (WHO) has empha-
sized that water reuse is becoming an important strat-
egy to address the water crisis (WHO, 2022). Water 
purification is an essential step in effectively imple-
menting this measure into practice. Efforts have been 
made to develop various water treatment processes, 
including biological treatment, chemical coagula-
tion, precipitation, membrane separation, oxidation, 
and adsorption (Marinho et  al. 2019; Nidheesh and 
Singh 2017; Roy and Saha 2021; Yadav et al. 2019; 
Zhang et  al. 2008a, 2021b). Among them, adsorp-
tion is often considered superior to many other water 
treatment processes because the design of adsorbents 
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is facile and it is easy to operate the adsorption equip-
ment (Qiu et  al. 2020). Our previous work demon-
strated an efficient biodegradable electrospun cel-
lulose acetate (CA)/chitosan (CS) fibrous adsorbent 
for humic acid (HA) removal. However, it reached 
the maximum adsorption capacity after 1 h (Zhang 
et  al. 2021a). Replacing or regenerating adsorbents 
can be a time-consuming and costly process. Numer-
ous other approaches have been proposed to address 
the accumulation of HA in aqueous environments. 
These include aluminum salt coagulation of HA (Liu 
et al. 2009; Sudoh et al. 2015), electrochemical com-
bustion of HA (Liao et al. 2008), ultrafiltration mem-
brane separation (Szymański et al. 2016), and gamma 
radiation treatment (Sasaki et al. 2018). The treatment 
processes were often limited in terms of removal effi-
ciency, material and energy consumption, and man-
agement of residuals and by-products (Tung et  al. 
2019).

Heterogeneous photocatalysis employing semicon-
ductor titanium dioxide (TiO2) exhibited high effi-
cacy for in-suit HA degradation (Birben et al. 2017; 
Liu et  al. 2014; Tung et  al. 2019). The remarkable 
photoactivity, chemical stability, non-toxicity, and 
abundance of TiO2 have brought it tremendous atten-
tion for environmental remediation (Khorsandi et al. 
2015). However, the use of powdery TiO2 in water 
treatment can be challenging due to its tendency of 
agglomeration and subsequent reduced photocata-
lytic activities (Gebru and Das 2017; Wang et  al. 
2013). It was also observed that the solution opacity 
increased at a higher catalyst concentration, leading 
to a reduction of light penetration (Tung et al. 2019). 
Additional steps such as coagulation and sedimen-
tation are required for recovery and reuse, which 
increase the risk of secondary contamination in the 
water system (Xu et  al. 2013). Electrospinning is a 
facile and versatile technology for generating ultrafine 
fibrous membranes with large surface-to-volume 
ratios, which are desirable and reliable substrates for 
TiO2 immobilization (Marinho et  al. 2021). Enclos-
ing the photocatalysts within such a membrane can 
overcome the aforementioned limitations and facili-
tate the reuse of photocatalysts in subsequent cycles. 
Additionally, the nature of the photocatalytic process 
is surface-oriented, and the efficiency of photo-oxida-
tion is inseparable from the initial adsorption of the 
targeted contaminants onto the surface of photocata-
lysts (Rahman et al. 2021; Rao et al. 2016). Previous 

studies have primarily focused on either the adsorp-
tive or photocatalytic properties of TiO2 (Bi et  al. 
2021; Joung et al. 2006; Liao et al. 2012; Zhang et al. 
2008b). It is hypothesized that by incorporating TiO2 
into CA/CS membranes via one-step electrospinning, 
the CA/CS matrix can provide a large active sur-
face area and high affinity for the adsorption of HA, 
facilitating subsequent surface-oriented photodegra-
dation of HA, while TiO2 nanoparticles fixed in the 
fibers can oxidize the adsorbed HA by creating reac-
tive oxygen species (ROS) to enable the postponed 
saturation point of the membrane and higher removal 
capacity. Therefore, this study intends to explore the 
synergistic effects of adsorption and photooxidation 
processes facilitated by TiO2 within the electrospun 
CA/CS matrix, which have been seldom reported in 
the context of HA removal and biopolymer-based 
fibers. The morphological and structural proper-
ties of electrospun TiO2-CA/CS fibers were studied 
and characterized by scanning electron microscopy 
(SEM) and Fourier transform infrared (FT-IR) spec-
troscopy. The impacts of TiO2 content, pH level, fiber 
composition, and reaction conditions on the removal 
of HA were examined, and the synergistic effect of 
surface adsorption and photocatalytic oxidation was 
confirmed by comparing the removal efficiencies of 
TiO2-CA, TiO2-CA/CS, and CA/CS fibers. By com-
bining traditional membrane adsorption with nano-
material catalysis, this work is expected to inspire 
new ideas for the rational design of efficient adsor-
bents for water treatment.

Experimental methods

Materials

Cellulose acetate (CA) tow that is used to produce 
cigarette filters was kindly provided by Celanese 
Corporation (Irving, US) with a molecular weight of 
75–95 kDa, acetyl content of 39.95 wt %, and degree 
of substitution of ~ 2.47. Chitosan (CS) synthesized 
from crab shell with a molecular weight of 190–310 
kDa and degree of deacetylation of 75–85%, was pro-
vided by Dr. Benjamin Simpson (Department of Food 
Science and Agricultural Chemistry, McGill Univer-
sity, Quebec, Canada). Acetic acid (CH3COOH, gla-
cial), humic acid (sodium salt, C9H8Na2O4 45–70%), 
titanium dioxide (TiO2, particle size of ~ 20 nm), 
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sodium hydroxide (NaOH, ACS reagent grade), and 
sulfuric acid (H2SO4, ACS reagent grade) were all 
purchased from Fisher Scientific (Mississauga, ON, 
Canada) and used as received without further puri-
fication. Deionized water was used throughout all 
experiments.

One‑step electrospinning of TiO2‑CA/CS fibrous 
membranes

Desired amounts of CA and CS were dissolved in 
85 wt % acetic acid solution and stirred for 48 h. 
Different amounts of TiO2 nanoparticles were also 
dispersed in 85 wt % acetic acid solution by using 
Vortex at 3000 rpm, and the suspensions were subse-
quently sonicated for 90 min and added into the CA/
CS solutions, which were placed in the sonication 
bath for another 90 min. The prepared TiO2-CA/CS 
composite solutions were forced through a stainless-
steel needle with a diameter of 0.66 mm, and the fib-
ers were collected on a stainless-steel drum rotating at 
10 rpm. Electrospinning conditions were optimized in 
our preliminary experiment to allow the steady gener-
ation of fibers. The summary of sample compositions 
and the optimized electrospinning conditions is listed 
in Table  1. The electrospun fabrics were vacuum-
dried in a desiccator at room temperature overnight 
to expel possible solvent residues. In order to confirm 
the synergistic effect of photocatalysis and adsorp-
tion, electrospun TiO2-CA fibrous membranes were 
prepared by the same method as abovementioned.

Characterization of TiO2‑CA/CS fibrous membranes

Morphological observation of TiO2-CA/CS fibrous 
membranes was done using a Hitachi SU-3500 SEM 
(Hitachi, Tokyo, Japan) operating at 30 kV. All sam-
ples were coated with 4 nm of platinum/gold layers 

using a Leica EM ACE200 coater (Leica, Wetzlar, 
Germany) prior to the observation. To measure the 
fiber diameters, SEM images of various samples 
under a magnification of ×10 k were selected from 
which four hundred random positions were measured 
for each sample using the ImageJ image-visualiza-
tion software (developed by the National Institute of 
Health) (Wang et  al. 2017). The chemical structure 
of the electrospun fibers was analysed with a Var-
ian Excalibur 3100 FT-IR spectrometer (Varian, 
Melbourne, Australia) equipped with an attenuated 
total reflectance accessory (Specac, Orpington, UK). 
Each FT-IR spectrum was recorded in transmittance 
mode as the average of 64 scans with a resolution of 
4 cm−1. Uniaxial tensile testing of the fibrous mem-
branes was carried out on an ADMET eXpert 7601 
testing machine (ADMET, Norwood, MA, USA) at 
the fixed initial grip-separation distance of 10 mm 
and crosshead velocity of 1 mm min−1. Five speci-
mens with dimensions of 30 mm × 10 mm (length × 
width) from each sample were measured according 
to the ASTM D-638-V standard (Selling et al. 2011). 
The thickness of each sample was measured from 
SEM images using the ImageJ image-visualization 
software. The tensile strength (σ) of the electrospun 
membranes was determined and calculated from the 
following equation:

Synergistic removal of HA

The performance of TiO2-CA/CS fibrous membranes 
towards HA removal was investigated by batch exper-
iments. The removal rate of HA was determined as 
the functions of TiO2 content, treatment time, and pH 
level of the solution under the optimized conditions 

(1)� =
F

A

Table 1   Solution 
compositions and optimized 
electrospinning conditions 
of various fibrous 
membranes

Samples CA con-
tent (wt 
%)

CS con-
tent (wt 
%)

TiO2 
content (wt 
%)

Electrospinning conditions

Applied 
voltage 
(kV)

Tip-to-collector 
distance (cm)

Flow rate 
(mL h−1)

1%TiO2-CA/CS 3 3 1 23.5 11.5 1
2%TiO2-CA/CS 3 3 2 26 11.5 1.2
3%TiO2-CA/CS 3 3 3 30 10 1.6
TiO2-CA 11 0 2 20 12 0.8



6818	 Cellulose (2024) 31:6815–6826

1 3
Vol:. (1234567890)

as follows: membrane dosage of 0.3 g L−1 (approxi-
mately 20 mm × 10 mm, length × width), HA solu-
tion volume of 20 mL, HA initial concentration of 
30 ppm, and stirring speed of 150 rpm (Zhang et al. 
2021a). Stock solution with a concentration of 100 
ppm HA was prepared and further diluted to obtain 
HA solutions with lower concentrations. Sulfuric acid 
and sodium hydroxide were used to adjust the pH lev-
els of HA solutions. Batch experiments were carried 
out in 25 mL glass vials, and a 20 W UV lamp with a 
standard wavelength of 365 nm was used as the light 
source. The distance between the lamp and the water 
surface was 10 cm. The performance of the TiO2-CA/
CS membranes towards HA removal in dark condi-
tions was also evaluated. To calculate the HA con-
centration before and after the treatment, a calibration 
curve was prepared with a series of standard solutions 
with known HA concentrations. The UV-vis absorb-
ance of the solutions at 271 nm was measured using a 
Hitachi UV-2000 UV-vis spectrophotometer (Hitachi, 
Tokyo, Japan). The removal efficiency was calculated 
as follows:

where C0 (mg/L) is the initial HA concentration 
in the solution and Ci (mg/L) is the equilibrium HA 
concentration.

The kinetics of photocatalyzed oxidation were 
studied by applying and modeling the experimental 
data into the Langmuir-Hinshelwood kinetic model:

where r (mg/ (L min)) represents the rate of reac-
tion that changes with time; C (mg/L) is the concen-
tration of HA solution at time t (min); kr (mg/(L min)) 
is the rate constant of the reaction; and K (L/mg) is 
the equilibrium constant for adsorption of the sub-
strate onto the catalyst. Equation (3) can be integrated 
between the limits: C = C0 at t = 0 and C = C at t = t, 
which is expressed as:

where C0 (mg/L) is the initial HA concentration in 
the solution (Kumar et al. 2008).

(2)removal ef f iciency (%) =

(

C
0
− C
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(
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C
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+ K(C
0
− C) = k
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Statistical analysis

Statistical interpretations of the results were evalu-
ated by analysis of variance (ANOVA) followed by 
multiple comparison tests of the means using Dun-
can’s multiple-range test at a 95% confidence level. 
All statistical analyses were done using SPSS statisti-
cal software (version 27, IBM, Armonk, NY, USA) 
with a p < 0.05 considered to be significant. The 
results were expressed as the mean of at least three 
replicates ± standard deviation.

Results and discussion

Structure of TiO2‑CA/CS fibrous membranes

FT-IR was employed to understand the component 
interactions and characteristic chemical information 
of TiO2-CA/CS fibrous membranes. As shown in 
Fig. 1, all the samples had the characteristic peaks of 
CA at 3500 cm−1, 1750 cm−1, and 1372 cm−1 (rep-
resenting O-H stretching, C = O vibration, and CH3 
groups of the acetyl moiety) (Monisha et  al. 2016; 
Zhang et  al. 2021a), and the typical infrared dif-
fraction peaks of CS at 3350 cm−1 (-OH and -NH 
groups) and 1600 cm−1, 1100 cm−1, and 885 cm−1 
(amine groups) (Sharaf et al. 2021). Compared to the 
spectrum of TiO2-CA, all the other samples showed 
downfield shifts from the peak at 3500 cm−1 to the 

Fig. 1   FTIR spectra of CA/CS, TiO2-CA, 1%TiO2-CA/CS, 
2%TiO2-CA/CS, and 3%TiO2-CA/CS electrospun fibers
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broad peak at 3350 cm−1, which revealed the hydro-
gen bonding interactions between the amine groups 
of CS and acetyl groups of CA (Gopi et  al. 2019). 
After introducing TiO2 nanoparticles, TiO2-CA and 
TiO2-CA/CS fibers exhibited new and similar adsorp-
tion patterns in the wavenumber range of 350 cm−1 
to 750 cm−1, which was assigned to the vibration 
of Ti-O-Ti network and confirmed the successful 
incorporation of TiO2 into the CA/CS fibrous matrix 
(Tsiourvas et al. 2011). However, the change in TiO2 
contents didn’t affect the intensities of the character-
istic peaks, suggesting that the incorporation of TiO2 
nanoparticles did not significantly impact the struc-
ture of CA/CS fibers.

To investigate the effect of TiO2 on the electro-
spun fibers, the morphologies of the fabrics with 
various compositions were observed by SEM and the 
images are shown in Fig.  2. All the samples exhib-
ited ultrafine and continuous fibrous structures with 
nano-scaled diameters, which are highly desirable for 
the adsorption and photocatalysis processes (Erhayem 
and Sohn 2014; Liu et al. 2014; Lv et al. 2011). The 
average fiber diameters of 1%TiO2-CA/CS, 2%TiO2-
CA/CS, and 3%TiO2-CA/CS were 16.0 ± 7.7, 
12.6 ± 4.2, and 15.08 ± 8.2 nm, respectively, and were 
much smaller than those of TiO2-CA (149.9 ± 39.2 
nm) and the electrospun CA/CS fibers reported in our 
previous study (Zhang et al. 2021a). It might be due 
to the higher voltage applied, the shorter tip-to-col-
lector distances, and consequently the enhanced elec-
trical field during electrospinning, resulting in a bet-
ter stretch of the fibers (He et al. 2015; Kiennork et al. 
2015). It was observed that more concave/convex 
fibers and beads were presented in the 3% TiO2-CA/
CS sample. These were caused by the formation of 
an unstable Taylor cone in the presence of high TiO2 
loading amounts and the possible agglomeration of 
the nanoparticles (Gebru and Das 2017; Zhang et al. 
2021b).

Mechanical properties of TiO2‑CA/CS fibrous 
membranes

As shown in Fig. 3, the tensile strength of 1%TiO2-
CA/CS, 2%TiO2-CA/CS, and 3%TiO2-CA/CS were 
19.02 ± 0.91, 21.84 ± 0.85, and 13.02 ± 1.01, respec-
tively. The addition of TiO2 nanoparticles to the CA/
CS matrix remarkably improved the tensile strength 
(Zhang et  al. 2021a). It could be explained by the 

transfer and diversion of force from the CA/CS fibers 
to the nanoparticles, and the stable interface between 
TiO2 and the CA/CS matrix (Habiba et  al. 2019; 
Kochkina and Butikova 2019). The significantly 
higher tensile strength of the 2%TiO2-CA/CS sample 
corresponded to its homogeneous fibrous structure 
and well-dispersed TiO2 nanoparticles, resulting in 
better stress distribution and energy absorption (Feng 
et  al. 2019; Zhang et  al. 2021a). All the TiO2-CA/
CS membranes demonstrated higher tensile strength 
than that of the TiO2-CA sample (2.19 ± 0.17 MPa). 
It can be attributed to the hydrogen bonding interac-
tions between the amine groups of CS and the acetyl 
groups of CA that contributed to the retardation of 
loading stress (Han et al. 2019). However, the intro-
duction of TiO2 had a negative impact on the strain of 
the TiO2-CA/CS membranes. With the increase of the 
TiO2 contents from 1 wt % to 3 wt %, the elongation 
at break of the membranes reduced considerably from 
1.61 ± 0.11% to 0.98 ± 0.07%, because the TiO2 nano-
particles restrained the matrix flexibility and mobility. 
Similar phenomena were reported in TiO2-reinforced 
starch-based nanocomposite films (Oleyaei et  al. 
2016).

Removal of HA

Effect of pH

The effect of initial solution pH on HA removal 
using electrospun TiO2-CA/CS membranes was 
investigated within a pH range of 4 to 12. Experi-
ments conducted at pH < 4 were excluded due to 
the coagulation and precipitation of HA (Abate 
and Masini 2003; Brigante et  al. 2007; Zhang 
et  al. 2021a). As depicted in Fig.  4, the syner-
gistic removal efficiency of HA using TiO2-CA/
CS was pH-dependent and increased at lower pH 
values. The pKa values of HA and the primary 
amine of CS were approximately 4.0 and 6.5, 
respectively, and the point of zero charge value of 
TiO2 falls within a pH range of 6.0 to 7.5 (Laird 
and Koskinen 2008; Mohammed et  al. 2017; Paz 
2006). Therefore, at pH = 4, electrostatic attrac-
tion occurred between the deprotonated carboxylic 
groups of HA and the positively charged CS and 
TiO2 nanoparticles, contributing to the superior 
removal efficiency towards HA. Meanwhile, the 
nonpolar methyl groups of CA interacted with the 
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Fig. 2   SEM images and fiber diameter distributions of (a) 1%TiO2-CA/CS, (b) 2%TiO2-CA/CS, (c) 3%TiO2-CA/CS, and (d) 
TiO2-CA electrospun fibers
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hydrophobic moieties of HA through hydrophobic 
interaction, and the positive charges of TiO2 were 
favorable for transferring photo-generated electrons 
to the surface of TiO2 and discouraging the recom-
bination of photoelectrons and photoholes, lead-
ing to the prolonged generation of ROS (Xue et al. 
2011). It was worth noting that the 2%TiO2-CA/
CS sample showed the highest removal efficiency 
towards HA at all pH levels, while the TiO2-CA 
fibers were the least efficient. It confirmed that the 
strong adsorption of HA onto the surface of the 
electrospun fibers was highly conducive to the pho-
tocatalytic process (Krasian et al. 2019).

Effect of irradiation time

The removal efficiencies of various 
TiO2-incorporated fibrous composites under UV 
irradiation or in the dark as a function of treatment 
time are illustrated in Fig.  5(a). The synergistic 
effect of adsorption and photocatalysis was evalu-
ated by comparing with the photocatalysis under 
UV irradiation without the adsorptive sites of CS 
and the adsorption of TiO2-CA/CS fibers in dark 
conditions. All samples exhibited rapid removal 
of HA within the first 30 min, implying tremen-
dously available adsorptive sites. The adsorption 
process typically occurs faster than the photocata-
lytic oxidation (Liu et al. 2014). As the adsorption 
process continued, the active sites became increas-
ingly occupied, and the removal efficiencies of 
the samples in the dark reached the equilibrium 
after approximately 60 min, which was in accord-
ance with our previous report (Zhang et al. 2021a). 
The TiO2-CA membrane adsorbed HA through the 
hydrophobic interaction between HA and CA and 
surface complexation of TiO2 and HA (Sun and Lee 
2012). However, its removal efficiency in the dark 
was the lowest because of the absence of CS. It was 
noteworthy that 1-3% TiO2-CA/CS fibrous mem-
branes demonstrated continuous removal of HA 
from the aqueous solution under UV irradiation, 
and the removal efficiencies were approximately 
1.5 times higher than those achieved by adsorption 
solely within 180 min. Moreover, the removal effi-
ciency of TiO2-CA with UV irradiation was also 
lower than those of the 1-3% TiO2-CA/CS mem-
branes, demonstrating the remarkable synergistic 
effect of the adsorption process and photocatalytic 

Fig. 3   Mechanical properties of the electrospun fibrous membranes: (a) stress-strain curves, (b) tensile strength, and (c) elongation 
at break. Different asterisks on the top of each column represent significant differences (p < 0.05)

Fig. 4   Effect of pH on the removal of HA using electrospun 
TiO2-CA/CS and TiO2-CA fibrous membranes (dosage: 0.3 
g/L; initial concentration of HA solution: 30 ppm; volume: 20 
mL; and irradiation time: 180 min)
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activity towards the removal of HA. The 2% 
TiO2-CA/CS sample exhibited the highest efficiency 
due to the uniform fibrous structure, which facili-
tated the adsorption and degradation of HA. Table 2 
summarizes several TiO2-incorporated photocata-
lysts for HA removal, and the fibrous TiO2-CA/CS 
membranes reported here showed a comparable 
removal efficiency at a lower dosage of 0.3 g/L.

Kinetics of HA removal

To examine and compare the removal rates of HA 
using various TiO2-incorporated fibrous composites, 
the experimental data were fitted into the Langmuir-
Hinshelwood kinetic model, which is the most com-
monly used kinetic expression of the heterogeneous 
catalytic processes (Kumar et al. 2008). The kinetics 

Fig. 5   (a) Removal efficiency of TiO2-incorporated fibers 
with various compositions under UV irradiation or in dark, (b) 
kinetics of HA removal using TiO2-incorporated fibers (pH: 

4.0; dosage: 0.3 g/L; initial concentration of HA solution: 30 
ppm; volume: 20 mL), and (c) SEM images of TiO2-CA/CS 
fibers after 180 min UV irradiation

Table 2   List of previously reported TiO2 based photocatalysts for HA removal

Photocatalysts Dosage (g/L) Removal effi-
ciency (%)

Time (min) References

Molybdenum-doped TiO2 nanoparticles 2 83 200 (Abedi et al. 2022)
Reduced graphene oxide- TiO2 nanocomposites 1.2 88.7 180 (Zhou et al. 2019)
Fe-doped TiO2 nanoparticles 0.4 74 60 (Kamani et al. 2021)
Fe-doped TiO2@Fe3O4 0.4 100 60 (Moein et al. 2020)
N-doped TiO2 nanotubes/graphene composite film 1 92.3 120 (Wang et al. 2022)
TiO2-coated ceramic foam 83 720 (Mori et al. 2013)
This study 0.3 87.7 180
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and fitted parameters are shown in Fig. 5(b) and listed 
in Table  3, respectively. The obtained square cor-
relation coefficients (R2) for all the samples were 
above 0.96, suggesting that the removal of HA using 
TiO2-incorporated fibrous membranes was well fit-
ted by the Langmuir-Hinshelwood kinetic model 
and relied on the synergistic adsorption upon the 
fibers and oxidation of HA by TiO2 in the matrix. 
The 2%TiO2-CA/CS sample exhibited a noticeably 
higher constant rate, whereas TiO2-CA had the low-
est constant rate, which further confirmed the supe-
rior removal performance of 2%TiO2-CA/CS and the 
success of the synergistic strategy. The morphologies 
of the fibrous composites after 180 min UV irradia-
tion are shown in Fig. 5(c). It was evident that no sig-
nificant changes in the structural integrity and fibrous 
morphologies were observed. It demonstrated the sta-
bility of the electrospun CA/CS fibers, and the fibrous 
structure was important for the continuous removal of 
contaminants and the recovery of TiO2 nanoparticles 
(Li et al. 2022).

Conclusions

The hypothesis has been confirmed that, by one-step 
electrospinning, the TiO2-CA/CS fibrous membranes 
could extend the removal of HA from the aqueous 
solution via synergistic effects of adsorption and pho-
todegradation. The removal efficiency of HA varied 
at different pH values, TiO2 loading amounts, and 
fiber compositions. Due to the ultrafine fibrous mor-
phology, homogeneity, and uniform distribution of 
TiO2 catalysts, the 2%TiO2-CA/CS fibrous membrane 
exhibited the highest tensile strength and removal 
efficiency towards HA. With a low fiber dosage of 
0.3 g/L, a removal efficiency of 87.7% was achieved 
under UV irradiation after 180 min, while the sam-
ple in the dark could only remove 54.2% of HA and 

the adsorption reached the equilibrium after 60 min. 
Hence, this work presents a promising strategy for 
the development of high-performance adsorbents for 
wastewater treatment.
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