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Abstract  Considerable interest in food packag-
ing research has been prompted by the rising envi-
ronmental impact of waste, customer awareness for 
readily accessible foods with extended shelf life, and 
ecological consciousness about the scarcity of natural 
resources. The utilization of plastic-based food pack-
aging has resulted in a significant environmental con-
cern due to the accumulation of substantial quantities 
of plastic in the surrounding areas. Research efforts 
are being motivated by ecological and health consid-
erations in the pursuit of developing biodegradable 
films. Besides, poly(lactic acid) (PLA) has been sug-
gested as a possible substitute for petroleum-based 
polymers because of its sustainability, simple acces-
sibility, and biodegradability. PLA is a biodegrad-
able plastic made from sugar beet or maize starch that 

may be fermented by bacteria to generate material 
with desirable qualities like transparency and rigid-
ity. However, there is a need for further improve-
ment in certain properties of PLA, such as flexibil-
ity, toughness, permeability, and thermal properties. 
One potential approach for enhancing these attributes 
involves the integration of nano-reinforcement. The 
utilisation of nanocellulose derived from biomass has 
garnered significant interest in recent times owing to 
its renewable nature, ability to biodegrade, impres-
sive mechanical strength, low density, and consider-
able economic worth. In this study, we present a com-
prehensive overview of the most up-to-date methods 
for synthesising nanocellulose and its use as a filler 
material in the manufacture of PLA nanocomposites 
for food packaging. In addition, this study examines 
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the emerging challenges and potential advantages 
associated with the utilization of PLA biocomposites 
incorporated with nanocellulose in the food packag-
ing sector.

Keywords  Poly(lactic acid) · Nanocellulose · 
Bionanocomposites · Food Packaging

Introduction

Polymers are an essential component of modern life 
because of the desirable features they possess, such 
as stability, resilience, and the ease with which they 
may be produced (Chen  and Patel 2012). Plastics 
have several uses and can be found in a wide num-
ber of industries, including packaging, building and 
construction, automotive applications, electrical and 
electronics applications, aerospace applications, and 
corrosion prevention and control (Silvestre et  al. 
2011). At the moment, more than 40% of the entire 
quantity of plastics consumed across the globe is 
utilised in the packaging industry (Surendren et  al. 
2022). The global flexible packaging market share by 
applications is shown in Fig. 1a. The key functions of 
packaging can be generally categorized into two main 
groups: primary functions and secondary functions. 
The primary functions of packaging encompass vari-
ous aspects, including protection, storage, loading, 

and transportation of the product. To fulfil these 
functions effectively, the packaging must possess 
qualities such as strength, non-porosity, and the abil-
ity to resist external conditions that may be encoun-
tered in the storage or transportation surroundings 
(Petersen et  al. 1999). Secondary purposes, such as 
those related to encouraging sales of the product, may 
require the packaging to have a good physical appear-
ance (glossy) or to have good transparency in order 
to draw the attention of customers. It may be neces-
sary to include information on the packaging, such as 
the product’s contents, the nutrition content (of food 
products), and directions for use; this will require that 
the material used for the packaging be printable. In 
addition, the recyclability of polymers can be a signif-
icant factor in evaluating whether or not they are suit-
able for use as a packaging material, particularly for 
high-volume applications (Lange and Wyser 2003; 
Chen et al. 2020a, b).

The determination of packaging material prop-
erties is influenced by the physical and chemical 
attributes of the product, as well as the external 
conditions encountered during storage and trans-
portation. Plastics are highly desirable materials for 
packaging applications due to their versatile range 
of properties that can be customised to meet specific 
product requirements (Lau and Wong 2000; Subra-
manian 2000). Polyethylene (PE), polypropylene 
(PP), polyethylene terephthalate (PET), polyvinyl 

Fig. 1   a The global flexible packaging market share by applications 
(https://​www.​gmins​ights.​com/​indus​try-​analy​sis/​flexi​ble-​packa​ging-​
market)  [EUBIO_Admin Market n.d., Flexible Packing Market 

Size | Industry Analysis (2024a)–2032 n.d.,]  b Global production 
capacities of bioplastics in 2023 (https://​www.​europ​ean-​biopl​astics.​
org/​market/)

https://www.gminsights.com/industry-analysis/flexible-packaging-market
https://www.gminsights.com/industry-analysis/flexible-packaging-market
https://www.european-bioplastics.org/market/
https://www.european-bioplastics.org/market/
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chloride (PVC), and polystyrene (PS) are widely 
recognised as the predominant types of packaging 
plastics (Siracusa and Blanco  2020, Guillard et al. 
2018). These materials collectively constitute over 
90% of the overall volume of plastics employed in 
packaging applications. The production of plastics 
commonly relies on raw materials derived from 
petroleum products obtained through various refin-
ing processes (Khoo et  al. 2010). The majority of 
conventional plastics, which are derived from fossil 
fuels, are known to be non-biodegradable, leading 
to potential environmental pollution. The growing 
awareness and concern surrounding environmental 
issues have sparked a surge in research on bio-based 
sustainable plastic packaging materials in recent 
years (Peelman et  al. 2013; Jabeen et  al. 2015; 
Shlush and Davidovich-Pinhas 2022). According 
to the American Society for Testing and Materials, 
biodegradable polymers refer to polymers that pos-
sess the ability to undergo degradation through the 
action of naturally occurring microorganisms in the 
environment, including bacteria, fungi, and algae. 
This degradation process leads to the formation of 
carbon dioxide, methane, water, and inorganic con-
stituents. These polymers have the potential to be 
diverted from surface disposal landfills and instead 
used in the production of compost (Lenz  1993).

Biopolymers are polymers derived from natural 
materials, either chemically produced from biological 
substances or completely synthesised by living organ-
isms. (Smith et al. 2016). Biopolymers are commonly 
categorized into five distinct groups based on their 
origin (Phiri et  al. 2023; Jacob et  al. 2020; Scarfato 
et al. 2015).

Class I: This category includes biopolymers made 
from naturally occurring substances. These renew-
able resources include (i) biomass from agricul-
tural sources, (ii) polysaccharide materials derived 
from animals, and (iii) protein-based materials 
derived from either animals or plants. Starch and 
cellulose are the two main biopolymers that are 
produced using agricultural resources. Chitin and 
chitosan are two examples of biopolymers gener-
ated from animal-sourced polysaccharide mate-
rial. Wheat, zein, pea, soy, and canola (plant ori-
gin) and casein, gelatin, keratin, and whey (animal 
origin) are biopolymers made from protein-based 
resources.

Class II: This group includes biopolymers that 
come from microbial sources. Polyhydroxy 
alkanoate (PHA) is among the biopolymers 
derived from microbial sources.
Class III: This category encompasses biopolymers 
that are derived from monomers obtained through 
renewable resources or microbial fermentation. An 
example of such a biopolymer is Poly (lactic acid) 
(PLA).
Class IV: In this category, biopolymer monomers 
are derived from petrochemical sources. Poly-
caprolactone (PCL) and Poly(butylene adipate-
coterephthalate) (PBAT) are examples of class IV 
biopolymers in which both monomer and biopoly-
mer are produced by conventional methods.
Class V: This is a particularly novel category in 
which biopolymers are derived from a combina-
tion of renewable and petrochemical monomers. 
Class V biopolymers include poly (trimethyl-
ene terephthalate) (PTT), which can be produced 
from terephthalic acid (petrochemical origin) and 
1,3-propanediol (biological origin).

Polylactic acid (PLA), also referred to as polylac-
tide, is a highly promising polymer within the realm 
of biodegradable materials (Mukherjee and Kao 
2011). It holds a significant position, constituting 
approximately 31% of the overall bioplastic produc-
tion, as illustrated in Fig. 1b.

PLA is a type of linear aliphatic thermoplastic 
polyester that is sourced entirely from renewable 
resources. These resources include sugar, corn, pota-
toes, cane, beet, and other similar sources (Jamshidian 
et al. 2010; Inkinen et al. 2011). PLA has gained sig-
nificant commercial traction and is widely employed 
in the realm of food packaging. It finds extensive 
application in packaging perishable or time-sensitive 
food products, serving as containers, drinking cups, 
salad cups, overwrap and lamination films, as well as 
blister packages. Nevertheless, the utilisation of these 
materials in food packaging has been limited due to 
their low thermal stability and inadequate barrier 
properties (Auras et  al. 2004; Ahmed and Varshney 
2011. The integration of nanomaterials has been pro-
posed as a potential solution to mitigate these issues 
and enhance the potential of PLA-based packaging 
systems (Mulla et al. 2021).

Nanocellulose has been suggested as a poten-
tial load-bearing component for the development of 
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cost-effective biomaterials. This is attributed to its 
advantageous characteristics, including a high aspect 
ratio, favourable mechanical properties, and com-
plete degradability and renewability. When compar-
ing nanocellulose to other inorganic reinforcing fill-
ers for biopolymers, several additional benefits can be 
observed. These advantages include the broad avail-
ability of sources for nanocellulose, its low energy 
consumption during production, the ease of recycling 
through combustion, and its relatively easy process-
ability due to its non-abrasive nature. These charac-
teristics enable nanocellulose to achieve high filling 
levels in biopolymers, resulting in substantial reduc-
tions in costs (Kim et al. 2015). By 2029, the market 
for nanocellulose is expected to have grown from its 
2022 valuation of 0.40 billion to 0.49 billion, with 
a compound annual growth rate (CAGR) of 21.9%. 
Figure  2a shows the amount of nanocellulose pro-
duced worldwide. Figure 2b also displays the number 
of publications produced on PLA/cellulose nano-
composites over the last ten years (based on Google 
Scholar).

The objective of this review is to provide a compre-
hensive overview of the benefits associated with the 
incorporation of nanocellulose into a PLA matrix for 
the purpose of creating bionanocomposites suitable 
for biodegradable food packaging applications. This 
paper commences by providing a thorough review of 
the properties of PLA-based  food packaging mate-
rial, with a specific emphasis on its performance. This 

article aims to explore the production and extraction 
methods of nanocellulose derived from agricultural 
wastes. This article provides a comprehensive sum-
mary of the properties of PLA-NC bionanocompos-
ites as food packaging materials. These properties 
include morphology, rheology, mechanical strength, 
thermal stability, barrier properties, antioxidant activ-
ity, antibacterial properties, and biodegradability. 
Finally, this article  provides a concise overview of 
the safety considerations related to the development 
of PLA-NC bionanocomposites for their application 
in food packaging.

Poly(Lactic Acid) (PLA)

In recent years, Poly(lactic acid) (PLA) has emerged 
as one of the biopolymers that has garnered the most 
interest due to its economic and commercial feasibil-
ity throughout the processing stage. PLA is a mem-
ber of the family of aliphatic polyesters that are con-
structed from alpha-hydroxyacids (Anderson and 
Shive  1997). Other members of this family include 
polyglycolic acid and polymandelic acid. PLA 
polymerization may be achieved by either microbial 
fermentation of renewable resources, such as rice, 
wheat, maize, cane, potatoes, beets, etc., or chemi-
cal polymerization. PLA can be industrially produced 
using either lactic acid (LA) polymerization or lactide 
ring-opening polymerization (ROP). As depicted in 

Fig. 2   a Global nanocellulose market (https://​www.​futur​emark​etins​ights.​com/​repor​ts/​nanoc​ellul​ose-​market) [Nanocellulose Market 
n.d.,] b Number of publications produced on PLA/cellulose nanocomposites over the last ten years (based on google scholar)

https://www.futuremarketinsights.com/reports/nanocellulose-market
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Fig. 3, the lactides used to make PLA are generated 
by the microbiological fermentation of agricultural 
wastes, making it a more environmentally friendly 
alternative to items obtained from petrochemical 
resources (Mulla et al. 2021; Madhavan et al. 2010).

Table  1 displays the lactic acid yield from vari-
ous bacteria and sources. Since it was discovered that 
PLA’s performance was superior to that of synthetic 
plastic materials in many situations, its usage as a 
green food packaging material is on the rise.

PLA merits and demerits

Packaging materials enhance the product’s shelf-life 
by protecting it from potential degradation caused by 
physicochemical or biological factors. Additionally, 
these materials play a crucial role in maintaining or 
even enhancing the overall quality and safety of the 
product throughout its storage and handling pro-
cesses. Furthermore, it is imperative to consider the 

biodegradability of materials once they have reached 
the end of their useful life, as this can help mitigate 
potential environmental waste disposal challenges. 
Hence, the rising need for the utilization of biode-
gradable polymers derived from renewable sources as 
a substitute for petroleum-based polymers in packag-
ing materials has been observed, owing to their poten-
tial for reducing environmental pollution (Siracusa 
et  al. 2008; Taib et  al. 2023). PLA is a commonly 
used biopolymer in industrial applications. The use of 
PLA in packaging offers numerous advantages com-
pared to conventional petroleum-based polymers:

(a)	 Transparency is high compared to poly(ethylene 
terephthalate) (PET) and poly(styrene) (PS), with 
a transmission of visible light between 540 and 
560 nm (Armentano et al. 2013).

(b)	 Decomposition of PLA in a biological context, 
such as in presence of soil or compost occurs in 
two stages: hydrolytic degradation and enzymatic 

Fig. 3   Overview of lactic acid production through chemical synthesis and microbial fermentation (Ahmad et al. 2020)
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degradation. The hydrolysis process begins with 
water penetration into the polymer and progresses 
to random nonenzymatic chain scissions of the 
ester group. The breaking of ester bonds leads to 
a decrease in molecular weight and the genera-
tion of oligomers and lactic acid, which may be 
digested by microorganisms such as fungus and 
bacteria (Kara and Molnár 2023; Arena et  al. 
2011). A molecular weight of 10,000–20,000 g/
mol seems to be the crucial upper limit for bac-
teria to metabolize and subsequently convert to 
carbon dioxide, water, and humus. While the first 
hydrolytic reaction may occur in the bulk polymer 
through water diffusion, the second step, mediated 
by bacteria, happens exclusively at the surface 
(Yu  et  al. 2023; Kale et  al. 2007). When lactic 
acid is transformed into PLA, significant altera-
tions in both the chemical and biological break-
down processes take place. PLA is not as easily 
broken down and consumed by living organisms 

as lactic acid itself. The biodegradability of PLA 
is influenced by molecular weight, chemical 
bonding, stereochemistry, crystallization, water 
uptake, acidity, etc. (Naser et al. 2021). Degrada-
tion of PLA happens in environments with high 
temperatures (above 55 °C) and humidity, where 
specific microorganisms with enzymes like car-
boxylesterases, lipases, cutinases, and proteases 
are present (Ahsan et al. 2023).

(c)	 PLA has been extensively studied for its biocom-
patibility and ability to degrade into non-toxic 
components. Notably, the Food and Drug Admin-
istration (FDA) has granted approval for the 
implantation of PLA in the human body (Zhang 
et al. 2006). The incorporation of PLA in various 
applications, such as medical implants and drug-
delivery systems, has been explored due to its 
ability to undergo scission in the body. This pro-
cess results in the formation of monomeric units 
of lactic acid, which serves as a natural interme-

Table 1   The lactic acid yield from various bacteria and sources

Substrate Microorganism Lactic acid yield References

Wheat starch Lactococcus lactis ssp. lactis ATCC 
19435

0.77 to 1 g/g substrate (Hofvendahl et al. 1999)

Whole wheat L. lactis and Lactobacillus del-
brueckii

0.93 to 0.95 g/g substrate (Hofvendahl and Hahn-
Hagerdal 1997)

Barley Lactobacillus casei NRRL B-441 0.87 to 0.98 g/g substrate (Linko and Javanainen 
1996)

Cassava bagasse L. delbrueckii NCIM 2025, L. casei 0.90 to 0.98 g/g substrate (Rojan et al. 2005)
Potato starch Rhizopus oryzae, R. arrhizus 0.87 to 0.97 g/g substrate (Huang et al. 2005)
Corn starch L. amylovorus NRRL B-4542 0.935 g/g substrate (Nagarjun et al. 2005)
Wheat and rice bran Lactobacillus sp 129 g/ l (Yun et al. 2004)
Agro industrial starchy waste Enterococcus faecalis RKY1 ∼0.93 g/g substrate (Oh et al. 2005)
Cellulose L. bulgaricus NRRL B-548 N 80 g/l (Venkatesh 1997)
Corncob Rhizopus sp. MK-96–1196 90 g/l (Miura et al. 2004)
Wood Rhizopus oryzae NRRL 395 N 0.85 g/g substrate (Woiciechowski et al. 1999)
Waste paper Rhizopus oryzae N 0.8 g/g substrate (Park 2004)
Wood hydrolyzate Enterococcus faecalis RKY1 ∼0.9 g/g (Wee et al. 2004)
Mixed organic wastes (Banana peels 

and food waste materials)
Enterococcus durans BP130 6.7% (Hassan et al. 2019)

Wheat straw hemicellulose hydro-
lysate

Lactobacillus pentosus and Lactoba-
cillus brevis

95% (Garde et al. 2002)

peanut meal Bacillus sp. WL-S20 225 g/l (Meng et al. 2012)
cassava bagasse mixed culture of Bacillus coagulans 

and lactobacillus rhamnosus
0.88 g/g (Chen et al. 2020a, b)

vitamin-supplemented soybean 
hydrolysate

Lactobacillus rhamnosus ATCC 
10863

125 g/l lactic acid from 
150 g/l glucose

(Kwon et al. 2000)

Rice straw Lactobacillus lactis 2369 82.2 gL−1 (Mottaghi et al. 2022)
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diate in carbohydrate metabolism. The hydrolysis 
of PLA has been observed to occur in vivo, and 
interestingly, it does not appear to rely on the 
presence of enzymes for catalysis (Schwach and 
Vert 1999). The degradation rate of polymers is 
influenced by various factors, including the size 
and shape of the polymer, the ratio of isomers 
present, the hydrolysis temperature, the presence 
of low-molecular weight impurities, and the con-
centration of catalysts. According to the exist-
ing data, the duration of degradation has been 
observed to range from 1 to 2 years. The degra-
dation of PLA results in the production of lactic 
acid, a compound that is naturally generated dur-
ing metabolic processes (Chen et al. 2007; Gupta 
et al. 2007; Papageorgiou et al. 2010).

(d)	 Processability: The primary conversion method-
ologies employed for PLA revolve around melt 
processing techniques. According to research, 
it has been observed that commercial grades of 
PLA can be effectively processed using a conven-
tional twin-screw extruder. The melt viscosities 
of high molecular weight PLA have been found to 
range from 500 to 1000 Pa.s at shear rates of 10 
to 50 s−1. These findings suggest that PLA can be 
successfully utilized in various industrial appli-
cations using established processing techniques 
(Auras et al. 2004). Nature Works offers a range 
of PLA grades that are customized for different 
processing methods and applications, including 
extrusion, thermoforming, injection stretch blow 
molding, film production, fiber production, and 
foam production (Avinc and Khoddami 2009). 
Nevertheless, the primary limitation for process-
ing in a molten state is the thermal degradation of 
the material. The thermal degradation of PLA is 
commonly associated with various chemical pro-
cesses, including hydrolysis, depolymerization, 
oxidative random-chain scission, as well as inter 
and intramolecular transesterification. These pro-
cesses lead to the production of lactide monomers 
and oligomers. The early reduction in molecular 
weight is significantly influenced by the presence 
of residual monomer and traces of water. Hence, 
the proper drying of PLA pellets prior to process-
ing is considered to be of significant importance 
in various research studies (Najafi et  al. 2012; 
Murariu and Dubois  2016).

The aforementioned characteristics provide PLA a 
viable and environmentally friendly substitute for pet-
rochemical-based synthetic polymers in the context of 
packaging materials. Nevertheless, commercial PLA 
also possesses certain limitations that hinder its cur-
rent application in the field of food packaging (Muller 
et al. 2017; Rasal et al. 2010; Krishnan et al. 2016).

•	 One such drawback is its inherent brittleness, 
which restricts its suitability for flexible films, 
sheets, or injected parts requiring high impact 
strength. Consequently, this characteristic also 
limits the range of processes that can be employed, 
primarily focusing on blown-film and thermo-
forming techniques.

•	 The thermomechanical resistance of the material 
is limited by its poor crystallization behavior.

•	 The unsuitability of PLA for hot filling liquid food 
packaging can be attributed to its high hydrolysis 
rate and low thermal resistance.

•	 The low gas barrier properties of the material 
make it susceptible to reactions or damage from 
O2, CO2, or H2O, which can affect the quality of 
the food.

Numerous research endeavors have been focused 
on addressing these limitations through various 
approaches, including the incorporation of natural 
additives and plasticizers, copolymerization, and 
polymer blending. The enhancement of thermo-
mechanical and barrier properties of PLA through 
the integration of nano-fillers into its matrix has been 
documented in previous studies (Marra et  al. 2016; 
Swetha et  al. 2023; Yang et  al. 2020; Huang et  al. 
2022). Therefore, the nanocomposites based on PLA 
show great potential as biodegradable materials suit-
able for use in the packaging sector.

Nano fillers used for food packaging applications

Bio-nanocomposites typically include a polymer 
matrix integrated with a nanofiller. Fillers may be 
classified into two types: organic and inorganic. How-
ever, the efficiency of nanofillers is contingent upon 
many aspects. This encompasses many geometrical 
features, such as size, form, and aspect ratio, as well 
as mechanical parameters, such as ultimate tensile 
strength, elastic modulus, and degree of dispersion 
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etc. (Lopez De Dicastillo et al. 2020). In addition to 
its role in enhancing structural integrity, nanomateri-
als may also fulfil several additional functions, such 
as incorporating active or intelligent attributes, such 
as antimicrobial capabilities and biosensing capa-
bilities (Priyadarshi et  al. 2022). Figure  4 provides 
a comprehensive list of the nanofillers often used in 
food packaging applications.

Nanofillers used in food packaging may be broadly 
categorized according to the specific raw materials 
employed, including both organic sources (such as 
cellulose whiskers, lignocellulosic materials, chi-
tin whiskers, and starch nanocrystals) and inorganic 
nanofillers. Inorganic nanofillers include a range of 
materials, including metallic nanoparticles such as 
gold (Au) and silver (Ag), metal oxides including 
magnesium oxide (MgO), titanium dioxide (TiO2), 
copper oxide (CuO), and iron oxide (Fe3O4), as well 
as carbon nanotubes and layered silicates such as 
montmorillonite (MMT) clays, hectorite, and Sapo-
rite (Olayil et al. 2022; Wu et al. 2022).

However, it has been observed that a significant 
portion of these nanofillers lack biocompatibility 
and/or biodegradability properties. Researchers 
have focused on PLA-based "green composites" or 
"biocomposites" made with biodegradable, reus-
able, and nontoxic nanofillers (Zubair and Ullah  
2020). Cellulose, due to its abundant presence in 
nature, non-toxic properties, and biocompatibil-
ity, has gained recognition as a potential biofiller 
candidate for the development of PLA composites. 

These composites have various applications, includ-
ing food packaging and biomedical purposes (Naz-
rin et al. 2020). Cellulose-based nanoparticles have 
been extensively studied and have shown promise 
in various applications. These nanoparticles pos-
sess supramolecular structures, which are organized 
on a molecular level and contribute to their unique 
properties. The diameters of these nanoparticles 
typically range from a few to several tens of nanom-
eters, allowing for precise control over their size 
and morphology. This level of specificity in their 
structural characteristics enables tailored function-
ality and enhanced performance in a wide range of 
fields (Ahankari et al. 2021; Silva et al. 2020). The 
classification of cellulose materials can be based 
on their types and dimensions, which include cel-
lulose nanocrystals (CNCs), cellulose nanofibers 
(CNFs), and bacterial cellulose (BC). The acquisi-
tion of these nanoparticles can be achieved using 
diverse methodologies from a range of cellulose 
sources. In addition to their recognized environ-
mental advantages, cellulose nanoparticles exhibit 
notable characteristics such as a high aspect ratio, 
substantial surface area, low specific density, and 
superior strength and modulus when compared to 
conventional fibers. In recent years, there has been 
a significant increase in scientific interest surround-
ing the development of PLA/nanocellulose biona-
nocomposites, following the commercialization of 
nanocellulose products (Poulose et al. 2022; Saallah 
et al. 2020; Kumar et al. 2021).

Fig. 4   List of nanofillers 
used in the packaging appli-
cations (Olayil et al. 2022) 
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Nanocellulose: history and features

Lignocellulose biomass

Lignocellulosic biomass encompasses a diverse 
range of natural organic materials, primarily 
derived from plants or plant-based sources. This 
category represents the largest quantity of sustain-
able carbon materials and holds significant poten-
tial as a feedstock for the sustainable production of 
biochemicals, bioethanol, and biofuels (Lee et  al. 
2014). Lignocellulosic biomass is a well-known 
and widely studied source of natural fiber. Its poten-
tial as a substitute for petroleum-based polymers 
has been extensively investigated, primarily due 
to its remarkable environmentally friendly prop-
erties. In addition, it is worth noting that biomass 
waste, including agricultural residues and forest 
remnants, holds significant promise for repurpos-
ing as a source of fuel or raw material for the crea-
tion of valuable products. Importantly, this potential 
does not interfere with the availability of resources 
for human and animal consumption (Pradhan et al. 
2022; Phanthong et al. 2018).

The cellular composition of lignocellulosic bio-
mass mostly comprises three distinct polymers, 
namely lignin, hemicellulose, and cellulose. Never-
theless, the composition and quantity of these three 
components exhibit significant variation as a result 
of the diversity in species, kinds, and sources of lig-
nocellulosic biomass (Nanda et  al. 2015). Lignin 
comprises about 10–25% of the total weight of dry 
lignocellulosic biomass. Lignin functions as a bind-
ing agent that links cellulose and hemicellulose com-
plexes inside and around plant cell walls. Lignin, by 
its binding function, imparts rigidity, compressive 
strength, resistance to degradation, and impermeabil-
ity to water in the cell walls of plants. Hemicellulose 
comprises about 20–35% of lignocellulosic biomass 
(Yoo et  al. 2020). Hemicellulose is a heteropoly-
mer consisting of many types of monomers, includ-
ing pentoses and hexoses, arranged in short, linear, 
and branching chains. Xylans and glucomannans 
are recognized as prevalent forms of hemicellulose. 
Hardwood is known for its plentiful composition of 
xylans, while softwood mostly contains glucoman-
nans. Hemicellulose exhibits adhesion to cellulose 
fibrils through hydrogen bonding and Van der Waals 
interactions (Luo et al. 2019).

Cellulose is the major constituent of lignocellu-
losic biomass, mostly found inside the plant cell wall, 
accounting for around 35–50% (Bajpai  2016; Demir-
bas 2005). Cellulose is a linear polymer made up of 
D-glucopyranose units connected by β-1,4-glycosidic 
linkages. It is often biosynthesized into cellulose I, a 
metastable form made up of thin, rod-like crystalline 
microfibrils. These microfibrils consist of a combi-
nation of two crystalline allomorphs, known as cel-
lulose Iα and cellulose Iβ, in certain compositional 
ratios. Cellulose I may undergo an irreversible trans-
formation into a stable crystalline structure known as 
cellulose II via two separate processes: regeneration 
and mercerization. During the allomorphic change 
from cellulose I to cellulose II, the molecular chains 
connecting neighbouring cellulose microfibrils are 
thoroughly mixed and reorganized to generate an 
antiparallel chain structure. When ammonia-cellulose 
I or ammonia-cellulose II (a complex of ammonia and 
cellulose) decomposes, it produces Cellulose III, a 
frequently occurring form of cellulose. It is referred 
to as IIII when the chains are parallel and IIIII when 
the chains are antiparallel. These allomorphs vary in 
terms of their relative chain direction, chain stacking, 
and unit-cell properties. They also differ in the orien-
tation of hydroxy- and hydroxymethyl groups, as well 
as the corresponding hydrogen-bonding networks 
(Chen et  al. 2016; Wu et  al. 2020; Nishiyama et  al. 
2002; Wada et al. 2004).

Cellulose I exhibits a tg (trans-gauche) conforma-
tion at C6, enabling the positioning of O6 adjacent to 
the glycosidic linkage. It  can form a hydrogen bond 
with the oxygen atom (O2) of the previous glucosyl 
unit in the same chain and can also donate a hydrogen 
bond to the oxygen atom (O3) of the adjacent chain. 
The O3 atom acts as the donor for a hydrogen bond 
with the oxygen ring on the preceding residue in the 
same chain (Nishiyama 2009; Jarvis 2022). There is 
some disorder in the O6 and O2 hydrogen bonding, 
and some hydrogen bonds have two acceptor oxy-
gens present at once. Cellulose II exhibits antiparallel 
chains, resulting in a gt (gauche-trans) conformation 
for C6 (Wohlert et  al. 2022; Jarvis 2022). Conse-
quently, the distance between O6 and O2 is too great 
to facilitate hydrogen bonding. The hydrogen bond 
O3’H–O5 is a common structural motif found in dry 
cellulose and hemicelluloses, which have a flat-rib-
bon 21 helical conformation. The three-dimensional 
hydrogen-bonding network in cellulose IIII is more 
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cooperative than the two-dimensional cellulose Iα 
and Iβ due to its ability to span multiple sheets (Lind-
man et  al. 2010; Habibi et  al. 2010; Wohlert et  al. 
2022, Chen et al.2016; Jarvis 2022; Wada et al. 2004; 
Langan et al. 2001; Ford et al. 2005).

Nanocellulose

Cellulose fiber is characterized by its exceptional 
physical and mechanical qualities, which may be 
attributed to the presence of many hydroxy groups 
and an effective hydrogen bonding network (Wang 
et  al. 2016). Nevertheless, it has been shown that 
cellulose fibrils typically form aggregates with both 
a crystalline structure, characterized by high order, 
and an amorphous structure, lacking a distinct order. 
In the crystalline regions, the chain molecules exhibit 
a highly organized arrangement, hence facilitating 
enhanced rigidity and robustness of cellulose. The 
amorphous components of the bulk material contrib-
ute to its overall flexibility. Cellulose fibrils, found 
within the composite structure of ordered and disor-
dered areas, often exhibit diameters ranging from 3 
to 100  nm and lengths between 1 and 4 � m in the 
case of common lignocellulosic biomass (Bangar and 
Whiteside  2021; Isogai  2021).

Nanocellulose is extracted from numerous sources 
of cellulose. The main area of interest is in the dimen-
sions of nanocellulose fibers, which typically exhibit 
a diameter of less than 100 nm and a length of sev-
eral micrometers (Isogai 2021). Nanocellulose has 
remarkable strength properties, in addition to being 
lightweight and having a low density of around 1.6 g/
cm3. Furthermore, it is biodegradable in nature. In 
particular, the material exhibits a very high rigid-
ity, with an elastic modulus of 220 GPa, surpassing 
that of Kevlar fiber. Furthermore, it is worth noting 
that nanocellulose has a remarkable tensile strength 
of up to 10 GPa, surpassing that of cast iron (Mon-
dal 2017). Additionally, its strength-to-weight ratio is 
eight times larger than that of stainless steel. Further-
more, nanocellulose exhibits transparency and has a 
high density of hydroxy groups on its surface, making 
it highly reactive. These hydroxy groups may be mod-
ified to impart a wide range of surface characteristics 
(Dufresne 2019).

Nanocellulose can be classified into three primary 
categories: cellulose nanocrystals (CNCs), cellu-
lose nano fibers (CNFs), and bacterial nanocellulose 

(BNC). The various types under consideration exhibit 
similarities in terms of their chemical composi-
tion. However, they display differences in morphol-
ogy, particle size, crystallinity, and certain proper-
ties. These variations arise from disparities in their 
sources and the methods employed for extraction (Qi 
et al. 2023; Randhawa et al. 2022; Dhali et al. 2021).

Cellulose nanocrystals (CNCs)

CNCs are produced through acid hydrolysis or heat-
controlled methods using sulfuric acid. This process 
prevents aggregation in aqueous suspensions due to 
electrostatic repulsion between cellulose particles. 
Acid treatment removes noncellulose components 
and most amorphous cellulose parts, producing 
pure CNCs. Almost 100% of CNCs have crystalline 
regions (around 54%–88% high crystallinity) with a 
rod-like shape or whisker shape, with diameters rang-
ing from 2 to 20  nm and lengths ranging from 100 
to 500 nm (Akatan et al. 2022; Lavoine et al. 2012). 
Figure 5 depicts the schematic representation of cel-
lulose nanocrystal, which is obtained by the process 
of acid hydrolysis from cellulose fibrils. The hydroly-
sis and subsequent removal of the amorphous compo-
nents is achieved by the use of acid, while the crys-
talline components remain unaffected. The extraction 
technique used in this study leads to the inference that 
cellulose nanocrystal has a high degree of crystallin-
ity and possesses a morphology that includes short 
rod-like structures (Dufresne 2019; Grishkewich et al. 
2017).

Cellulose nanofibers (CNFs)

Cellulose nanofibers, also referred to as cellulose 
nanofibril or nanofibrillar cellulose, is a type of nano-
cellulose that is characterized by its elongated struc-
ture, flexibility, and intricate entanglement. This 
unique material can be obtained through mechani-
cal extraction techniques from cellulose fibers. The 
observed structures exhibit elongated fibril morphol-
ogy, characterized by diameters ranging from 1 to 
100 nm and lengths spanning from 500 to 2000 nm. 
The composition of the substance under considera-
tion includes a cellulose content of 100%, compris-
ing both crystalline and amorphous regions (Naga-
rajan et al. 2021; Li et al. 2021). Figure 6 illustrates 
the schematic of CNFs, which can be separated from 
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cellulose chains by forcing fibrils to split along their 
longitudinal axis using a mechanical technique. When 
compared to CNCs, CNFs is longer, has a higher sur-
face area, length to diameter ratio, and a higher wide-
spread hydroxyl group content, making it more read-
ily modifiable on the surface. (Abitbol et  al. 2016;  
Prakash Menon et al. 2017; Phanthong et al. 2018).

Bacterial nanocellulose (BNC)

There exists an alternative kind of nanocellulose 
that distinguishes itself from CNCs and CNFs. 
CNCs and CNFs can be derived from lignocellu-
losic biomass through a top-down process. In con-
trast, bacterial nanocellulose is synthesised through 
a bottom-up process, wherein bacteria, primarily 
Gluconacetobacter Xylinus, construct it by accu-
mulating low molecular weight sugars over a period 
ranging from a few days to two weeks. Unlike cel-
lulose derived from plants, bacterial cellulose does 

not contain any additional compounds found in plant 
pulp or derived from animals, hence different chemi-
cal procedures are not required to obtain pure cellu-
lose. But bacteria are present in the untreated bacte-
rial cellulose membrane. It is necessary to eliminate 
these cell remnants as well as additional contami-
nants such salts, organic acids, and residual sugars 
from the culture media. While several techniques are 
utilized, including centrifugation, filtering, chemical 
extraction, and washing, the most popular procedure 
is washing bacterial cellulose in a hot NaOH solu-
tion (Wan et  al. 2019). Bacterial nanocellulose has 
identical chemical compositions to two other types 
of nanocelluloses. The structure consists of twisted 
ribbons characterized by typical diameters ranging 
from 20 to 100  nm and micrometer-scale lengths, 
resulting in a significant surface area per unit (De 
Oliveira Barud et al. 2020). Figure 7 displays a vis-
ual representation of the comparative microscopic 
images of CNCs, CNFs, and BNC.

Fig. 5   Schematic representation of the extraction of cellulose nanocrystal from cellulose fibrils via acid hydrolysis (Phanthong et al. 
2018)

Fig. 6   Schematic representation of extraction of CNFs from cellulose fibrils via mechanical cleavage (Phanthong et al. 2018)
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Nanocellulose extraction from lignocellulosic 
biomass

The exploration of nanocellulose extraction from lig-
nocellulosic biomass is very appealing owing to the 
remarkable characteristics of nanocellulose and its 
potential for future uses. This is especially impor-
tant for the extraction process from agricultural 
residue.  In most cases, the pre-treatment process is 
used to eliminate non-cellulosic constituents, includ-
ing lignin, hemicellulose, and other substances (Yu 
et  al. 2021). Various extraction procedures are used 
to extract nanocellulose from cellulose fibrils and are 
the following:

Biomass pre‑treatment

In recent years, there is a growing interest in using 
agricultural wastes as a viable resource for the pro-
duction of nanocellulose. Not only is nanocellulose 
readily accessible in nature, but the use of agricul-
tural leftovers may enhance the conversion of non-
valuable wastes into very profitable nanocellulose 
products (Gupta and Shukla  2020). Furthermore, 
the effective use of agricultural waste is beneficial for 
the environment. As previously mentioned, lignocel-
lulosic biomass is composed of cellulose along with 
non-cellulosic components like lignin, hemicellulose, 
and several other chemicals. The pre-treatment of 
biomass is a crucial stage in the process of eliminat-
ing non-cellulosic constituents and isolating cellu-
losic materials for subsequent nanocellulose extrac-
tion (Lunardi et al. 2021).

There are two commonly used procedures for bio-
mass pre-treatment, namely acid chlorite treatment 

and alkaline treatment (Phanthong et  al. 2018). The 
acid-chlorite treatment also referred to as the delig-
nification process or bleaching process, is extensively 
used in pulp businesses. The removal of lignin and 
other components from lignocellulosic biomass may 
be achieved using a process involving the mixing of 
distilled water, sodium chlorite, and acetic acid. This 
process entails stirring the biomass at temperatures 
at 70 to 80 0C for 4 to 12 h. Acetic acid and sodium 
chlorite are introduced into the mixes periodically, 
specifically at hourly intervals, in order to regulate the 
pH level. Subsequently, the mixture is subjected to 
continuous stirring for one night, after which it is sub-
jected to a series of washes with distilled water until 
a state of neutral pH is achieved. The solid products 
that were produced were collected and subjected to a 
drying process in an oven at a temperature of 50 0C. 
This resulting material is referred to as holocellulose, 
mostly consisting of hemicellulose and cellulose pre-
sent inside the fibers. The presence of a white-colored 
holocellulose fiber signifies the effective elimination 
of lignin and other contaminants (Phanthong et  al. 
2015; Hubbell and Ragauskas 2010).

The alkaline treatment involves the use of alkaline 
substances to eliminate the amorphous polymer of 
hemicellulose and residual lignin. Sodium hydroxide 
(4 to 20 wt.%) is commonly employed as the alkaline 
agent in various applications. In these processes, it is 
typically mixed with holocellulose and subjected to 
stirring for 1–5 h. The solid products obtained from the 
experiment were subjected to a washing process using 
distilled water until a neutral pH was achieved. Sub-
sequently, the washed solids were dried in an oven set 
at a temperature of 50 0C. The fiber products obtained 
from this treatment primarily consist of cellulose, with 

Fig. 7   Comparison microscopic image of a cellulose nanocrystals (CNCs), b cellulose nanofibers (CNFs), c bacterial nanocellulose 
(BNC) (Nazrin et al. 2020)
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the removal of other non-cellulosic materials (Sharma 
et al. 2021; Alemdar and Sain 2008).

Extraction of nanocellulose

Numerous methods have been devised for the isola-
tion of nanocellulose from cellulosic substrates. The 
use of various extraction techniques led to variations 
in the characteristics and attributes of the acquired 
nanocellulose. This section categorizes the primary 
extraction methods into three techniques: chemi-
cal treatment, enzymatic hydrolysis, and mechanical 
processes.

Acid hydrolysis

Acid hydrolysis is a primary method used in the iso-
lation of nanocellulose from cellulosic substances. 
The susceptibility of cellulose chains to acid hydroly-
sis is attributed to the presence of both ordered and 
disordered areas within the chains. Acid hydrolysis 
preferentially targets the disordered regions, leav-
ing the ordered sections intact. Sulfuric acid is the 
primary acid used for acid hydrolysis, as shown 
by previous studies (Akatan et  al. 2022; Bondeson 
et  al. 2006; Bacha 2022). The process of hydrolyz-
ing cellulose pulp with sulfuric acid is heteroge-
neous, since the acid permeates the pulp fiber and 
breaks the glycosidic linkages inside the cellulose 
polymer. Hydrolysis may also happen on the crystal-
line areas depending on reaction timings, and some 
of the hydroxyl groups on the crystalline surface 
will change into sulfate groups (e.g., cellulose-OH to 
cellulose-OSO3

−H+). The characteristics of nanocel-
lulose produced are primarily influenced by key regu-
lating parameters, including reaction time, tempera-
ture, and acid concentration (Borjesson and Westman 
2015; Peng et  al. 2011). One major disadvantage of 
acid hydrolysis is the production of acid wastewater 
during the washing procedure required to neutralize 
the pH value of the nanocellulose solution. Typi-
cally, the washing procedure is the addition of cold 
water, followed by centrifugation until a neutral pH 
level is attained. An alternative approach to washing 
the acquired substances involves the use of alkaline 
agents, such as sodium hydroxide, to achieve pH neu-
tralization (Johar et al. 2012).

TEMPO (2,2,6,6‑Tetramethylpiperidine‑1‑oxyl 
radical) oxidation

The use of TEMPO as a catalyst, in conjunction with 
hypochlorite as the major oxidant, enables the oxida-
tion of the hydroxy group present in cellulose to form 
carboxylates. Consequently, the CNFs acquired have 
an average diameter of roughly 3–4 nm and a length 
of a few microns, with a surface composed of carbox-
ylic acid groups (Levanic et al. 2020). The TEMPO-
mediated oxidation process is achieved by the use of 
TEMPO/NaBr/NaClO in an aqueous solution with an 
elevated pH level. This method involves dissolving 
TEMPO and NaBr in water, followed by the initiation 
of oxidation with the addition of NaClO. Addition-
ally, an alternate oxidation system known as TEMPO/
NaClO/NaClO2 may also be used in this procedure, 
particularly in neutral or slightly acidic conditions 
(Isogai et  al. 2011). TEMPO-oxidized cellulose 
nanofibers consistently exhibit a consistent width (3 
to 4 nm), with a high aspect ratio. These nanofibers 
have the potential to be used in several applications, 
such as transparent and flexible displays, gas-barrier 
films for packaging, and nanofiber fillers in composite 
materials (Fukuzumi et al. 2009).

Enzymatic hydrolysis

It is a biological process that uses enzymes to digest/
modify cellulosic fibers into nanocellulose. Micro-
bial processing is used to facilitate the degradation 
of hemicellulose and lignin, using enzymes such as 
cellobiohydrolase and endoglucanase (Winupra-
sith and Suphantharika 2015). Cellobiohydrolase 
has enzymatic activity towards crystalline cellulose, 
while endoglucanase demonstrates enzymatic activity 
towards amorphous cellulose. The use of enzymatic 
processes for cellulose production has been pro-
posed as an environmentally sustainable approach. 
Numerous studies have extensively demonstrated 
the phenomenon of synergistic interactions between 
enzymes in relation to the process of surface modi-
fication of cellulosic biomass. According to reports, 
enzymatic hydrolysis in conjunction with homogeni-
zation techniques on softwood wood have been found 
to produce nanocellulose with a higher aspect ratio 
compared to acidic treatment (Phanthong et al. 2018). 
Enzymatic hydrolysis involves the catalytic activity 
of enzymes, which is facilitated by hydrogen bonding 
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between cellulose fibers. Furthermore, the hydrolysis 
of hemicellulose has significant importance for many 
reasons. Firstly, it serves as a preventive measure 
against cellulosic hydrolysis. Secondly, it facilitates 
the production of monosaccharides that may be used 
for the process of fermentation, ultimately leading to 
the production of bioethanol (Wahlstrom and Suur-
nakki 2015). The effective hydrolysis of cellulosic 
aggregates necessitates the association of cellulases 
and hemicellulases. In general, the enzymatic biolog-
ical treatment may be conducted under modest work-
ing conditions; nevertheless, it requires a prolonged 
duration of action. In order to address this issue, the 
process of enzymatic hydrolysis is consistently inte-
grated with complementary methodologies (Moniru-
zzaman and Ono 2013). The study conducted by 
Moniruzzaman and Ono (2013) focused on investi-
gating the process of separating cellulose fibers from 
wood chips. This was achieved by a pre-treatment 
method including the use of an ionic liquid, which 
aimed to enhance the accessible surface area of the 
cellulose fibers. Subsequently, enzymatic hydrolysis 
was carried out using laccase. The nanocellulose that 
was synthesized exhibited a greater degree of crys-
tallinity and thermal stability in comparison to the 
original wood fibers (Moniruzzaman and Ono 2013).

Mechanical process

The mechanical process involves extracting cellulose 
fibrils with significant shear force, causing cellulose 
fiber cleavage along their longitudinal axis, resulting 
in the formation of CNFs. The mechanical techniques 
that are often used include high pressure homog-
enization, ultrasonication, and ball milling pro-
cesses (Abdul et al. 2012). The process of high-pres-
sure  homogenization (HPH) involves the passage of 
cellulose slurry into a vessel with both high pressure 
and high velocity. The generation of impact force and 
shear force inside a fluid medium facilitates the cleav-
age of cellulose microfibrils, resulting in a reduction 
of their diameter to the nanometer scale (Abdul et al. 
2014). Ultrasonication is a technique used to defi-
brillate cellulose fibers by using the hydrodynamic 
forces generated by ultrasound. This process gener-
ates mechanical oscillating power, which leads to the 
creation, enlargement, and collapse of microscopic 
gas bubbles as the liquid molecules acquire ultra-
sonic energy (Dufresne 2019). Ball milling is another 

mechanical method that has been widely employed 
for the defibrillation of cellulose fibers (Barakat et al. 
2014). It significantly affects the structure, morphol-
ogy, crystallinity, and thermal stability of the materi-
als and is used to grind native cellulose fibers, pro-
ducing amorphous cellulose. This cellulose exhibits 
reductions in crystallinity, size, morphology, and 
alterations in crystalline lattice structure. The primary 
elements of a ball milling machine are milling balls, 
also known as grinding media, housed in a milling 
jar or milling beaker. Various types of ball millers are 
widely used in industrial and laboratory settings, such 
as the planetary ball mill, mixer ball mill, and vibra-
tion ball mill. The planetary ball mill is a mechanical 
process that involves the collision of balls and fric-
tion between the balls and the wall of a rotating mill-
ing jar. The characteristics of ball-milled products are 
influenced by factors such as the quantity and size of 
balls, the speed of milling, the state of milling (dry 
or wet), the weight ratio between balls and materials, 
and the duration of milling (Phanthong et  al. 2018; 
Piras et al.2019). The list of various biomass sources 
of nanocellulose, their isolation procedures, and their 
dimensions are shown in Table 2.

PLA/ nanocellulose composite films for food 
packaging

PLA is becoming more prevalent as a packaging 
polymer for a wide range of fresh food items, includ-
ing fruits and vegetables. It is often used in the form 
of films, containers, and coatings. Despite consider-
able research endeavors, the thermal, mechanical, and 
barrier characteristics of PLA remain inadequate for 
some rigorous applications in the field of food pack-
aging (Marano et al. 2022; Farah et al. 2016). Nano-
cellulose, when incorporated into PLA biocompos-
ites, significantly improves tensile strength and elastic 
modulus. Its compact network formation in compos-
ites is advantageous due to robust hydrogen bond-
ing, which significantly impedes molecule passage, 
making it a valuable filler for barrier applications 
(Vatansever et  al. 2019). Nevertheless, the use of 
nanocellulose in hydrophobic polymers, such as PLA, 
is hindered by its high polarity and inadequate com-
patibility, resulting in diminished moisture resistance 
and suboptimal mechanical characteristics. Various 
surface modification techniques, including monomer 
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grafting, silylation, surfactant treatment, acetyla-
tion, and esterification, have been used to reduce the 
hydrophilicity of nanocellulose in order to enhance 
its dispersion in PLA (Song et al. 2014; Raquez et al. 
2012; Fortunati et al. 2012; Jonoobi et al. 2012; Lee 
et al. 2009).

Properties of PLA/nanocellulose composites

Morphological properties

Atomic force microscopy (AFM) and Scanning elec-
tron microscopy (SEM) are widely used techniques 
for visualizing the morphology and microstructure of 
materials (Falsafi et  al. 2020). SEM works by scan-
ning the surface of a sample with a beam of electrons 
with a relatively low energy. Photons and electrons 
are emitted from or near the sample surface as the 
beam approaches and penetrates the material (Akhtar 
et al. 2018).

Frone et  al. (2013) reported on morphological 
investigations pertaining to the fabrication of bio-
nanocomposites composed of PLA/CNC. The mor-
phology of both pure PLA and nanocomposites was 
assessed using a novel and advanced AFM method 

known as Peak Force QNM (Quantitative Mechanical 
Property Mapping at the Nanoscale). This approach 
effectively highlighted the nanoscale features by 
elastic modulus mapping. Figure  8a-b show typical 
topography views of PLA composites including cel-
lulose nanofibers, both with and without silane treat-
ment. The analysis of these data revealed a more 
pronounced dispersion in the PLA composite with 
silane-treated CNFs. The distribution of CNFs on the 
surface of the PLA/CNFs composite was found to be 
more uniform, with fewer instances of fiber agglom-
eration seen in Fig. 8b in comparison to Fig. 8a. The 
majority of CNF agglomerates were situated towards 
the surface of the material, in contrast to CNFs, which 
were found deeper into the polymer. This observation 
implies that the PLA/CNFs exhibited a more favour-
able interface between the cellulose fibers and the 
matrix (Frone et al. 2013).

Herrera et  al. (2015) reported the use of SEM 
analysis in their study on the fabrication of PLA/CNF 
bionanocomposites. The brittleness of the fracture 
surface of neat PLA was evident, as seen in Fig. 9a. 
This was due to the consequence of the inherent fra-
gility of PLA. It was anticipated that the incorpora-
tion of glycerol triacetate (GTA) as a plasticizer 

Table 2   List of various biomass sources of nanocellulose, their isolation procedures, and their dimensions

Biomass Source Isolation Procedure Shape of nanoparticles Dimension References

Paraguayan Residual Agro-
Industrial Biomass

Acid hydrolysis Whisker-like Diameter of 230 ± 42 nm and 
a height of 12 ± 2 nm

(Velazquez et al. 2022)

Miscanthus (M. sacchariflo-
rus and M. sinensis) and 
Sorghum (S. saccharatum 
and S. bicolor)

Acid Hydrolysis Spherical Diameter of 27 to 54 nm (Babicka et al. 2022)

Husks of short, medium and 
long rice grains

Acid hydrolysis Nanowhiskers Diameters of 11.7–28.9 nm (Rashid and 
Dutta 2020)

Pistachio shell Acid hydrolysis Spherical Diameter of 68.8 ± 20.7 nm (Kasiri and Fathi 
2018)

Vietnamese agricultural 
wastes (nypa fruticans 
trunk, coconut husk fiber, 
and rice husk)

Acid hydrolysis Nanorod Lengths of 200–500 nm and 
widths of 10–15 nm

(Nang An et al. 2020)

Brazilian satintail (Imperata 
Brasiliensis) plant

Acid hydrolysis Nanorod Diameter of 10 to 60 nm and 
length of 150 to 250 nm

(Benini et al. 2018)

Wheat straw and soy hulls Mechanical process Nanofibre Diameters of 10–80 nm and 
lengths of a few thousand 
nanometers

(Alemdar and Sain 
2008)

Tomato peels Acid hydrolysis Nanorod Diameter 7.2 nm and length 
almost 135 nm

(Jiang and Hsieh 2015)

Pine cones Mechanical process Nanofibre Diameter almost 15 nm (Rambabu et al. 2016)
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would result in improved dispersion and distribution 
of CNFs inside the matrix. The micrographs of PLA/
GTA and PLA/GTA/ CNF bionanocomposites are 
shown in Fig. 9b and c, respectively. The fracture sur-
face of the PLA/CNF bionanocomposites with GTA 
plasticizer in Fig.  9c exhibited a ductile fracture, as 
seen by the significant presence of crazes. The forma-
tion of crazes was subject to several influencing vari-
ables, including the level of crystallinity and the size 
of spherulites. The inclusion of CNFs in bionano-
composites resulted in a decrease in the available area 
for spherulite formation, which led to a decrease in 
the brittleness of the materials (Herrera et al. 2015). 
Fractured surfaces of PLA and PLA/CNC composites 
were studied by Fortunati et al. (2015). The neat PLA 

film sample had a rather smooth fractured surface. In 
contrast, the unmodified CNC-based nanocompos-
ites exhibited a rougher and fractured surface as can 
be seen in Fig. 10. This roughness indicates a greater 
brittleness in the CNC-based formulations compared 
to the pristine PLA film. Furthermore, the fractured 
surface of PLA/3CNC exhibits increased rough-
ness as a result of the greater concentration of CNC 
in comparison to PLA/1CNC. Distinctive behavior 
was seen in formulations including surfactant modi-
fied CNCs, whereby the presence of the surfactant 
induced a porous structure. This phenomenon was 
more pronounced in the composite material com-
posed of 3 wt% surfactant modified CNCs (3 s-CNC). 
The fracture surface of PLA/1  s-CNC exhibited 

Fig. 8   AFM micrographs of a untreated and b silane treated CNF reinforced PLA composites at a scan size of 1.7 µm × 1.7 µm 
(Frone et al. 2013)

Fig. 9   Fractured surfaces morphology of a PLA, b PLA/GTA, and c PLA/GTA/CNF films (Herrera et al. 2015)
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compelling evidence of the homogeneous dispersion 
of modified cellulose nanocrystals and plastic defor-
mation (Fortunati et al. 2015).

The influence of several thin-film production pro-
cedures, in conjunction with varied concentrations of 
CNCs ranging from 1 to 5 wt%, on the characteris-
tics of PLA films was reported by Shojaeiarani et al. 
(2020). The nanocomposite thin films were fabri-
cated using solvent casting and spin-coating methods. 
SEM analysis demonstrated that the spin-coated films 
exhibited a distinct difference compared to the solvent 
cast samples. Specifically, the spin-coated films had a 
smaller size and a more uniform distribution of CNCs 
inside the PLA matrix (Shojaeiarani et al. 2020). This 
observation was especially evident when the CNCs 
concentration was low, at 1 wt% and 3 wt%. The 
primary factors influencing the prevention of micro-
sized agglomeration development in spin-coated films 
are a rapid solvent evaporation rate and the syner-
gistic effects of centrifugal force and surface tension 
during the spin-coating procedure. In a similar man-
ner, nanocomposites of PLA/CNCs with CNC con-
centrations of 1, 3, and 5 wt% were fabricated using 
two methods: (a) solution casting and (b) dilution of 

a solution-casted masterbatch of PLA/CNCs by melt 
mixing in a twin-screw extruder. This study exam-
ined the influence of the preparation procedure on the 
quality of CNC dispersion and, consequently, on the 
properties of the nanocomposites. The findings from 
the morphological investigations indicated that the 
solution casting method resulted in a more effective 
dispersion of CNCs within PLA. Conversely, the melt 
processing of nanocomposites led to the formation of 
CNC agglomerates, potentially due to the presence of 
highly robust hydrogen bonding among CNC nano-
particles (Arslan et al. 2020).

Rheological properties

The rheological characteristics of composite mate-
rials are of great importance in enhancing the pro-
cessability of composites, particularly in process-
ing operations that entail high shear rates, such as 
extrusion and injection molding (Ching et al. 2016). 
CNCs have been documented as effective rheological 
modifiers for various polymers due to their capacity 
to embed themselves between polymer chains, hence 
imparting notable stability to the polymer network. 

Fig. 10   FESEM investiga-
tion of fracture surfaces 
of PLA and PLA based 
nanocomposites containing 
1%wt and 3%wt of unmodi-
fied (CNCs) and surfactant 
modified (s-CNCs) cellu-
lose nanocrystals (Fortunati 
et al. 2015)
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The evaluation of nanocellulose crystal dispersion 
within a polymer matrix can be assessed by analyz-
ing the storage modulus (G’), loss modulus (G"), 
and complex viscosity (η*). These parameters serve 
as indicators to determine the extent of dispersion 
achieved. The observation of higher G’ and G" val-
ues suggests a uniform dispersion of CNCs within a 
polymer matrix, whereas the decrease in G’ and G" 
can be explained by the agglomeration of nanocrys-
tals within the polymer matrix (Ching et  al. 2016; 
Mariano et al. 2016). The complex viscosity (η*) of 
the system can be modulated by the presence of addi-
tional particles, as elucidated by the Einstein-Batch-
elor theory (Moustafa et  al. 2019). When assessing 
material processing behaviors, the melt flow index 
(MFI), which measures the ease with which a thermo-
plastic polymer can flow at a given temperature and 
pressure, is essential. MFI is necessary for PLA to 
ensure that it may be used in a variety of applications, 
including food packaging, which is also impacted by 
adding nanocellulose, while also improving the mate-
rial’s thermal and physical characteristics. While 
studying the influence of added CNCs (1.5%) on 
PLA, Bajwa et al. (2021) observed a decrease in MFI 
from 6.75to 5.31  g/10  min, which was attributed to 
the flow burden of CNCs within the matrix (Bajwa 
et al. 2021).

The identification of the rheological percolation 
threshold can be achieved by determining the con-
centration at which the network formation of cellu-
lose nanoparticles occurs. At these concentrations, 

it is expected that the long-range relaxation of poly-
mer chains would be restricted, leading to a notable 
rise in both viscosity and moduli at lower frequen-
cies (Vatansever et al. 2019). In a study conducted by 
Musa Kamal and co-workers,  they identified several 
rheological features that serve as indicators of the 
initiation of solid-network formation. These features 
include: (a) a sudden reduction in the linear viscoe-
lastic region, (b) a higher value of G’ compared to G" 
at low frequencies, (c) an increase in complex viscos-
ity at low frequencies, and (d) the presence of an infi-
nite relaxation time derived from the relaxation time 
spectra. These findings provide valuable insights into 
the characteristics associated with the formation of 
solid networks (Khoshkava and Kamal 2014). Hence, 
the establishment of the network structure is contin-
gent upon the uniform distribution of nanoparticles. 
Therefore, the observed rheological behaviors may 
serve as a potential metric for assessing the quality 
of nanocellulose dispersion within PLA (Dufresne  
2017).

In a separate study, the incorporation of CNCs 
into PLA was achieved through the use of the Pick-
ering emulsion technique. In the rheological meas-
urements, the storage modulus (G’) and complex 
viscosity (η*) of both neat PLA and PLA/CNC com-
posites were investigated as a function of frequency 
(ω), as shown in Fig.  11. The rheological character-
istics of all samples were found to be stable. The fre-
quency dependence of the storage modulus of neat 
PLA exhibited characteristics commonly observed in 

Fig. 11   Values for a storage modulus and b complex viscosity of neat PLA and the PLA/CNC composites (Zhang et al. 2019)
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polymer melts, as illustrated in Fig. 11a. In contrast, 
it was observed that the storage modulus of the CNC 
composites exhibited an upward trend and eventually 
reached a plateau when subjected to low frequencies. 
The complex viscosity of pure PLA was observed to 
exhibit a prolonged plateau, as depicted in Fig. 11b. 
At higher frequencies, a minimal shear-thinning ten-
dency was observed. In the study, it was observed 
that all composites displayed a clear shear-thinning 
behavior at low frequencies, without the presence of 
a plateau region (Zhang et al. 2019). The findings of 
this study suggest that there is a possibility for the 
formation of a network between CNCs and the PLA 
matrix. This network formation appears to facilitate 
the transition of the material from a fluid-like state to 
a solid-like behavior, particularly at elevated tempera-
tures (Kamal and Khoshkava 2015). This behavior 
can be attributed to the effective dispersion of CNC 
within the PLA matrix. The effective dispersion of 
nanoparticles in PLA matrices has been identified as 
the cause for the reported similar rheological behav-
ior seen in other PLA/CNC composites. The study 
conducted by Bagheriasl et  al. (2018) found that all 
samples of PLA/CNC displayed consistent rheologi-
cal properties, with variations of less than 2%. In the 
case of PLA with a 1 wt% concentration of CNC 
(PLA/1CNC), the values of G" and G’ exhibited a 
significant increase of 1 and 4 orders of magnitude, 
respectively, when compared to pure PLA. Moreo-
ver, when the concentration of CNCs rises, there is an 
additional enhancement seen, with G" and G’ increas-
ing by up to 3 and 6 orders of magnitude, respectively, 
relative to pure PLA. The nanocomposites exhibited a 
notable rise in both the loss and storage moduli when 
the amount of CNC was increased. This effect was 
especially pronounced at lower frequencies, suggest-
ing a solid-like behavior (Bagheriasl et al. 2018).

In another contribution, PLA nanocomposites 
with spray-and freeze-dried cellulose nanocrystals 
(SCNCs and FCNCs) were developed via solution 
casting using four different solvents. This study 
examined the influence of several solvent types, 
namely tetrahydrofuran (THF), chloroform (CHL), 
dimethylformamide (DMF), and dimethyl sulfoxide 
(DMSO), on the dispersion characteristics of SCNCs 
and FCNCs in PLA. The impact of the dielectric 
constant of solvents on the dispersion quality of 
CNCs was shown. The use of THF and CHL, which 
possess low dielectric constants, did not result in a 

satisfactory dispersion of CNCs in PLA. Conversely, 
the application of DMF, specifically DMSO, proved 
to be more successful in improving the dispersion of 
CNCs, which was attributed to the much greater die-
lectric constant shown by DMF and DMSO. In the 
present context, the rheological percolation thresh-
old values in PLA/SCNC nanocomposites, which 
were generated utilizing DMF and DMSO, were 
determined to be around 1.52 and 0.12 wt% CNC, 
respectively, using an empirical power-law equa-
tion. Furthermore, it was noted that the disparities in 
rheological characteristics between PLA/SCNC and 
PLA/FCNC nanocomposites were not significant; 
however, the SCNCs exhibited a somewhat more 
pronounced enhancement in the rheological proper-
ties of nanocomposites made with DMSO compared 
to FCNCs (Ozdemir and Nofar 2021). The impact 
of spray-dried lignin-coated cellulose nanocrystals 
(L-CNCs) filler on the rheological characteristics 
of PLA composites was investigated by Gupta et al. 
(2017). The rheological percolation threshold con-
centration for PLA/L-CNC composites was deter-
mined to be 0.66 wt% by power law analysis. The 
exceptional dispersion of L-CNCs inside the PLA 
matrix is responsible for the observed low rheologi-
cal percolation concentration. The incorporation 
of a mere 0.5 wt% of L-CNCs into the PLA matrix 
yielded a significant enhancement of around 60% 
in the storage modulus compared to pure PLA, as 
determined by dynamic mechanical analysis (Gupta 
et al. 2017). Vatansever et al. (2020) investigated the 
effects of varying molecular weights and crystallis-
ability properties of PLA on the dispersion quality 
and formation of percolation networks in CNCs. The 
findings indicated that achieving lower CNC per-
colation concentrations is possible by using a PLA 
matrix with a lower molecular weight. This was 
because a lower molecular weight allows for easier 
interpenetration of shorter chains and CNCs during 
their dissolution in the solvent. In contrast, it was 
observed that the concentration of CNC percolation 
was reduced even further with the utilization of PLA 
which exhibited higher crystallizability. In order to 
enhance the quality of CNC dispersion in hydropho-
bic polymers like PLA, it is important to consider 
various approaches (Vatansever et  al. 2020). These 
include modifying the surface of CNCs, utilizing 
surfactants or compatibilizers, and most importantly, 
selecting an appropriate polymer matrix based on its 
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molecular structure and configuration. This selection 
plays a critical role in facilitating more effective dis-
persion of CNCs within the polymer matrix (Arias 
et al. 2015).

Mechanical properties

In the investigation of potential applications for bio-
nanocomposites across diverse industries, includ-
ing biomedical and packaging sectors, the evalua-
tion of tensile properties emerges as a crucial factor 
to be considered (Ma et al. 2014). Tensile properties 
encompass various physical characteristics, includ-
ing tensile strength, elongation at break, and tensile 
modulus. These properties play an essential role in 
determining the material’s physical capabilities, par-
ticularly in critical and extreme conditions (Salmieri 
et al. 2014).

Numerous investigations have been undertaken to 
examine the potential impact of nanocellulose on the 
mechanical properties of composites from a theoreti-
cal perspective. In their study, Aitomäki and Oksman 
employed a micromechanical model known as the 
Halpin–Tsai model to assess the modulus efficiency 
(Aitomäki and Oksman 2014).

where, Em and Ef is the elastic modulus of the matrix 
and fiber, Vf is the fiber volume fraction and f is the 
reinforcement efficiency and ROM model to calculate 
the strength of the composite.

where, ηos is the orientation factor and σf is the fiber 
strength.

The authors used the given data pertaining to the 
elastic modulus and strength of several nano  cellu-
losic biocomposites. Subsequently, a reinforcing effi-
ciency factor was computed by using the Halpin–Tsai 
and ROM models. Both models’ interpretations con-
cluded that the nanocellulose demonstrated the great-
est reinforcing factor. According to the data provided 
by Ramires and Dufresne, the mechanical properties 
of nanocomposites are influenced by three primary 
factors: a) dimension and morphology, b) process-
ing technique, and c) nanostructure of the matrix and 
matrix/filler interface. The use of nanocellulose with 

(1)E
1
= Em

1 + ��vf

1 − �vf

(2)�R = �Os�ls� f vf + (1 − vf )�mf

a high aspect ratio and specific surface area, charac-
terized by a rough surface and reduced fiber diameter, 
has the potential to enhance the adhesion between 
nanofillers and matrices, hence leading to improved 
mechanical properties (Ramires and Dufresne 2011). 
Several investigations on nanocellulose reinforced 
PLA bionanocomposites have been conducted in 
recent years, and tensile testing has been employed to 
characterize their performance.

Zabidi et  al. (2022) conducted a study in which 
they fabricated and evaluated active and pH-sensi-
tive films composed of PLA  and CNFs. The PLA 
and PLA/NFC films were fabricated using the sol-
vent casting method, including 1.5% CNFs. Vari-
ous concentrations (5%, 10%, and 15%) of essential 
oils (EO), such as thymol and curry, were included 
in the films. The anthocyanin powder with a fixed 
amount of 1% was added to the films to serve as a 
pH indicator. The incorporation of CNFs  resulted 
in a decrease in the tensile strength of films, while 
simultaneously enhancing their flexibility. This may 
be attributed to the plasticizing influence exerted 
by EOs. The PLA/EO and PLA/ CNFs/EO films 
including curry exhibited a somewhat superior 
strength compared to the films containing thymol. 
The degree of flexibility shown by films was found 
to be positively correlated with the concentration 
of EO, irrespective of the specific kind of EO used 
(Zabidi et  al. 2022). In a study conducted by Sri-
sawat et al. (2023), PLA/CNF composites were fab-
ricated using a melt-compounding technique. CNFs 
was obtained from wood sawdust and utilized in its 
unmodified form. These CNFs had diameters meas-
uring around 10  nm and lengths spanning several 
microns. This study examined the impact of poly-
meric plasticizer selection on the mechanical per-
formance of PLA and PLA/CNF composites. In this 
study, the performance of poly(butylene adipate) 
(PBA) as a polymeric plasticizer was evaluated and 
compared to that of poly(ethylene glycol) (PEG), 
which is widely used as a plasticizer for PLA. Fig-
ure  12a presents stress–strain curves of neat PLA, 
plasticized PLA samples, and PLA composites 
incorporating CNFs. The observed PLA material 
demonstrated brittle failure behavior, characterized 
by a sudden and severe failure occurring at a rela-
tively low level of strain. The ductility of PLA was 
significantly enhanced through the incorporation 
of polymeric plasticizers. The plasticized samples 
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exhibited a notable plastic deformation response 
when subjected to tensile drawing, characterized by 
a significant elongation at break exceeding 400% 
(Srisawat et al. 2023). The mechanical performance 
of the composites was found to be influenced dif-
ferently by PBA and PEG, as evidenced by the 

results of the tensile and impact tests depicted in 
Fig. 12b-e.

In a separate study, the fabrication of PLA/cellu-
lose-nanowhisker (CNWs) nanocomposites was con-
ducted through a two-step process involving twin 
screw extrusion and subsequent injection molding. 

Fig. 12   a Stress–strain curves, b modulus, c tensile strength, d elongation at break, and e impact strength of PLA, its plasticized 
samples, and composites (Srisawat et al. 2023)
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In this study, the CNWs  were uniformly dispersed 
within a plasticizer prior to the melt mixing process. 
The Young’s moduli and strength of the nanocom-
posites were found to be higher compared to the neat 
matrix. This can be attributed to the reinforcing effect 
of the CNWs present in the nanocomposites. In con-
trast, it was observed that the nanocomposites exhib-
ited a reduced elongation at break. This phenomenon 
can be attributed to the incorporation of fibers, which 
potentially restrict the mobility of polymer chains, 
thereby diminishing the ductility of the polymer. In 
contrast to the anticipated outcomes, it was observed 
that the nanocomposite with the lowest content of 
CNWs exhibited the most superior mechanical prop-
erties. The observed outcome could be ascribed to the 
aggregation of the CNW filler at high levels of load-
ing (Moran et al. 2016). The effective preparation of 
L-lactide functionalized cellulose nanocrystals incor-
porating PLA (PLA/CNC-g-PLA) was achieved by 
the use of electrospinning technology. The enhance-
ment of the mechanical characteristics of the com-
posite fiber membranes was achieved by improving 
the molecular chain orientation using the electrospin-
ning technique. The tensile strength and elongation at 
break of the composite fiber film exhibited a signifi-
cant increase of 2.4 and 8.2 times, respectively, with 
the incorporation of 5% CNC-g-PLA (Chen et  al. 
2023).

In another investigation, CNCs  were subjected 
to modifications including methacrylamide, cetyl-
trimethylammonium bromide, and zinc oxide. 
These modified CNCs were then used in the pro-
cess of spray-coating the surface of PLA  sheets. 
The stress  at the yielding point of the PLA sheets 
was around 10 MPa, and the films experienced frac-
ture at a strain of approximately 400%. The yield 
point, which denotes the movement from elastic 
deformation—where the material can return to its 
original shape—to plastic deformation—where 
irreversible changes occur—is essential for assess-
ing the mechanical properties of PLA biocompos-
ites. Understanding the yield point is critical for 
PLA biocomposites, including those reinforced with 
nanocellulose, to assess their mechanical strength 
and suitability for applications such as sustain-
able food packaging and automotive parts. Differ-
ent types of PLA films with coatings showed a sig-
nificant increase in yield strength (20 to 30  MPa), 
indicating their enhanced ability to withstand 

external forces before irreversible deformation. 
The Young’s modulus of all the coatings showed a 
notable improvement, with PLA-CC8 (PLA/ cetyl-
trimethylammonium bromide modified CNCs) and 
PLA-MC8 (PLA/ methacrylamide modified CNCs) 
demonstrating enhanced tensile strength. However, 
it is worth noting that only PLA-CC8 managed to 
preserve the ductility of the original PLA films. The 
observed increase in mechanical strength may be 
attributed to the effective integration of the surface 
coating with the polymeric matrix, hence serving as 
a supportive framework. The observed ductility of 
PLA-CC8 might potentially be due to the favorable 
interfacial compatibility, which facilitated efficient 
stress transmission and delayed the occurrence of 
stretching failure (Huang et  al. 2023). In order to 
mitigate the inherent incompatibility between polar 
bacterial cellulose (BC) and nonpolar PLA, an acet-
ylation process was used using a non-conventional 
pathway facilitated by citric acid as the catalyst. 
The derivatized BC (AcBC) was introduced into the 
PLA matrix at different filler loadings. The analysis 
of tensile characteristics indicated that the introduc-
tion of pure BC into PLA resulted in a decrease in 
both stiffness and strength. This may be attributed 
to the significant aggregation and inadequate dis-
persion of the BC nanoribbons inside the less polar 
PLA matrix. Furthermore, the inadequate inter-
facial adhesion between the composite constitu-
ents resulted in a diminished capacity to transmit 
stress from the matrix to the reinforcement, thereby 
imposing restrictions on the tensile strength of the 
composites. On the other hand, the functionaliza-
tion of BC resulted in a notable enhancement in 
the dispersion of fillers and the interaction between 
fillers and the matrix. Consequently, the incorpora-
tion of AcBC content led to a significant enhance-
ment in the stiffness of the nanocomposites, exhibit-
ing an improvement of up to 40% compared to the 
pure PLA. Simultaneously, the tensile strength of 
the matrix remained unaffected. The enhancement 
of the mechanical characteristics of nanocompos-
ites has been attributed to the integration of a phase 
with lower compliance into the polymer matrix 
(Ferreira et  al. 2019). In this particular scenario, 
a portion of the external stress was assimilated by 
the more rigid phase, while a portion was dissipated 
via friction between particles and between parti-
cles and the polymer. This was contingent upon the 



6019Cellulose (2024) 31:5997–6042	

1 3
Vol.: (0123456789)

successful attainment of appropriate dispersion of 
nanofillers and compatibility between the reinforce-
ment and matrix (Ávila Ramírez et al. 2020).

Thermal properties

The glass transition temperature (Tg), melting tem-
perature (Tm), enthalpy (H), heat capacity (Cp), 
crystallization process, and spherulite formation of 
bio-polymers reinforced with nano cellulose have 
been extensively studied using differential scanning 
calorimetry (DSC). (Leyva-Porras et al. 2019; Krish-
nasamy et  al. 2019). It has been reported that when 
a reinforcer acts as a nucleating agent, there is an 
observed increase in the number of heterogeneous 
nuclei for crystallization, leading to a higher crystal-
lization temperature of the polymer. Nevertheless, the 
presence of the reinforcer as an anti-nucleating agent 
leads to a reduction in the crystallization temperature. 
CNCs exhibit nucleating properties, and their incor-
poration into polymers has the potential to increase 
the melting temperature, crystallization tempera-
ture (Tc), and degree of crystallinity of the polymers 
(Tarani et  al. 2021; Ferreira et  al. 2017; Khoshkava 
et al. 2015). The presence of thick crystalline lamel-
lae in the polymer is correlated with an elevated melt-
ing temperature, whereas the crystallization of imper-
fect polymer crystals is linked to a reduced melting 
temperature (Ferreira et al. 2018).

Clarkson et  al. (2020) conducted a study using a 
solvent-free melt-compounding process to investi-
gate the incorporation of minimal concentrations of 
CNCs and CNFs into PLA. To disperse the nanopar-
ticles within the PLA matrix, PEG was employed as 
a dispersing agent. In this study, the effectiveness of 
CNCs and CNFs as nucleating agents for PLA was 
investigated, with a focus on their similarities to talc. 
The Avrami analysis was conducted to determine the 
crystallization rate, half-time, and Avrami exponent. 
The results indicated a potential synergistic effect 
between nanocellulose and PEG, even at low con-
centrations. The experimental results demonstrated 
that the crystallization half-time of samples contain-
ing nanocellulose was observed to be lower than that 
of talc at elevated temperatures. This suggested that 
under specific conditions, the presence of nanocellu-
lose promotes faster crystallization. The analysis of 
secondary nucleation was conducted to investigate 
the impact of CNCs on the surface energy of samples. 

The findings indicated a decrease in surface energy 
for samples containing CNCs. This observation pro-
vided additional evidence that CNCs can act as an 
effective nucleation agent, particularly due to the 
increased mobility of plasticized PLA. These results 
suggested that even at very low concentrations, CNCs 
can effectively induce nucleation in the material 
(Clarkson et  al. 2020). Singh et  al. (2020) success-
fully synthesised PLA biocomposites containing up 
to 30% wt % of cellulosic fibers (CF) modified with 
poly(ethylene oxide) (PEO) using a corotating twin-
screw extruder and an injection moulding machine. 
The thermal characteristics, in particular the glass 
transition and cold crystallization temperatures, were 
greatly affected by the addition of PEO and CF. As 
a result of PEO’s plasticizing impact on the samples, 
the Tg of PLA/PEO and PLA/CF/PEO biocompos-
ites was found to be lower than that of pure PLA. In 
addition, a higher degree of crystallinity in the PLA 
and PLA/PEO samples may be the cause of the Tcc’s 
shift to a lower temperature after the addition of CF 
to PLA (Singh et al. 2020).

The CNC-PLLA or CNC-PDLA composites were 
synthesised using the in-situ polymerization of CNCs 
and L-lactic acid or D-lactic acid. The composites of 
PLA/CNC-PLLA and PLA/CNC-PDLA exhibited 
improved crystallization capability and mechanical 
characteristics. The incorporation of CNCs derived 
from poly(D-lactic acid) (PDLA) exhibited a more 
pronounced improvement in the crystallization behav-
iour and mechanical characteristics of the resulting 
nanocomposites in comparison to CNCs derived from 
poly(L-lactic acid) (PLLA). Under identical cool-
ing conditions, the nanocomposites containing 10% 
CNC-PDLA exhibited a significant increase in crys-
tallinity. Specifically, slow cooling at a rate of 5 0C 
min−1 resulted in an 86.7% enhancement, while rapid 
cooling at a rate of 25 0C min−1 led to an astonish-
ing 879% increase in crystallinity compared to pure 
PLA (Chai et al. 2020). The nucleation processes of 
CNCs inside the semi-crystalline PLA matrix were 
investigated in a separate study. Poly(vinyl acetate) 
(PVAc) chains were successfully grafted onto the sur-
face of CNCs by a highly efficient radical polymeriza-
tion procedure in an aqueous environment. The find-
ings of this study demonstrated that despite achieving 
a homogenous dispersion of CNCs by greater PVAc 
grafting density, the nucleation effect was effectively 
reduced. This may be attributed to the presence of 
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abundant PVAc chains at the interface, which led to 
the dilution of PLA chains (Wu et al. 2023).

Thermogravimetric analysis (TGA) has been 
widely used as an analytical method for investigat-
ing the thermal stability of materials utilized in 
diverse environmental, pharmaceutical, food, and 
petrochemical contexts (Yang et  al. 2019). TGA is 
a technique that quantifies changes in the mass of a 
specimen in relation to variations in temperature 
and duration. TGA has been used in several research 
studies using PLA/cellulose composites to assess the 
thermal stability and oxidative stability of the mate-
rials, determine the composition of multi-component 
systems, predict the product’s durability, analyze 
kinetic decompositions, and measure the moisture 
and volatile content of the materials (Nurazzi et  al. 
2022). TGA was employed by Wang et al. (2020) to 
investigate the effect of incorporation of CNFs as a 
reinforcing component in PLA. The study revealed 
that the PLA/CNF composites had a higher first deg-
radation temperature compared to pure PLA, suggest-
ing that the incorporation of cellulose nanofibers led 
to enhanced thermal stability in the composites. The 
derivative thermogram (DTG) analysis reveals that 
PLA exhibited a single decomposition peak at 331 
0C. In contrast, cellulose nanofibers exhibited two 
temperature peaks. The first peak, which occurred at 
approximately 40 0C, was associated with the hydro-
philic groups present in the nanofibers. The second 
peak, observed at around 346 0C, was attributed to 
dehydration reactions and the generation of volatile 
products through chain scission and decomposition. 
Furthermore, the incorporation of 5.0 wt% of CNF 
into PLA/CNF composites resulted in a significant 
increase of 20 0C in the start degradation temperature 
and 10 0C in the maximum degradation temperature. 
The results suggested that the PLA/CNF composites 
enhanced the thermal properties in comparison to 
pure PLA (Wang et al. 2020).

In a separate study, Sucinda et  al. (2021) used 
varying quantities of Pennisetum purpureum/Napier 
cellulose nanowhiskers (NWCs) to enhance the ther-
mal properties of PLA by solvent casting method. 
The thermal degradation of the sample was seen to 
occur in two distinct phases, as shown in Fig.  13. 
During the first phase, it was observed that all film 
samples exhibited thermal stability within the tem-
perature range of up to 79 0C. The bionanocompos-
ite film surface experienced weight loss might be 

attributed to the evaporation of bound moisture, as 
seen in previous studies. During the second stage, it 
was observed that the weight loss started to increase 
when the samples contained NWC in the range of 
0.5–1.5 wt%. However, as the amount of NWC in the 
sample increased to 3 wt%, the weight loss exhib-
ited a declining trend. The PLA/0.5% NWC TGA 
curve exhibited the highest Tonset and Tpeak values, 
measuring at 101 0C and 136 0C, respectively. The 
results suggested that the PLA/0.5% NWC bionano-
composite film exhibited notable thermal stability 
within this specific range (Sucinda et al. 2021). In a 
separate study, it was shown using TGA/DTG analy-
sis that the deterioration of the CNC-based composite 
occurred at a lower temperature range in comparison 
to the MCC-based composite. The decrease in cellu-
lose particle size provided a greater surface area-to-
volume ratio, which resulted in an increased rate of 
heat transmission. The increased rate of heat trans-
mission led to a decrease in the observed degradation 
temperature of the nanocomposites (Bhiogade and 
Kannan  2021). In order to create the PLA composite 
films, Rahman et al. (2023) first isolated fibers from 
the banana rachis, which they then used to synthesize 
CNCs. It was empirically observed that, up to an opti-
mum level, the thermal stability of the created nano-
composite films increased  together with the amount 
of CNC in the PLA matrix. Maximum thermal sta-
bility was achieved with PLA/CNC-20, resulting in 
about 40.3% residues remaining after 600 0C; all pro-
duced films continued the growing trend except PLA/
CNC-10, which exhibited a reverse tendency and 

Fig. 13   TGA and DTG curves for PLA/NWC bionanocom-
posite films (Sucinda et al. 2021)
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drop down with the lowest remaining residual mass 
which was around 2.1% after 600 0C. Compounding 
issues, such as CNC agglomeration and poor adher-
ence to the PLA matrix, may have been brought on by 
this unintended consequence (Rahman et al. 2023).

Barrier properties

The use of cellulose nanoparticles has the potential to 
enhance the barrier qualities of PLA by establishing a 
tortuous channel. This characteristic renders the bio-
composite very advantageous for various packaging 
applications (Kalia et  al. 2011). The schematic rep-
resentation in Fig. 14 depicts the tortuous pathway by 
which water and gas molecules permeate as a result 
of the incorporation of cellulose nanoparticles. In 
addition to possessing a solid structure characterized 
by low permeability, cellulose nanoparticles have the 
potential to establish a robust polymer-particle asso-
ciation, resulting in the formation of a cohesive net-
work inside the matrix. This network has the ability 
to impede molecular mobility and thus restrict the 
diffusion of penetrant substances (Arslan et al. 2021). 
It is important to note that the shape, orientation, and 
effective dispersion of nanoparticles inside the poly-
mer matrix significantly impact the barrier charac-
teristics of PLA. The key characteristics that render 
cellulose nanoparticles suitable for packaging appli-
cations are their degree of crystallinity, aspect ratio, 

surface polarity, and internal cohesion. The afore-
mentioned features exhibit advantageous character-
istics with regard to barrier properties (Ferreira et al. 
2018; Helanto et al. 2019). Specifically, the presence 
of crystallinity enhances water resistance and reduces 
molecular penetration. However, it is important to 
note that cellulose, owing to the existence of hydroxy 
groups, also exhibits poor water resistance and mois-
ture absorption. It is important to acknowledge that 
the evaluation of barrier qualities in polymers primar-
ily involves the assessment of oxygen transmission 
rate (OTR), water vapour permeability (WVP), and 
overall migration tests. These parameters are signifi-
cant as they have a discernible influence on deteriora-
tive processes (Salmieri et al. 2014). Table 3 displays 
the mechanical, thermal and barrier properties of 
recently reported nanocellulose-reinforced PLA-
based composite films.

Numerous studies examined the barrier character-
istics of nanocomposite systems consisting of PLA 
and CNCs. The construction of three-phase multi-
layered materials (TMLs) included the formation 
of a composite structure by combining a film made 
from CNFs and CNCs with two sheets of PLA by a 
heat-pressing technique. Prior to the fabrication of 
nanocellulosic films, CNFs and CNCs underwent 
a modification process including the adsorption of 
a nanoemulsion derived from rosin. The findings of 
the study indicated that incorporating nanocellulose 

Fig. 14   Schematic representation of the tortuous path for water and gas molecules to diffuse due to addition of nanocellulose 
(Arslan et al. 2021)



6022	 Cellulose (2024) 31:5997–6042

1 3
Vol:. (1234567890)

Ta
bl

e 
3  

P
ro

pe
rti

es
 o

f P
LA

/ n
an

oc
el

lu
lo

se
 c

om
po

si
te

 fi
lm

s

Ty
pe

 o
f 

na
no

ce
l-

lu
lo

se

M
od

ifi
ca

tio
ns

N
an

op
ar

tic
le

 
co

nt
en

t w
t%

M
ec

ha
ni

ca
l p

ro
pe

rti
es

Th
er

m
al

 p
ro

pe
r-

tie
s

Re
du

ct
io

n 
in

 O
TR

 
(%

)

Re
du

ct
io

n 
in

 W
V

P 
(%

)

Re
fe

re
nc

es

Te
ns

ile
 

St
re

ng
th

 
(M

Pa
)

Te
ns

ile
 

M
od

ul
us

 
(G

Pa
)

El
on

ga
tio

n 
at

 b
re

ak
 

(%
)

T m
 (0 C

)
T g

 (0 C
)

C
N

C
-

5
77

.9
3.

9
2.

7
-

-
-

-
(O

ks
m

an
 e

t a
l. 

20
06

)
C

N
C

-
3

55
2.

61
2.

3
14

7.
9

58
.7

-
-

(P
ra

ce
lla

 e
t a

l. 
20

14
)

C
N

C
Si

ly
la

tio
n

4
14

0.
11

25
0

15
4.

2
30

.6
-

-
(Q

ia
n 

an
d 

Sh
en

g 
20

17
)

C
N

C
-

3
60

3.
5

2.
3

16
5

62
.5

-
-

(A
ria

s e
t a

l. 
20

15
)

C
N

C
Es

te
rifi

ca
tio

n
59

.9
4.

7
3.

6
-

-
-

-
(S

ho
ja

ei
ar

an
i e

t a
l. 

20
18

)
C

N
C

A
ce

ty
la

tio
n

3
62

2.
1

4.
2

-
-

-
-

(X
u 

et
 a

l. 
20

16
)

C
N

C
PL

A
-g

-C
N

C
1

51
2.

1
1.

9
16

5.
5

52
.7

-
-

(D
ha

r e
t a

l. 
20

16
)

C
N

C
U

re
th

an
iz

at
io

n
5

74
3.

5
-

-
-

-
-

(G
w

on
 e

t a
l. 

20
16

)
C

N
C

Es
te

rifi
ca

tio
n

1
42

2.
8

10
-

-
-

-
(R

ob
le

s e
t a

l. 
20

15
)

C
N

C
-

5
55

.5
2.

7
9.

7
-

-
-

-
(B

on
de

so
n 

an
d 

O
ks

m
an

 2
00

7)
C

N
C

C
N

C
-I

C
N

2.
5

52
-

5.
6

15
2.

2
59

-
-

(E
sp

in
o-

Pe
re

z 
et

 a
l. 

20
13

)
C

N
C

-
5

46
.1

4.
4

18
14

9.
7

54
.1

-
-

(F
or

tu
na

ti 
et

 a
l. 

20
12

)
C

N
C

Si
ly

la
tio

n
2

58
.6

1.
4

8.
3

17
1.

8
-

-
-

(P
ei

 e
t a

l. 
20

10
)

-
2

53
4.

75
-

-
-

-
-

(O
ku

bo
 e

t a
l. 

20
09

)
C

N
F

C
ar

bo
xy

m
et

hy
la

tio
n

Es
te

rifi
ca

tio
n

5
63

3.
75

-
-

-
-

-
(E

yh
ol

ze
r e

t a
l. 

20
12

)

C
N

F
Su

rfa
ce

 c
oa

tin
g/

Po
ly

et
hy

le
n-

im
in

e
-

-
-

-
-

-
65

–9
0

50
(K

iz
ilt

as
 e

t a
l. 

20
16

)

C
N

F
Su

rfa
ce

 m
od

ifi
ca

tio
n/

ac
et

yl
at

io
n

5
-

-
-

-
-

64
46

(F
en

g 
et

 a
l. 

20
17

)
C

N
F

-
10

57
3.

6
-

-
-

-
-

(Q
ue

ro
 e

t a
l. 

20
12

)
C

N
F

In
 si

tu
 c

he
m

ic
al

 g
ra

fti
ng

5
58

.5
2.

55
7

-
-

-
-

(L
ee

 e
t a

l. 
20

12
)

B
N

C
G

ly
ox

al
iz

at
io

n 
of

 B
C

15
39

3.
2

1.
4

-
-

-
-

(M
ar

tín
ez

-S
an

z 
et

 a
l. 

20
13

)
B

N
C

-
5

67
4.

7
1.

9
16

6
57

(B
la

ke
r e

t a
l. 

20
14

)
B

N
C

Po
ly

gl
yc

id
yl

 m
et

ha
cr

yl
at

e-
G

ra
fti

ng
3

55
2.

8
4

16
7.

4
61

.3
7

-
(A

m
br

os
io

-M
ar

tín
 e

t a
l. 

20
15

)

B
N

C
H

ex
an

oi
c 

an
d 

do
de

ca
no

ic
 a

ci
d

2
14

1
5.

7
17

17
0.

2
58

-
-

(A
ul

in
 e

t a
l. 

20
13

)
B

N
C

La
ct

ic
 a

ci
d 

ol
ig

om
er

s g
ra

fti
ng

5
46

1.
66

2.
7

14
5

53
24

19
(T

rif
ol

 e
t a

l. 
20

16
)

B
N

C
C

om
pa

tib
iz

er
/E

V
O

H
3

-
-

-
15

7.
4

48
.4

-
43

(M
ar

tin
ez

-S
an

z 
et

 a
l. 

20
12

)



6023Cellulose (2024) 31:5997–6042	

1 3
Vol.: (0123456789)

as an intermediate layer between two PLA films led 
to a notable improvement in the barrier properties 
against oxygen. The oxygen permeability decreased 
by approximately 84–96% for nanocellulose alone, 
and by about 44–50% for nanocellulose combined 
with rosins as the inner layer (Le Gars et al. 2020). In 
a study conducted by Vilarinho et  al. (2021), it was 
observed that the incorporation of CNCs and green 
tea extract (GTE) into PLA resulted in the most sig-
nificant decrease in oxygen transmission ratio and 
water vapor permeability, with reductions of 60% and 
33% respectively. These findings provided evidence 
of a synergistic effect resulting from the combined 
presence of CNCs and GTE in the PLA matrix. The 
nanocomposite exhibited excellent filler dispersion 
and a high level of crystallinity, resulting in a highly 
effective barrier effect (Vilarinho et al. 2021).

According to Xu et  al. (2020) adding 3% CNCs 
decreased the oxygen transmission rate of PLA com-
posite films from 209.9 to 180.8 cm3/m2/day. Add-
ing compatibilizer, methylene diphenyl diisocyanate 
(MDI, 4%), further decreased the rate to 109.3 cm3/
m2/day. PLA’s water vapor transfer rate decreased 
with the addition of 3% NCC and 4% MDI, from 44.4 
to 28.6 g/m2/day. Due to interactions between the iso-
cyanate groups of MDI and the hydroxy end groups 
of PLA, the addition of MDI enhanced the hydro-
philicity of PLA films. Therefore, it’s possible that 
the inclusion of MDI improved the hydrophilic CNC 
nanofillers’ dispersion in the PLA matrix, enhanc-
ing tortuosity and lowering OTR and WVTR (Xu 
et al. 2020). Based on the report of Liu and Matuana 
(2019) due to the enhanced crystallinity of the CNCs 
added to the PLA matrix, the WVP and OP values of 
the PLA films were dramatically lowered in the case 
of PLA/CNC extruded cast films, resulting in a tortu-
osity effect. With an increase in CNC content, WVP 
and OP decreased practically linearly. The inclusion 
of 2% CNCs resulted in overall reductions of around 
45% in WVP and 49% in OP. When tested at 23 C, 
the OP values for the neat PLA and PLA-2%CNC cast 
films did not change when the RH increased from 0 
to 75% (Liu and Matuana 2019). The impact of CNC 
concentration on the oxygen permeability (OP) and 
water vapor permeability (WVP) of extrusion-blown 
PLA films was investigated by Karkhanis et al. (2018) 
at different relative humidities (RH) and temperatures. 
Both WVP and OP obeyed the Arrhenius equation; 
however, WVP showed a drop as temperature rose, 

whereas OP showed a reverse trend, resulting in posi-
tive activation energy (Ep) for OP and a negative Ep 
for WVP, independent of CNC content. However, 
introducing CNCs to the PLA matrix raised the Ep 
for both WVP and OP. As per Fick’s law, WVP was 
unaffected by the RH. Because of the tortuosity effect 
caused by highly crystalline CNCs in the nanocom-
posites, which raised PLA’s degree of crystallinity, the 
nanocomposite films had lower WVP (∼40%) and OP 
(∼75%) than pristine PLA films. In fact, regardless of 
the testing circumstances, there was a negative corre-
lation between higher crystallinity and the values of 
WVP and OP (Karkhanis et al. 2018).

A recent study investigated the application of 
nanocellulose fibrils containing a significant amount 
of lignin (NCFHL) in the production of biocompos-
ites using PLA. The water vapor barrier effectiveness 
of pure PLA was shown to improve with the incorpo-
ration of NCFHL content up to 10 wt%. The weight 
variation tendency experienced a nearly 50% reduc-
tion with the introduction of a 10 wt% concentration 
of NCFHL, in comparison to the pure PLA sample. 
The inclusion of nanofibrils with high aspect ratios, 
together with the formation of a dense network by 
these fibrils, may lead to an increase in tortuosity 
for water molecules that permeate through the films. 
Moreover, the composites exhibited enhanced barrier 
efficacy towards gas molecules due to the high crys-
tallinity of the NCFHL (Nair et al. 2018). In another 
work, PLA/functionalized cellulose nanocrystal for-
mates (CNCFs) were synthesized using solution cast-
ing. Subsequently, the binary films were subjected to 
a spray coating of silver ammonia aqueous solution 
in order to produce PLA/CNCF/Ag ternary nanocom-
posites. The PLA/CNCF/Ag(6) composite showed 
the most significant decreases in water absorption 
(71.8%) and water vapour permeability (60.1%). 
These findings indicated that the incorporation of 
Ag nanoparticles and CNCF positively influenced 
the barrier properties of the composite material. The 
observed outcomes were attributed to the tortuosity 
of the transport pathway resulting from the height-
ened crystallinity (Yu et al. 2016).

Optical properties

Transparency is crucial in the industrial manufacture 
of food packaging materials due to its significance in 
allowing customers to visually observe the contents 
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of the package. The ultraviolet (UV) light transmis-
sion via packaging is a crucial factor for protecting 
light-sensitive foods and ensuring the safety of food 
goods until delivery (Arrieta et  al. 2017). PLA is 
susceptible to oxidative breakdown upon exposure 
to UV radiation. The presence of oxidation reactions 
leads to the degradation of the PLA backbone, result-
ing in a concomitant alteration in the polymer’s color. 
When the structural integrity of the PLA backbone 
is compromised, UV radiation has the ability to per-
meate the packaging material and initiate the oxida-
tion process in both edible and non-edible items that 
are being kept. Oils and cosmetics are illustrative of 
consumable and non-consumable goods, correspond-
ingly. Hence, it is of utmost significance to prioritize 
the preservation of stored items from UV radiation by 
focusing on improving the UV protective capabilities 
of PLA, along with other necessary attributes neces-
sary for packaging purposes (Narayanan et al. 2017; 
Chen et al. 2013).

A comparative analysis was conducted to assess 
the UV-shielding effectiveness of PLA nanocompos-
ites containing lignin-coated cellulose nanocrystals 
(LCNC) compared to PLA nanocomposites contain-
ing lignin nanofillers (LNP). The UV–Vis analysis 
demonstrated a synergistic impact when integrating 
either LNP or LCNC nanostructures in relation to 
their capacity to block UV radiation. The incorpo-
ration of low-content (3 wt%) LCNCs  into the PLA 
matrix resulted in the most effective blocking of 
UV radiation, with a 75.3% reduction in UV-A and 
a 45.81% reduction in UV-B (Shojaeiarani et  al. 
2022). Polydopamine (PDA) decorated CNCs were 
synthesized by Xu et  al. (2022). The PDA@CNCs 
was then incorporated into PLA film using a solu-
tion precipitation method followed by hot-pressing. 
Figure  15 displays the images together with the 
associated transmittance values of various sam-
ples in the wavelength range of 200 to 900 nm, both 
before and after undergoing UV aging. Following the 

Fig. 15   a The images of PLA, CNCs/PLA, and PDA@CNCs/PLA films b UV spectra of PLA, CNCs/PLA, and PDA@CNCs/PLA 
films before UV aging, and c UV spectra of PLA, CNCs/PLA, and PDA@CNCs/PLA films after UV aging (Xu et al. 2022)
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incorporation of CNCs, there was a marginal reduc-
tion seen in the transmittance of the PLA film. At an 
equivalent degree of addition, the PDA@CNCs/PLA 
film demonstrated a significant reduction in transmit-
tance while also displaying a discernible UV shield-
ing characteristic. Following exposure to UV aging, 
the transmittance of all three films exhibited a mar-
ginal decline (Fig. 15c), providing direct evidence of 
the inherent UV shielding capabilities possessed by 
the materials (Xu et al. 2022).

Jamaluddin et  al. (2019) conducted a study 
to investigate the impact of Acetylated cellulose 
nanofiber (ACNF) on the optical characteristics of 
PLA. The PLA film exhibited a remarkable trans-
mittance of 85%, surpassing all other PLA compos-
ite films in terms of optical clarity. The addition of 
cellulose fibers resulted in reduced transmittances of 
72% and 70% for PLA/ACNF and PLA/CNF, respec-
tively. Both PLA/ACNF and PLA/CNF composite 
films exhibited almost identical levels of transmit-
tance. However, PLA/ACNF composite films had a 
slightly greater transmittance of 2% due to the favora-
ble compatibility of ACNF. The transparency of the 
samples may also be influenced by their crystallinity 
(Jamaluddin et al. 2019). Another work described the 
use of PLA nanocomposite films that included cel-
lulose nanocrystal-zinc oxide (CNC-ZnO) hybrids. 
The incorporation of a significant proportion (15wt 
%) of CNC-ZnO hybrids into the PLA matrix resulted 
in the effective blocking of the highest levels of UV 
radiation, with a reduction of 85.31% in UV-A and 
95.90% in UV-B. The incorporation of CNC-ZnO 
hybrids into the PLA matrix resulted in synergistic 
UV-shielding effects, leading to the development of 
PLA nanocomposite films with superior UV-shield-
ing capabilities in comparison to pure PLA (Wang 
et al. 2019).

Antibacterial and antioxidant properties

The occurrence of food-borne diseases has generated 
public consciousness about the significance of pre-
venting microbial contamination in both raw materi-
als and processed food items. The food that has been 
infected transforms into rubbish, and the act of con-
suming this contaminated food poses a significant 
risk to the consumer’s health (Velasquez et al. 2021). 
Many studies have been conducted on active packag-
ing to tackle the challenges related to the growth and 

activity of harmful microorganisms in food, aiming to 
improve food safety. Active food packaging is capa-
ble of performing several activities, including acting 
as an antioxidant, oxygen scavenger, flavor enhancer, 
moisture absorber, UV barrier, and antibacterial 
agent. The use of active packaging, which involves 
the release of active biocidal chemicals into food, has 
garnered significant interest for its potential to extend 
the shelf life of food and reduce the occurrence of 
foodborne germs. The achievement of antimicrobial 
activity may be realized by the direct incorporation 
of active biocides into food items or by their appli-
cation in the vicinity of the food. The primary pur-
pose of antimicrobial packaging is to mitigate and 
subsequently inhibit the growth of spoiling bacteria 
(Ribeiro-Santos et al. 2017; Sung et al. 2013).

The acquisition of nanotechnology-based food 
packaging may be achieved by integrating bio-based 
nanocellulose with antibacterial and antioxidant func-
tional agents, which can be produced from natural 
resources or metal nanostructures (Echegoyen and 
Nerín 2013). The integration of these two nanoma-
terials yields a sustainable bionanocomposite exhib-
iting improved antimicrobial and antioxidant prop-
erties. This composite material holds promise as an 
effective packaging solution, safeguarding food prod-
ucts against microbial contamination while simulta-
neously addressing concerns related to the build-up 
of agricultural waste and environmental degradation 
(Fortunati et al. 2014).

Bioactive PLA–CNC–oregano films were fab-
ricated by integrating oregano essential oil (EO) 
as an antibacterial agent and the films were used as 
packing material for mixed vegetables. The purpose 
of this storage was to assess the effectiveness of the 
films in inhibiting the growth of Listeria monocy-
togenes. The microbiological analysis of mixed veg-
etables inoculated with L. monocytogenes revealed 
that PLA-CNC-oregano films effectively inhibited 
bacterial growth in the vegetables by day 14. This 
demonstrated the significant antimicrobial proper-
ties of these films in the specific environment (Salm-
ieri et  al. 2014). Khodayari et  al. (2019) conducted 
a study to assess the impact of incorporating CNCs, 
Tanacetum balsamita L. essential oil (TBE), and 
propolis ethanolic extract (PEE) into PLA composite 
films. The objective was to determine the effective-
ness of these composite films in prolonging the shelf 
life of vacuum-packed cooked sausages. Based on the 
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findings obtained from the disc diffusion experiment, 
it was shown that the presence of TBE in PLA films 
has a significant impact on their antibacterial prop-
erties (p < 0.05). Conversely, PLA films including 
only PEE and/or CNCs did not exhibit any inhibitory 
effects on bacterial growth. The integration of PEE 
into other films that also included TBE exhibited syn-
ergistic effects on the studied microorganisms. The 
study revealed that Gram-positive bacteria exhibited 
greater susceptibility to the active PLA films com-
pared to Gram-negative bacteria. Additionally, it was 
observed that B. cereus showed the highest level of 
sensitivity to films containing TBE and PEE (Khoda-
yari et  al. 2019). The researchers Abdulkhani et  al 
(2017) fabricated PLA/CNFs composites that were 
coated with an ethanolic extract of propolis (EEP). 
The modified PLA/CNFs films exhibited antibacte-
rial properties against Gram-positive bacteria, even 
when exposed to very low concentrations of EEP. The 
inclusion of EEP in the tested films exhibited a signif-
icant enhancement in the antibacterial efficacy against 
Gram-positive bacteria, including Bacillus anthra-
cis, Staphylococcus aureus, and Salmonella enteric. 
However, no discernible impact was seen on Gram-
negative bacteria (Abdulkhani et al. 2017).

A few types of metal nanoparticle antibacterial 
agents have been investigated, such as copper (Cu), 
gold (Au), zinc (Zn), silver (Ag), and titanium (Ti). 
The antibacterial activity of silver nanoparticles 
(AgNPs) was shown to be superior to that of other 
metal nanoparticle agents (Carbone et al. 2016). The 

reduced dimensions of AgNPs result in an increased 
surface area, facilitating their contact with microbial 
cells and leading to enhanced antibacterial efficacy 
when compared to bigger Ag particles. In addition, 
nanosilver has a wide range of antibacterial capa-
bilities, making it effective against microbes that are 
resistant to antibiotics or several drugs (De Azeredo  
2013). The supposed functional mechanism of 
AgNPs is as follows: i) AgNPs attach to membrane 
proteins and the cell wall, leading to the formation 
of pits on the cell surface and subsequent penetration 
into the cell. This process causes harm to the bacte-
rial cell structure, leading to cell lysis and subsequent 
death. ii) The growth-inhibiting ability against micro-
organisms is due to the denaturation of enzymes and 
the disruption of the bacteria’s respiratory chain. iii) 
The electrostatic attraction among positively charged 
nanoparticles and the negatively charged cell mem-
branes of bacteria results in the  destruction of the 
bacterial cytoplasmic membrane. This damage trig-
gers the production of reactive oxygen species (ROS) 
and oxidative stress. iv) AgNPs modulate the phos-
photyrosine profile of bacterial peptides through the 
inhibition of signal transduction and growth of cells. 
v) The presence of AgNPs hinders DNA integrity and 
inhibits cellular replication (Duncan 2011;  Gan and 
Chow 2018).

In a particular work, the researchers produced 
PLA/functionalized CNFs by a process of solu-
tion casting. Subsequently, the binary films obtained 
were subjected to a spray coating of silver ammonia 

Fig. 16   a Antibacterial properties of PLA/CNF/Ag(6) to E. coli and S. aureus b Antimicrobial ratios of ternary PLA/CNF/Ag nano-
composite films at different Ag contents (Yu et al. 2016)
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aqueous solution, resulting in the fabrication of PLA/
CNF/Ag ternary nanocomposites. The antimicrobial 
characteristics of pure PLA and PLA nanocompos-
ite films were assessed against Escherichia coli (E. 
coli) and Staphylococcus aureus (S. aureus), as seen 
in Fig. 16a. It is evident that the PLA and PLA/CNF 
films do not exhibit any inhibition zone against bacte-
ria. However, the PLA/CNF/Ag(6) film demonstrated 
inhibition zones of 4.5  mm and 2.3  mm against E. 
coli and S. aureus, respectively. Figure 16b illustrates 
the antibacterial efficacy of several nanocompos-
ite films. The results indicated that the PLA/CNF/
Ag composite exhibited a higher antimicrobial ratio 
against both E. coli and S. aureus compared to the 
neat PLA and PLA/CNF binary systems. The PLA/
CNF/Ag(6) composite exhibited the greatest antibac-
terial ratios, that is, 99.8% for E. coli and 97.4% for 
S. aureus. This notable antimicrobial efficacy may be 
attributed to the enhanced antimicrobial surface area 
achieved by the uniform deposition of Ag nanopar-
ticles. A marginal decrease in the antimicrobial effi-
cacy was detected for the PLA/CNF/Ag(8) compos-
ite, with reductions of 98.4% for E. coli and 96.1% 
for S. aureus. This decrease may be attributed to an 
increase in the size of aggregated silver nanoparticles, 
resulting in a weakened antibacterial capacity (Yu 
et al. 2016).

Oxidation is a prominent degradation mechanism 
that takes place during the deterioration of food. 
The definition of an antioxidant pertains to any sub-
stance that has the capability to either delay or inhibit 
the process of oxidation in a given substrate (Papuc 
et al. 2017; Domínguez et al. 2019). The antioxidant 
capabilities of CNFs or CNCs in combination with 
PLA were described by Le Gars et al (2020). Using 
a heat-pressing technique, two PLA sheets were com-
plexed with a dry CNF- or CNC-based film to create 
three-phase multi-layered materials (TMLs). Prior 
to the production of nanocellulosic films, CNFs and 
CNCs underwent modification through the adsorption 
of a rosin-based nanoemulsion. The 2, 2-Diphenyl-
1-picrylhydrazyl (DPPH) test was also conducted 
on the multilayered materials TML − CNC − rosin 
and TML − CNF − rosin. In this experimental study, 
the inner cellulosic layer of the multilayered materi-
als was directly exposed to the DPPH solution, and 
attained radical scavenging activity (RSA) values in 
a plateau of 29% and 43% for the TML − CNC − rosin 
and TML − CNF − rosin samples, respectively. The 

findings of this study demonstrated the efficacy of 
rosin nanoparticles in enhancing the performance of 
multilayered materials (Le Gars et  al. 2020). Bayer 
et  al. (2023) conducted a study to investigate the 
impact of cellulose fiber content on the characteris-
tics of PLA composites. Antioxidant composites were 
produced by immersing cellulose fibers in limonene, 
a naturally occurring terpene. The composites that 
were treated with limonene exhibited sustained 
release and efficacy of antioxidants for a duration of 
three days. This was confirmed via the use of three 
distinct assays: DPPH, cupric ion reducing antioxi-
dant capacity (CUPRAC), and free iron ions (Fe2+)/
ferrozine chelating assays. The biocomposites exhib-
ited short-term antioxidant activity, lasting for 2  h. 
The levels of antioxidant activity ranged from 50 to 
70%, depending on the percentage of cellulose fib-
ers used in the DPPH and CUPRAC tests. However, 
the antioxidant activity was lower, ranging from 20 
to 55%, in the metal chelating assay. The composites 
exhibited enhanced iron chelating antioxidant activity 
of 75% after a 5-day period, which may be attributed 
to the continuous release of limonene. Additionally, 
the composites had a recorded activity of 90% for the 
DPPH and CUPRAC assays (Bayer et al. 2023).

Biodegradation properties

The term "biodegradability" refers to the process of 
material deterioration after interactions with biologi-
cal components. The issue of biodegradability is of 
significant importance within the packaging sector 
that relies on plastic materials. The use of non-bio-
degradable polymers has a detrimental impact on 
the environment and climate (Goswami and O’Haire  
2016). Researchers are increasingly showing inter-
est in the use of environmentally friendly packaging 
materials. Hence, the use of polymers with enhanced 
biodegradability characteristics is a promising alter-
native for addressing the challenges associated with 
biodegradation. Modified polymers are specifically 
engineered to undergo degradation in the absence of 
oxygen, resulting in the production of beneficial sub-
stances like manure. These polymers do not exhibit 
long-term persistence in the environment. The dete-
rioration of PLA-based materials may occur when 
exposed to various environmental conditions, lead-
ing to undesirable outcomes. The occurrence of irre-
versible alterations inside a polymer resulting from 
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degradation processes ultimately leads to the loss of 
its properties (Haider et al. 2019). PLA has the inher-
ent ability to undergo degradation via the process of 
ester bond hydrolysis. PLA, when subjected to appro-
priate environmental circumstances characterized by 
the presence of moisture, oxygen, and naturally exist-
ing microbes, undergoes decomposition into water, 
carbon dioxide, and a negligible amount of harmless 
residual substances. This property of PLA repre-
sents a significant benefit associated with its use. The 
breakdown rates of PLA are subject to the effect of 
many parameters, including the isomer ratio, hydroly-
sis temperature, pH level, duration of burial, humidity 
levels, oxygen exposure, as well as the form and size 
characteristics of the material (Pradhan et  al. 2010; 
Zaaba and Jaafar 2020; Teixeira et  al. 2021). PLA 
degradation may occur via many methods. The mech-
anisms included in this category consist of hydro-
lytic, oxidative, thermal, microbiological, enzymatic, 
chemical, and photodegradative processes. These pro-
cesses mostly induce both main chain and side chain 
scissions (Elsawy et  al. 2017). Several studies have 
examined the biodegradability of PLA, but there is 
a lack of research on the degradation of PLA/nano-
cellulose nanocomposites. The addition of CNCs can 
enhance the hydrophilic properties of the polymer, 
thereby promoting an increase in the biodegradability 
of the matrix (Galera Manzano et al. 2021).

The study reported on the breakdown behavior 
of pure PLA and PLA composites containing 3 wt% 
CNC, both modified and unmodified with non-ionic 
surfactants (S) at a weight ratio of 1:1 (CNC:S), 
in garden soil. The study included the evaluation 
of four distinct non-ionic surfactants, each with a 
hydrophilic-lipophilic balance (HLB) within the 
range of 4.3 to 16.7. These surfactants were iden-
tified as sorbitan monolaurate (Span 20), sorbitan 
monooleate (Span 80), polyoxyethylene sorbitan 
monolaurate (Tween 20), and polyoxyethylene sorbi-
tan monooleate (Tween 80). The findings of the study 
indicated that the inclusion of surfactants had a posi-
tive impact on the biodegradation rate of the com-
posites. Specifically, it was observed that surfactants 
with lower molecular weights were more effective 
in enhancing the biodegradation rate of PLA/CNC/S 
composites. However, when considering surfactants 
that fall within the same chemical family, it was seen 
that the PLA/CNC/S composite exhibits the best rate 
of biodegradation when the surfactants possess a high 

HLB and a small spherulite size (Gois et  al. 2023). 
Hegyesi et al. (2019) conducted a study on the enzy-
matic degradation of PLA and its nanocomposites, 
which were reinforced with CNCs. The degradation 
process was catalyzed using lipase from Candida 
rugosa and proteinase K from Tritirachium album. 
The composites were synthesized using the Pickering 
emulsion method, including nanocellulose at weight 
percentages of 5, 10, and 15. The experimental find-
ings indicated that the lipase enzyme does not exhibit 
catalytic activity in the breakdown of PLA, but the 
proteinase K enzyme has a high level of efficiency in 
this process. The production of lactic acid during the 
reaction resulted in a significant fall in the pH of the 
degradation medium, causing the enzyme to undergo 
denaturation. In addition to pH, the concentration of 
ions in the solution also has an impact on the pace of 
degradation. A lower ionic strength was shown to be 
more favourable in this regard. The use of CNCs as 
reinforcement in PLA led to an accelerated degrada-
tion rate, resulting in fast disintegration of the sam-
ples and the polymer underwent deterioration within 
a span of three days (Hegyesi et al. 2019).

Accelerated weathering test methods are used to 
examine the deterioration of polymeric materials after 
exposure to simulated conditions. The degradation of 
PLA biocomposites is influenced by the fiber/filler 
content and can occur at varying rates compared to 
neat PLA degradation. Polylactic acid (PLA) exhibits 
a slight polarity that promotes degradation through 
hydrolysis and photolysis, resulting in faster break-
down when exposed to moisture and UV radiation 
compared to traditional polymers. The rate of degrada-
tion is influenced by the initial molecular weight, sam-
ple dimensions, crystallinity, and the inclusion of fillers 
or reinforcements. PLA films may undergo substantial 
alterations following brief exposures due to their lim-
ited crystallinity. The weight-average molecular weight 
(Mw) of PLA decreased significantly after 300  h of 
accelerated weathering. PLA undergoes hydrolytic 
degradation through chain cleavage, primarily in amor-
phous regions. The hydrolysis process is self-cata-
lyzed and is influenced by the level of absorbed water. 
Weathering causes greater damage in amorphous 
PLA due to the vulnerability of non-compacted poly-
meric chains, while semi-crystalline regions require 
more energy to disrupt the chains. (Gonzalez-Lopez 
et  al. 2020).  Kaynak and Dogu (2016) investigated 
the accelerated weathering (both UV and moisture) 
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behaviour of neat PLA and PLA/MCC biocomposites 
by comparing their mechanical and thermal proper-
ties under increasing accelerated weathering periods. 
They compared the outdoor usability of PLA and PLA/
MCC (PLA reinforced with microcrystalline cellulose 
(MCC))   (Kaynak and Dogu 2016).

In a separate investigation, the synthesis of nano-
composites comprising PLA and CNCs was con-
ducted. This included dispersing CNCs in an aqueous 
poly(vinyl acetate) (PVAc) emulsion, which was then 
subjected to melt extrusion with PLA. The process 
of functionalizing PVAc by radical grafting of glyci-
dyl methacrylate (GMA) was conducted simultane-
ously with the polymerization of PVAc. Ammonium 
cerium (IV) nitrate was used as the initiator for this 
reaction. The investigation on degradability revealed 
that the rate of disintegration of PLA/PVAcGMA/
CNC in soil was found to be greater compared to that 

of PLA/PVAc/CNC. This disparity was attributed to 
the presence of epoxy groups in GMA, which likely 
facilitated the acceleration of biodegradation by pro-
moting the creation of radicals (Haque et  al. 2017). 
The biodegradation capabilities of transparent PLA 
nanocomposite films including CNC-zinc oxide 
(CNC-ZnO) hybrids were evaluated by Wang et  al. 
(2019). This evaluation was conducted under con-
trolled hydrolytic, soil burial, and heat conditions. 
The study revealed that the weight loss of PLA nano-
composites, after a hydrolytic degradation period of 
70 days, exhibited an increase from 9% for pure PLA 
to 25% when including 15 wt% of CNC-ZnO hybrids. 
In the context of soil burial testing was shown that 
PLA exhibited the lowest deterioration rate, resulting 
in a mere 8% reduction in weight after a duration of 
110  days. Conversely, the PLA nanocomposite film 
containing 15 wt% of CNC-ZnO hybrids showed a 

Fig. 17   Images of PLA nanocomposite films before and after soil degradation (Wang et al. 2019)



6030	 Cellulose (2024) 31:5997–6042

1 3
Vol:. (1234567890)

degradation rate of around 28% (Wang et  al. 2019). 
Figure 17 illustrates the changes in the visual charac-
teristics and size of PLA nanocomposite films during 
the process of soil degradation.

Safety of nanocellulose bionanocomposites

According to prevailing European regulation, it is 
essential for all materials that come into contact 
with food, often referred to as Food Contact Materi-
als (FCMs), to adhere to the standards outlined in the 
framework Regulation (EC) No 1935/2004. "Materi-
als shall be manufactured in accordance with good 
manufacturing practice so that they do not trans-
fer their constituents to food in quantities that could 
endanger human health; or cause an unaccepta-
ble change in the composition of the food; or cause 
a deterioration in the organoleptic characteristics 
thereof," in accordance with the established regula-
tions. While this regulation does not specifically pro-
vide guidelines for nanoparticles used in food contact 
materials, it is important to note that these criteria are 
equally applicable to composites based on nanocel-
lulose (Visanko et  al. 2015). According to Regula-
tion (EU) No. 10/201 on plastic materials and Reg-
ulation (EC) No. 450/2009 on active and intelligent 
packaging materials, it is stipulated that substances 
in nanoform should undergo individual evaluation. 
The processes governing mass transfer and interac-
tion between nanoparticles and their respective host 
materials and food substances may exhibit variations 
compared to those often seen at larger particle size 
scales. Consequently, nanoparticles have the poten-
tial to induce diverse amounts of exposure and exhibit 
hazardous properties. Consequently, the premarket 
authorizations that are granted based on a risk assess-
ment of a medicine with a conventional particle size 
do not extend to the utilization of the same substance 
in its nano-scale dimensions. The utilization of the 
substance in its nano-scale form is permissible only if 
explicitly authorised and included in the positive lists 
specified in the aforementioned regulations (Dainelli 
2015; Cirillo et al. 2015).

Cellulose has many uses in the realms of food and 
pharmaceuticals and is recognised as being "gen-
erally regarded as safe" (GRAS). Nevertheless, it 
should be noted that nanocellulose, although known 
to increase the quality and safety of food, does not 

fall under the GRAS category (DeLoid et  al. 2019). 
According to European Regulation-No 10/2011, cel-
lulose and cellulose derivatives have been deemed 
safe and authorized for use as polymer additives, 
manufacturing aids (such as cellulose acetate butyrate 
and hydroxyalkyl cellulose), and starting materials 
(such as nitrocellulose and lignocellulose) in packag-
ing applications (DeLoid et  al. 2016). Nevertheless, 
it should be noted that nanocellulose is not currently 
included in the list of recognized substances for use 
in food contact applications. Numerous epidemiologi-
cal investigations have provided evidence indicating 
that nanoscale materials exhibit unique properties 
and interact with biological systems in a manner dis-
tinct from their native equivalents (Silva et al. 2020). 
The morphology, dimensions, and clustering proper-
ties of nanoparticles have the potential to influence 
the interactions between nanocellulose and biologi-
cal tissues. The safety assessment of nano-cellulose 
in food packaging is contingent upon the transfer of 
nanocellulose into food, since this factor governs its 
toxicological properties and potential human expo-
sure. Several researches have shown the deleterious 
impact of nano-cellulose (Serpa et  al. 2016). Endes 
et  al. (2016) conducted a comprehensive assessment 
of several in vitro and in vivo research, as well as eco-
logical models. The researchers performed a study 
on the possible risks posed by various kinds of nano-
cellulose to human health and the environment. The 
authors highlighted many important aspects, such as 
the capacity of nano cellulose to create reactive oxy-
gen species (ROS) and its potential cytotoxic, geno-
toxic, and oxidative consequences. The collected data 
revealed a certain degree of diversity in the acquired 
results, with some studies reporting little or no tox-
icity associated with nano-cellulose, while others 
highlighted the presence of detrimental effects (Endes 
et  al. 2016). Hence, it is recommended that a com-
prehensive toxicological investigation be conducted 
prior to the use of nanocellulose in materials intended 
for food contact. It is important to consider migra-
tion behavior, the persistence of nanoforms, and the 
change of nanomaterials from nano to non-nano form 
inside food matrices. Moreover, it is imperative that 
future research prioritize the investigation of nanocel-
lulose safety, particularly in relation to its suitabil-
ity for food contact applications, since it has not yet 
received approval for such uses.
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Future perspective and conclusion

The packaging sector has a significant interest in 
biopolymers because to the prevailing worldwide 
environmental concerns and the challenges associ-
ated with the disposal of solid wastes generated by 
petroleum-based polymers. The integration of nano-
cellulose into PLA has resulted in the development 
of novel and environmentally friendly nanocompos-
ites that exhibit improved performance characteris-
tics. Despite the many benefits of PLA, it is impor-
tant to acknowledge some limitations such as its poor 
toughness, delayed crystallization kinetics, and low 
melt strength. However, these downsides may poten-
tially be mitigated with the incorporation of cellulose 
nanoparticles. Nevertheless, the effective incorpora-
tion of nanocellulose into PLA by direct melt mixing 
remains a significant obstacle due to the inherently 
hydrophilic nature of nanocellulose and its subse-
quent dispersion. Numerous investigations have been 
conducted to assess the efficacy of PLA nanocellu-
lose nanocomposites through the utilization of vari-
ous production methods, including solution casting 
and hybrid processes. Additionally, the incorporation 
of surfactants, compatibilizers, and surface chemical 
modifications has been explored to enhance the dis-
persion quality of nanocellulose, as it directly impacts 
the performance of PLA nanocellulose nanocompos-
ite systems. The findings of these investigations dem-
onstrate that the integration of uniformly distributed 
nanocellulose has the potential to enhance the crystal-
linity, crystallization rate, and mechanical character-
istics of PLA. The integration of cellulose nanoparti-
cles, in conjunction with the heightened crystallinity 
of PLA, leads to further improvements in the barrier 
characteristics against oxygen, water, and other vola-
tile chemicals. The effective advancement of cellu-
lose nanocomposites based on PLA has significant 
potential for diverse applications, particularly in the 
domain of packaging, where they might potentially 
supplant petroleum-derived polymers.

The use of cost-effective modifications and iso-
lation procedures for biopolymer nanocellulose 
enhances its desirable qualities, hence facilitating 
its adoption as a commercially viable biomaterial in 
diverse large-scale applications. Hence, the forth-
coming progress that prioritizes the economical and 
environmentally sustainable methods of extracting 
and modifying nanocellulose will facilitate the rapid 

and advantageous development of this remarkable 
biomaterial for industrial purposes. Nevertheless, 
the monitoring of nano-cellulose absorption and 
its subsequent actions within the biological sys-
tem presents a formidable task, mostly owing to its 
diminutive size and the absence of viable analytical 
techniques. In order to tackle these problems, it is 
imperative that future research endeavors focus on 
attaining an in-depth understanding of the biologi-
cal behavior and exposure dosage of nano-cellulose. 
Moreover, it is essential to do further investigation 
into nanocellulosic materials in order to address the 
increasingly limited regulatory, economic, and tech-
nological disparities between sustainable and tradi-
tional packaging methods used in the food industry.

This review provided a complete examination of 
the advantages linked to the addition of nanocellu-
lose into PLA matrix for use in biodegradable food 
packaging. This research begun by conducting a 
comprehensive examination of the characteristics 
of food packaging material based on PLA, with a 
particular focus on its performance. This article 
provided a concise overview in the synthesis and 
extraction of nanocellulose, specifically focusing 
on its derivation from agricultural waste materi-
als. This article provided a thorough overview of 
the characteristics shown by PLA-NC bionanocom-
posites when used as materials for food packaging. 
The aforementioned features include several aspects 
such as shape, rheology, mechanical strength, ther-
mal stability, barrier properties, antioxidant activity, 
antibacterial activities, and biodegradability. This 
article provided a succinct summary of the safety 
issues associated with the advancement of PLA-NC 
bionanocomposites for their use in food packag-
ing. We anticipate that this review will encourage 
research aimed at enhancing the characteristics of 
PLA/nanocellulose, thereby expanding their indus-
trial applications and promoting the sustainable use 
of renewable materials.
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