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Abstract  Smart fabrics are one of the progress-
ing technologies in this era especially in the field of 
self-cleaning and stain removing applications. Recent 
years, photocatalyst based self-cleaning technology 
seek much attention in the fields of therapeutic tex-
tiles, athletic clothing, defense uniforms and outdoor 
material. In this present work, the carbon nitride (CN) 
blended with conducting polypyrrole polymer (PPY) 
were coated over cotton fabrics by modified pad-dry 
cure method. The CNPPY composite coated cotton 
fabric shows enhanced photocatalytic degradation 
efficiency of 96.5% compared to individual coatings 

of CN and PPY. The successful demonstration of 
photocatalytic stain removal and self-cleaning proper-
ties was achieved through the utilization of CNPPY 
composite-coated cotton fabric. This breakthrough 
was accomplished with minimal water consumption 
(1 cm2/ml), employing different colored stains under 
solar irradiation. Also, the CNPPY composite coated 
cotton fabric exhibited excellent resistance to bacte-
rial growth. The dual advantages of photocatalytic 
antibacterial activity and self-cleaning of CNPPY 
composite coated cotton fabric led to sustainable, 
innovative textile applications with significant lower 
water consumption during washing process.

Keywords  Photocatalyst · Smart textiles · Self-
cleaning · Carbon nitride · Antibacterial activity

Introduction

Today, the textile industry offers a vast and diverse 
range of fabrics that cater to a multitude of require-
ments and preferences. From natural fibers like cot-
ton, silk, and wool, to synthetic materials such as 
polyester, nylon, and spandex, there is a fabric avail-
able for every purpose and occasion. These fabrics 
serve a multitude of applications, including cloth-
ing, home textiles, technical textiles, and industrial 
applications (Yetisen et  al. 2016). Smart textile fab-
rics have been developed for various applications, 
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including anti-microbial (El-Nahhal et al. 2018), UV 
protection (Sricharussin et al. 2011), embedded sen-
sor (Sedighi et  al. 2014), Supercapacitors (Selvam 
and Yim 2023), Li Ion batteries (Praveen et al. 2021), 
hydrophobicity (Jeyasubramanian et  al. 2016) and 
dye degradation (Baruah et al. 2019). In recent times, 
there has been a growing significance attributed to 
self-cleaning fabrics, which possess the remarkable 
ability to effectively remove dirt, stains, and other for-
eign substances from their surface. The development 
and utilization of self-cleaning textile fabrics offer 
a promising opportunity to decrease the reliance on 
surfactants during fabric washing, thereby contribut-
ing to the mitigation of water pollution (Ahmadi and 
Igwegbe 2018). Self-cleaning fabrics play a pivotal 
role in the textile industry today, as they significantly 
reduce both washing time and water pollution. One 
effective approach in the production of self-cleaning 
fabrics involves fabricating photocatalytic materi-
als and coating them onto textile surfaces. The TiO2 
(Doganli et al. 2016; Fan et al. 2017; Hu et al. 2019; 
Özdemir et  al. 2022), ZnO (Ji et  al. 2022; Pal et  al. 
2018; Zhu et al. 2017), CuO(Sarwar, Bin Humayoun, 
Dastgeer and Yoon  2021), BiVO4(Chen et  al. 2022) 
and CuO (Vasantharaj et  al. 2019), semiconductors 
coated fabrics were reported for the self-cleaning 
and dye degradation application. The anti-microbial 
properties of heterogeneous photocatalyst coated 
fabrics such as CuO/BiVO4(Ran et  al. 2019), Ag/
ZnO/Cu (Hassabo et  al. 2019), Ag–Cu2O (Seth and 
Jana 2022), MnO2/ZnO (Lam et  al. 2021) , TiO2/
Ag (Hebeish et  al. 2013), Cu(II)/TiO2 (Yuzer et  al. 
2022) was investigated. The successful application 
of photocatalysts onto fabric surfaces is crucial for 
the development of self-cleaning fabrics. However, 
this process presents certain technical challenges 
that need to be overcome. Both direct and indirect 
methods of coating photocatalysts onto fabric have 
their limitations. One of the primary concerns is the 
effect of various parameters on the coating process. 
Factors such as coating temperature, solvent selec-
tion, and coating atmosphere can significantly influ-
ence the properties of the fabric. The temperature at 
which the coating is carried out needs to be carefully 
controlled to prevent any adverse effects on the fabric, 
such as changes in texture, color, or mechanical prop-
erties. Similarly, the choice of solvent plays a vital 
role in achieving uniform coating and avoiding dam-
age to the fabric’s structure. The coating atmosphere, 

including humidity and oxygen levels, can also 
impact the adhesion and stability of the photocatalyst 
coating. Another challenge lies in the limited range 
of light absorption exhibited by many photocatalysts. 
Traditionally, most photocatalysts primarily absorb 
ultraviolet (UV) light, which comprises only a small 
portion of the solar spectrum. This limited absorp-
tion range restricts the photocatalytic activity of the 
coated fabric to specific lighting conditions, such as 
direct exposure to UV light sources. To overcome this 
limitation, researchers have been exploring innovative 
approaches to enhance the light absorption capabili-
ties of photocatalysts, particularly by expanding their 
absorption into the visible light range. Out of many 
visible light active photocatalyst, a Carbon Nitrite 
(CN) semiconductor has played an emerging role in 
many applications such as photocatalyst (Ong et  al. 
2016),s ensing (Idris et al. 2020), energy conversion 
and storage (Chen et al. 2016; Luo et al. 2019; Wang 
and Wang 2022). While CN is a well-known mate-
rial for its broad light absorption spectrum, its pho-
tocatalytic activity is mostly restricted by photoelec-
tron hole recombination (Zeng et al. 2018) and poorer 
charge transfer reaction at the surface (Chang et  al. 
2018), which limits its broader textile-related appli-
cation. To overcome this issue, coating a conducting 
polymer as a co-catalyst over CN would enhance its 
photocatalytic efficiency (Meganathan et  al. 2022). 
Polypyrrole (Wu et al. 2014) and polypyrrole blended 
metal oxide (Jain et  al. 2017) semiconductors have 
been extensively studied and reported for various 
applications such as actuation (Liao et  al. 2013), 
adsorbents (Feng et  al. 2014), energy storage (Ma 
et  al. 2015), electrocatalyst (Peng et  al. 2012) and 
sensors (Wilson et al. 2012). In this study, we present 
an innovative approach involving the blending of car-
bon nitride (CN) with conducting polypyrrole poly-
mer (PPY) to prepare a composite. This composite is 
subsequently applied as a coating onto cotton fabrics. 
The incorporation of a polypyrrole conducting poly-
mer onto CN serves multiple purposes—it acts as a 
co-catalyst, a binder, reduces electron-hole recombi-
nation, and enhances charge transfer reactions. The 
resulting composite is anticipated to exhibit enhanced 
multifunctional properties, including efficient self-
cleaning, stain removal, and resistance to bacterial 
growth when exposed to sunlight. The uniqueness 
of this composite-coated fabric significantly contrib-
utes to sustainability by reducing water consumption 
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during washing. The practical validation of its stain 
removal, self-cleaning, and antimicrobial proper-
ties heralds a transformation in the textile industry, 
promoting an environmentally friendly approach to 
fabric maintenance and longevity. To the best of our 
knowledge and literature survey, this is the first report 
on a CNPPY-based composite coating over cotton 
fabrics for photocatalytic self-cleaning in textile-
based applications.

Experimental

Chemicals

The chemicals used in this study, namely Pyrrole 
((C4H5N) 98%, Aldrich Chemical Co), Iron (III) 
Chloride (FeCl3 anhydrous, powder, ≥ 99.99% trace 
metals basis), Urea (NH2CONH2) ACS reagent, 
(99–100%, average Mw ~ 534,000 by GPC pow-
der), Rhodamine-B(RhB) (C28H31ClN2O3), Mala-
chite green (MG) (C23H25ClN2), Crystal violet (CV) 
(C25H30N3Cl, ACS reagent, ≥ 90.0%), Methylene blue 
(MB)(C37H27N3Na2O9S3) and polyvinylidene dif-
luoride (PVDF) –(C2H2F2)n– were used without puri-
fication. The study utilized 100% cotton (CT) fabric 
with Cambric Yarn count of 60s, warp per inch 120, 
weft per inch 80, warp to weft ratio 1:1, float density 
9600, fabric weight 109 gms/Sqmts, and woven made 
construction, which was purchased from Varsha cot-
ton mills private limited, Erode, Tamilnadu, India.

Carbon nitride (CN) was synthesized from urea 
using the thermal polymerization method, where 
the sample was heated up to 550  °C at a ramp rate 
of 15 °C min−1 and followed by maintain at the same 
temperature for another 2  h. The resulting yellow-
colored flakes were collected after cooling. The PPY 
polymer was prepared using the oxidative chemical 
polymerization method, where 30 ml of 0.15 M pyr-
role monomer was stirred at 0–5  °C, and 77 ml of 
0.01  M FeCl3 oxidant was added dropwise for 2  h. 
The dark-colored polymeric precipitate was then 
obtained and stored at 70 °C for 6 h.

CNPPY composite

The carbon nitride/polypyrrole (CNPPY) compos-
ite was synthesized through the oxidative chemical 
polymerization method. A 1  g of CN powder and 

30 ml of 0.15  M pyrrole monomer were stirred for 
2 h. Then, a 77 ml of 0.01 M FeCl3 oxidant solution 
was gradually added at 0–5 °C temperature. The ini-
tial yellow mixture turned into a yellow with tinted 
grey colored solution. The obtained polymeric pre-
cipitate was washed with distilled water and stored at 
70 °C for 6 h. The different molar concentrations of 
PPY were prepared (PPY 25, 50, 100, and 150 mM) 
over CN, and the photocatalytic dye degradation test 
used to identify the optimized CNPPY composite 
that exhibited superior photocatalytic activity. After 
confirming the optimized CNPPY concentration at 
50mM, the composite was coated onto the cotton fab-
rics for further investigation.

CNPPY composites coated over cotton fabrics

For the incorporation of CNPPY over cotton fab-
rics (CNPPYCT), the modified pad dry cure method 
was employed. The CNPPY coating was mixed with 
PVDF binder and solvent in a ratio of 85:15 to obtain 
a homogeneous mixture using a mortar for 60  min. 
The coating process was carried out under controlled 
applied pressure of 3 bars. Subsequently, the coated 
fabrics dried at 80  °C for 5 min, followed by a cur-
ing at 120  °C for 3 min. The similar procedure was 
adopted for carbon nitride coated fabric (CNCT) and 
polypyrrole coated fabric (PPYCT).

Characterization technique

The surface morphology of materials CT, CNCT, 
PPYCT, and CNPPYCT was investigated by means 
of Fourier transform infrared (FT-IR) spectra of the 
composites, which were acquired using a powder 
sample technique with a spectral range of 400 to 
4000  cm−1 employing a PerkinElmer FT-IR Spec-
trometer. For the SEM-EDX analysis, the samples 
were coated with a conductive material and imaged 
using a Carl Zeiss SEM-EDX. The UV –Vis dif-
fused reflectance spectra were obtained by means 
of a spectrophotometer (Shimadzu UV-2700) 
using BaSO4 as the reflectance standard. The ther-
mal stability of the samples was calculated under 
a ambient atmosphere using a thermogravimetric 
analyser (STA7200 HITACHI). X-Ray Photoelec-
tron Spectrometer (Omicron Nano Technology, 
UK) was used to detect the chemical state of CT, 
CNCT, PPYCT and CNPPYCT was investigated. 
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The Confocal Raman spectroscopy data was 
acquired by the WITec alpha-300R with a 785 nm 
laser wavelength. The laser beam was performed 
with the objective lens of 50X, and the light excited 
at the surface was composed into a spectrum by a 
diffraction grating 300  g/mm. The spectrum was 
recorded with a scan width and height of 50  μm 
and detected by a CCD camera.

Antibacterial studies

The antibacterial effectiveness of the textile sam-
ples was evaluated using the suspension test method 
in accordance with the guidelines outlined in the 
standard ISO 20743:2007, titled “Textiles - Deter-
mination of antibacterial activity of antibacte-
rial finished products” with some modifications. 
To assess the photocatalytic antibacterial activ-
ity, wherein a bacterial suspension was directly 
inoculated onto the anti-bacterial coated cloth 
samples with broth. The coated cloth pieces were 
inoculated with a bacterial suspension containing 

108Escherichia coli ATCC 25,922 bacterial cells. 
These samples, along with bacterial culture tubes, 
were separately placed under a solar stimulator and 
incubator (dark condition) for a 4-hour incubation 
period. The number of bacteria Colony-Forming 
Units (CFUs) was quantified using the colony plate 
count method. Viable bacterial cells were harvested 
through centrifugation, followed by serial dilution, 
and spread plating on Luria Bertani agar plates. 
After incubation at room temperature (37  °C) for 
18  h, the plates were examined, and the colonies 
were counted, and their CFU values were recorded. 
(Hoefer and Hammer 2011; Hu et  al. 2021; Mega-
nathan et al. 2022)

The bactericidal rate (R %) was calculated to 
determine the percentage reduction of bacteria 
using the formula provided below  Eq. (1), where 
NA and NB (CFU/ml) represented the number of 
colonies incubated under the solar stimulator and 
incubator, respectively.

Photocatalytic experiments

The CT, CNCT, PPYCT, and CNPPYCT fabrics cut 
in to size of 5 × 5 cm were immersed in 1  × 10−4 M 
of RhB dye solution and kept in the dark for 1 h. After 

(1)R (%) =
[(

NB− NA

)

∕NB

]

× 100

Fig. 1   XPS Spectrum of a  survey spectra of uncoated CT, 
CNCT, PPYCT and CNPPYCT, b C1s spectra of uncoated CT, 
CNCT, PPYCT and CNPPYCT, c N1s spectra of uncoated CT, 
CNCT, PPYCT and CNPPYCT, and d O1s spectra of uncoated 
CT, CNCT, PPYCT and CNPPYCT​

◂

Fig. 2   Displays the Raman spectra and confocal image of CT, CNCT, PPYCT and CNPPYCT​
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that, the sample was irradiated using a solar simulator 
at room temperature. During the irradiation, absorb-
ance studies were conducted at 30-minute intervals 
using 5 mL of RhB solution. The rate of variation in 
RhB concentration during each photocatalytic decol-
orization was monitored using a spectrophotometer at 
a wavelength of RhB at 554 nm.

The % removal of the dye was determined using 
the following Eq. (2) (Mahmoodi 2014) Where.

C0 = Initial dye concentrations and C = Dye con-
centrations at time (t.)

The photocatalytic self-cleaning property of 
CNPPY-coated fabrics was evaluated using various 
colored dyes as model stains, including RhB, Methyl 
Violet, Methylene Blue, and Malachite Green dyes. 
The fabrics were stained with different colored dyes, 
and their discoloration was tested under solar irradia-
tion. Photographs were taken at 10-minute intervals 
to analyze the photocatalytic self-cleaning perfor-
mance of the CNPPY-coated fabrics. To assess the 
washability and durability of the CNPPY-coated 
fabrics, it underwent a specific number of launder-
ing cycles following a predefined experimental pro-
cedure reported by the literatures (Farouk et al. 2020; 

(2)
Percentage (%) of dye removal = C0 − C∕C0 × 100

Gao et al. 2019). These parameters were meticulously 
chosen to achieve optimal outcomes in terms of both 
coating quality and overall performance.

Results and discussion

XPS analysis

The X-ray photoelectron spectroscopy (XPS) analy-
sis results of the samples, consisting of uncoated cot-
ton fabric (CT), carbon nitride coated cotton fabric 
(CNCT), polypyrrole coated cotton fabric (PPYCT), 
and carbon nitride/ polypyrrole coated cotton fabric 
(CNPPYCT), are presented in Fig. 1(a–d). In Fig. 1a, 
the wide-range XPS survey spectra reveal signals cor-
responding to C1s and O1s in CT (Wan et al. 2022), 
while CNCT, PPYCT, and CNPPYCT exhibit addi-
tional N1s signals, indicative of nitrogen moieties 
originating from the polymer (Singh et al. 2013) and 
carbon nitride (Tan et  al. 2015). Figure  1b displays 
the deconvoluted high-resolution C1s XPS spectra of 
the samples. For CT, the C1s peak is resolved in C–C 
(284.5 eV), C–O (285.8 eV), and C=O (292.48 eV) 
(Jiang et al. 2018). In the case of PPYCT, the similar 
C–C peak (284.78 eV) obtained, the shifted C–O–C 

Fig. 3   FTIR Spectrum of 
a uncoated CT, b CNCT, c 
PPYCT and d CNPPYCT​
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(287.7 eV) and C=O (284.7 eV) peaks indicating an 
interaction between PPY’s C–C group and the OH 
moieties of cellulose in the cotton fabric. Similarly 
CNCT displays new binding energies at (287.78, 
290.58, and 294.18  eV), corresponding to C–C, 
C–O–C, and C=O, respectively, due to the interac-
tion between CN and cellulose C and O moieties. The 
CNPPYCT shows peak shifts at C–C (284.85  eV) 
and C–O–C (287.7  eV) and reduced C–O peaks of 
cellulose, indicating an interaction between PPY’s 
C–C group and the OH moieties of cellulose. Fig-
ure  1c presents the deconvoluted high-resolution 
XPS N1s spectra of the samples. The absence of an 
N1s peak in CT suggests the absence of nitrogen-
containing moieties in cellulose. For CNCT, the N1s 
peak is deconvoluted into three peaks corresponding 
to C=N–C (399.18 eV), bridging N atoms in N–(C)3 
(401.14  eV), and N–H (403.28  eV) (Huang et  al. 
2019). The N1s peak of PPY displays characteristic 
peaks at 400.7  eV, attributed to positively charged 
nitrogen –N+–. In the case of CNPPY-coated fabric, 
the two N1s fitting peaks are observed at 397.58 and 

399.58  eV, corresponding to C=N–C and the peak 
of the neutral secondary amine structure –NH–. Fig-
ure  1d depicts the O1s spectra of the samples. The 
peaks observed in CT and PPYCT indicate the pres-
ence of C–O bonds. In PPYCT and CNPPYCT, peak 
shifts are observed, indicating the successful incorpo-
ration between PPY’s C–C group and OH moieties in 
the cellulose matrix of cotton fabrics.

Raman analysis

Figure 2 Displays the Raman spectrum of CT, CNCT, 
PPYCT and CNPPYCT. The Raman spectrum of CT 
can be attributed to vibrations of cellulose molecule 
present in the cotton fibers. Notably, characteris-
tic signals of cellulose are seen near 1123  cm−1 and 
1096  cm−1, corresponding to the C–C ring asym-
metric stretching, C–O–C glycoside link symmetric 
stretching, and C–O–C glycoside link asymmetric 
stretching, respectively. Other noticeable bands are 
related to different types of CH2 group vibrations, 
with peaks at 1382 cm−1 (scissoring) and 1334 cm−1 

Fig. 4   Schematic depiction on interaction between CN, PPY and cotton fabric
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(wagging involving scissoring of C–OH groups) 
along with rocking modes at 995 cm−1.

The Raman spectra of carbon nitride (CN) coated 
on the cotton fabric exhibit multiple bands within the 
range of 700–1630 cm−1, which are attributed to gra-
phitic carbon nitride. Specifically, vibrations at 711, 
996, 1160, 1236, and 1311 cm−1 are identified as the 
stretching vibrations of aromatic C-N heterocycles 
and various types of breathing modes of S-Triazine 
(Maślana, Kaleńczuk, Zielińska, and Mijowska, 
2020). Moreover, the characteristic absorption peak 
at 1382 cm−1 corresponds to the stretching vibra-
tions of the s-triazine ring (C3N3) units (Cao et  al. 
2016), while the peak at 1236 cm−1 is ascribed to the 
C (sp2) bending vibration. Additionally, the peaks 
observed at 711, 769, 466, and 561 cm−1 are attrib-
uted to -heptazine-CN (Jiang et  al. 2014). Further-
more, for PPYCT the vibrational bands in the vicinity 
of 1136, and 1091 cm−1 are indicative of cellulose’s 
presence, associated with C–C ring asymmetric 
stretching, C–O–C glycoside link symmetric stretch-
ing, and C–O–C glycoside link asymmetric stretch-
ing, respectively. Other noticeable bands are related 
to different types of CH2 group vibrations, with 1381 
cm−1 corresponding to scissoring, and at 1311 cm−1, 
wagging vibrations are accompanied by the scissor-
ing of C–OH groups, followed by rocking modes at 
996 cm−1. These findings provide compelling evi-
dence of the interaction and incorporation of CN over 
cotton fabric. For CNPPYCT in the spectrum of PPY, 
the peaks at 1552  and 1340 cm−1 arise from the π 
conjugated structure and ring stretching mode of the 
polymer backbone, respectively (Arteaga et al. 2013). 
The peak at 1037 cm−1 can be ascribed to the C–H in 
plane deformation, and the two faint peaks at 925 and 
960 cm−1 correspond to ring deformation of the qui-
noid polaronic and bipolaronic structure, respectively. 
For the CNPPY-coated fabric, peaks at 999, 1130, 
and 1328 cm−1 correspond to PPY characteristic 
peaks of the ring deformation, C–H in-plane deforma-
tion, C–H in-plane bending, ring stretching, and C–C 
stretching, respectively. The peaks observed at 1376 
cm−1 were attributed to symmetric and asymmetric 
C–H in- plane bending and C–N stretching modes, 
respectively. The Raman analysis corroborates the 

interaction and integration of carbon nitride (CN) and 
polypyrrole (PPY) onto the cotton fabric, aligning 
with the obtained XPS results.

FTIR analysis

The Fourier transform infrared (FTIR) spectra of 
uncoated cotton fabric (CT) and CT coated with car-
bon nitride (CN), polypyrrole (PPY), and the hybrid 
CNPPY are presented in Fig.  3(a–d). The pure CT 
spectrum in Fig.  3a displays absorption peaks at 
3340, 2902, and 1023  cm−1, corresponding to the 
OH, CH2, and –C–O–C– stretching and bending 
vibrations in the cellulose matrix (Abd El-Hady et al. 
2020; Himmelsbach et  al. 2006; Yuen et  al. 2012). 
A weak peak at 1638 cm−1 indicates the asymmetric 
stretching vibration of C=O, confirming the presence 
of cellulose in the cotton fabric (Himmelsbach et al. 
2006). In Fig. 3b, the observed bands at 1240, 1320, 
and 1620  cm−1 represent the –C–NH–C, C=N, and 
C–N moieties in the carbon nitride structure, while 
the bands at 801  and 1403  cm−1 correspond to the 
s-triazine ring presence in the carbon nitride matrix 
(Shahbaz et al. 1984) (Gómez-Velázquez et al. 2023). 
The interactions between CN and the cotton fabrics 
are evident through broad bands between 1056 cm−1, 
which is due to the C–O–C stretching vibrations in 
the cellulose matrix. For PPY (Fig. 3c, the peaks at 
781, 918, 1315, and 1544 cm−1 confirm the presence 
of C–H, C=C, and C–N bonds, indicating PPY coat-
ing on the fabric. However, the red shifts observed 
from 1022 cm−1 (original PPY) to 1051 cm−1 suggest 
an interaction between the cellulose matrix and the 
PPY coating. These results align with previous find-
ings in the literature (Varesano et al. 2013; Xie et al. 
2019). In Fig. 3d, the predominant peaks at 781, 918, 
1066, and 1315  cm−1 correspond to the C–H, C=C, 
C–O–C, and C–N bonds. The interactions between 
CN and the cotton fabrics are evident through broad 
bands between 1056  cm−1 is due to the C–O–C of 
cellulose matrix. The bands at 1234  and 1620  cm−1 
confirm the presence of CN and PPY coated on the 
cotton fabrics.

Over all, the results obtained from XPS analy-
sis (Fig.  1), Raman spectroscopy (Fig.  2), and 
FTIR (Fig.  3) presented a coherent narrative of the 
interactions between the CN, PPY, and cellulose 
matrix. From the above confirmation, the bonding 

Fig. 5   Scanning electron microscope and EDX analysis of (a 
and a’) uncoated CT, (b and b’) CNCT, (c and c’) PPYCT and 
(d and d’) CNPPYCT​

◂
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interactions between CN, PPY, and cotton fabrics 
were illustrated in Fig. 4.

Morphological analysis

The scanning electron microscopic (SEM) images of 
uncoated and photocatalyst-coated cotton fibers are 
presented in Fig.  5(a–d). The images in Fig.  5(b, c, 
and d) demonstrate that the fibers of the cotton fab-
ric are coated with CN, PPY, and CNPPY composite 
materials. These results validate the efficacy of the 
modified pad dry cure method in successfully coat-
ing pre-synthesized photocatalyst materials onto the 
fabric fibres. The Fig. 5(a’–d’) showcases the Energy 
Dispersive X-ray (EDAX) elemental peaks, specifi-
cally for carbon, oxygen, and nitrogen, which are in 
direct correlation with the presence of polypyrrole 
(PPY), carbon nitride (CN), and the hybrid CNPPY 
coatings on the cotton fabrics. This compelling evi-
dence firmly establishes the successful deposition of 
PPY, CN, and CNPPY layers on the fabric surfaces, 
validating the efficacy of the coating process.

Optical analysis

Figure  6  displays the optical absorbance spectra of 
CT, PPYCT, CNCT, and CNPPYCT. It is evident 
that CT and PPYCT do not exhibit any light absorp-
tion behavior in the UV and visible regions. However, 
CNCT shows effective light absorption between the 
300–550  nm region. Furthermore, the CNPPYCT 
composite noticeably shifts the light absorbance 
range a few nanometers towards the visible region. 
These results confirm that CNCT and CNPPYCT can 
be utilized for photocatalytic activity under natural 
sunlight.

The band gaps of CNCT and CNPPYCT were cal-
culated using Tauc’s plot, as shown in Fig. 7. The cal-
culated band gap values of CNCT and CNPPYCT are 
2.82 and 2.81  eV, respectively, which are consistent 
with previously reported literature (Wang et al. 2009).

Thermal analysis

The Thermo gravimetric analysis (TGA) presented 
in Fig.  8. it provides the thermal changes occurring 
in CT, PPY, CN, and CNPPY composite coated cot-
ton fabric. The TGA profile of CT shows 11% weight 
reduction at 120 °C, which was likely caused by the 

elimination of moisture content. Starting at 250  °C 
the thermal decomposition peak gradually begins to 
occur and decompose significantly at 250 °C. At the 
maximum melting point at 375 °C a 100% decompo-
sition was reached for cotton fabric (Krishnamoorthy 
et al. 2012). The TGA of PPY shows a weight loss in 
three stages. The first stage is range of 30 and 170 °C 
and shows about 11% reduction in weight. This may 
correspond to loss adsorbed moisture and bounded 
solvent. The second stage of weight loss at 170° C 
and continued at 320  °C during which there was a 
61% of weight loss due to the degradation of cotton 
fabric and residual organic solvent/pyrrole monomer 
(Boukoussa et  al. 2017). The third stage of weight 
loss starts at 320 °C and continues to up 550 °C dur-
ing which there was a 28% of weight loss due to the 
complete degradation of PPY polymer matrix. The 
CNCT sample showed an approximate mass reduc-
tion of 14%, while the CNPPYCT sample exhib-
ited a slightly lower reduction of around 8%. These 
mass reductions can be attributed to the removal of 
hydrogen from the carbon nitride and cotton fabrics, 
respectively. As the temperature increased within the 
range of 370 to 400 °C, another notable transforma-
tion took place. The α-cellulose present in the cotton 
fabrics underwent degradation, which refers to the 
process of breaking down large polymer chains into 
smaller units (Shahedifar and Rezadoust 2013). This 
degradation resulted in the formation of aliphatic 
char, which subsequently converted into aromatic 
structures. During this process, water, methane, car-
bon monoxide, and carbon dioxide were released. 
As a result, the CNPPYCT sample exhibited a better 
flame-retardant properties due to the minimal gen-
eration of flammable gases and a low decomposi-
tion rate. This indicates its improved ability to resist 
combustion compared to the CNCT sample, making 
it suitable for intended to specific flame resistance 
applications (Xu et al. 2017).

Photocatalytic studies

The degradation of Rhodamine-B (RhB) dye under 
light irradiation for 120  min was investigated, and 
the optical absorbance of RhB dye measured at dif-
ferent time intervals with CT, PPY, CN and CNPPY 
are presented in Fig.  9(a, b, c, and d). The optical 
absorbance spectra of CT indicate a minor decrease 
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in the absorption spectrum corresponding to the RhB 
dye adsorbed over the surface of CT, but there is no 
photocatalytic dye degradation. In contrast, PPYCT 
shows higher dye adsorption tendency than the pure 
cotton fabrics due to the interactions between dye 
molecules and PPY, but the degradation efficiency 
of PPYCT is almost negligible after light irradiation. 
Before light irradiation, the CNCT and CNPPYCT 
show strong RhB dye adsorption, indicating the exist-
ence of a larger surface area over the cotton fabric by 
CN and PPY.

After light irradiation, the amount of RhB dye mol-
ecules slowly decreases due to the photodegradation 

of dye molecules. A hypochromic shift is observed 
at 554 nm after 60 min of light irradiation in Fig. 9(c 
and d), indicating the residues of photodegraded dye 
molecules and the formation of its intermediates 
(Cui et al. 2015). The above results demonstrate that 
CNPPYCT exhibits excellent photocatalytic activity 
compared to CNCT, PPYCT, and CT.

The C/C0 vs. time plots shows the calculated 
concentration changes over time of a RhB dye 
in Fig.  10a. The results indicate that the CNPPY 
composite coated cotton fabric exhibited the high-
est photocatalytic dye degradation efficiency of 
96.5%, which is significantly higher than that of the 

Fig. 6   UV-Visible absorption spectrum of uncoated cotton 
fabric (CT) and photocatalyst materials (CN, PPY and CNPPY 
composite) coated cotton fabric

Fig. 7   The tauc plot of CNCT and CNPPYCT​

Fig. 8   The Thermo gravimetric analysis (TGA) of CT, PPY, 
CN, and CNPPY composite coated cotton fabric



11222	 Cellulose (2023) 30:11211–11230

1 3
Vol:. (1234567890)

individual CN (87%) and PPY (58%) coatings over 
the cotton fabrics. The superior photocatalytic activ-
ity of CNPPY composite can be attributed to sev-
eral factors, including the broadening of the light-
harvesting region, which promotes photocharge 
carrier generation and accelerates the photocatalysis 
reaction rate; the enhanced dye adsorption rate by 
PPY through π–π* interactions; and the high charge 
separation at the CNPPY hetero interfaces, which 
significantly lowers the recombination rate (Ovando-
Medina et al. 2018). The photodegradation efficiency 

of CT, PPYCT, CNCT and CNPPYCT coated fabrics 
was calculated and is shown in Fig. 10b. The results 
clearly show that the degradation level of CNPPYCT 
reaches 96.5% after 120  min of photocatalytic reac-
tion, while it was 0, 58, and 87% for CT, PPYCT, 
and CNCT respectively. The photocatalytic activi-
ties of the coated cotton fabrics follow the order 
CNPPYCT > CNCT > PPYCT > CT.

Fig. 9   Photocatalytic degradation of RhB solution over of a uncoated CT, b PPYCT, c CNCT and d CNPPYCT​
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Photocatalytic dye degradation reaction pathways

The surface of CNPPY absorbs light energy when 
exposed to sunlight light. The photo excited electrons 
are generated from the valence band (VB) of CN and 
PPY migrated to the conduction band (CB) of CN 
and PPY, producing electron-hole pairs in Eq. (3). A 
photo-induced electrons generated from the conduc-
tion band (CB) of PPY migrated to the conduction 
band (CB) of CN across the heterointerface because 
the conduction band (CB) of PPY is higher than that 
of CN. At the junction, the PPY promotes this photo-
excited charge transport and serves as to prevent the 
recombination reaction of photoinduced electrons 
from the CN. According to Eq. (4) the photo gener-
ated holes from the valence Band (VB) react with 
water to produce OH− radical. And also, the electron 
in the conduction (eCB) is taken up by the surround-
ing (O2) molecule and produce anionic superoxide 
radicals (O2

 shown in Eq. (5). These generated (−٭
superoxides radical (O2٭-) reacts with the hole 
(CNPPYCT h+) to produce a peroxyl radical (HO2*) 
in Eq. (6). The generated peroxyl radical (HO2*) from 
Eq. (6) reacts with a photoexcited electron (e−) to 
convert into a negatively charged peroxyl radical 
(HO2

−) (Eq. 7). The negatively charged peroxyl radi-
cal (HO2¯) reacts with a positively charged hole (h+) 
to form hydrogen peroxide (H2O2) (Eq. 8). These 
Hydrogen peroxide (H2O2) reacts with a photoexcited 

electron (e−) to produce a hydroxyl radical (OH*) 
(Eq. 9). Finally The dye molecule (RhB) reacts with 
the hydroxyl radical (OH*) to undergo degradation, 
resulting in the formation of intermediate organic 
fragments compounds, carbon dioxide (CO2), and 
water (H2O) (Eq. 10) (Ajmal et al. 2014).

Photocatalytic self‑cleaning analysis

The investigation of the self-cleaning property of 
CNPPY coated fabrics involved using various colored 

(3)
CNPPYCT + h� → CNPPYCT h+ + CNPPYCT e−

(4)CNPPYCT h+ + H2O → H+ + OH−−

(5)CNPPYCT e− + O2 → O∗−
2

(6)O
∗−
2

+ CNPPYCT
(

h
+
)

→ HO
∗
2

(7)HOO
∗ + e

−
→ HO

−
2

(8)HO
−
2

+ h
+
→ H

2
O

2

(9)H
2
O

2
+ e

−
→ OH

∗ + OH
−

(10)RhB + OH∗ → Intermediate + Minerals + CO2 + H2O

Fig. 10   a C/C0 vs. time plot and b Photocatalytic degradation efficiency (%) of uncoated CT, CNCT, PPYCT and CNPPYCT​
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dyes as model stains, which were kept under simu-
lated solar irradiation for 2  h. As shown in Fig.  11, 
the colored dye-stained fabrics changed from their 
respective colors to colorless under light irradia-
tion, indicating that the CNPPY coated fabrics have 
self-cleaning activity and the colored dye stains are 
removed by the photocatalytic process. It is notewor-
thy that the photocatalytic self-cleaning experiment 
over coated cotton fabrics consumed less amount 
of water (1 cm2/ml) compared to conventional pho-
tocatalytic powder type experiments (Ahmad et  al. 
2021; Duraimurugan et al. 2020). This suggests that 
the photocatalyst coated cotton fabric reduces water 
consumption, and less use of surfactant in the stain 

removal process might significantly reduce water 
pollution.

Photocatalytic self‑cleaning mechanism

A photocatalytic mechanism for the self-cleaning and 
stain removing process over cotton fabric surface was 
proposed. The plausible photocatalytic self-cleaning 
mechanism are illustrated in Fig.  12. When light is 
irradiated on the CNPPY composite, photoexcited 
electrons and holes are generated at the conduc-
tion band (CB) and valence band, respectively. The 
photoexcited electrons generated from the conduc-
tion bands (CB) of CNPPY leads to the production 
of superoxide radicals (·O2

−) with a water molecule. 

Fig. 11   Self-cleaning and stain removal activity demonstration of CNPPY coated cotton fabrics before and after 2 h solar irradiation
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Fig. 12   Mechanism 
of photo catalytic stain 
removal under solar irradia-
tion

Fig. 13   Cyclic stability of CNPPYCT under four consecutive cycles
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These photogenerated superoxide radicals degrade the 
dye/stain molecules into minerals and CO2. On the 
other hand, the photo-generated holes at the valence 
band (VB) of CNPPY are produce hydroxyl radicals 
(·OH−) from a water molecule. These hydroxyl radi-
cals effectively oxidize the dye/stain molecules into 
CO2 and minerals. Earlier reports (Kang et al. 2015) 
and (Franco 2020) showed that the CNPPY inter-
faces form a type-II band alignment, which supports 
a feasible photoexcited electrons and holes transfer 
reaction.

Photocatalytic reusability assessment

In Fig.  13, the CNPPYCT reveals that there is no 
significant photodegradation efficiency loss for four 

cycles. The recyclability test was able to understand 
that the CNPPY composite was firmly attached to the 
cotton fabric and are stable for photocatalytic self-
cleaning application for longer life cycle.

Photocatalytic antimicrobial analysis and mechanism

To assess the antimicrobial efficacy of the coated 
fabric, the bacterial growth inhibition was evaluated 
using the colony count method(CFU) (Fig. 14). The 
results demonstrate that the CNPPYCT composite 
exhibits highly effective resistance against Gram-
negative bacterium Escherichia coli ATCC 25,922 
when compared to CN and PPY coatings. The CFU/
ml values of Escherichia coli are listed in Table  1. 
When in contact with a bacterial suspension or con-
taminated surface, the CNPPYCT coating attracts 
bacteria through van der Waals forces and other weak 
interactions. Upon exposure to light, the photocatalyst 
in CNPPYCT absorbs photons and generating pho-
toexcited electron-hole pairs. The photo-generated 
electron-hole pairs in the conduction band (CB) and 
valance band (VB) become highly reactive, leading 
to the production of various ROS, primarily hydroxyl 
radicals (·OH) and superoxide radicals (·O2-). These 
ROS act as strong oxidizing agents, causing dam-
age to bacterial cells by disrupting their membranes, 
lipids, proteins, and DNA. The oxidative effect of 
hydroxyl radicals penetrates the bacterial cell walls, 
leading to the loss of cell membrane and wall integ-
rity and the degradation of essential biomolecules, 
ultimately resulting in bacterial cell death. The pho-
tocatalytic process continues as long as there is light 
and the presence of the photocatalyst, ensuring a sus-
tained antibacterial effect (Abbas et al. 2016; Ekande 
and Kumar 2021).The mechanism of photocatalytic 

Fig. 14   Antimicrobial activity of Control, uncoated CT and 
CNPPYCT​

Table 1   CFU values of 
bacteria control and photo 
catalytic compounds coated 
cloth

S. no. Particulars Average bacterial count 
(1 × 108)

Bactericidal rate (%)

Absence of 
light

Presence 
of light

Absence of 
light

Presence 
of light

1. Control (Uncoated Fabric) 332 34 – –
2. Cotton fabric (CT) 270 33 18 3
3. CN coated fabric

(CNCT)
67 29 79 14

4. CNPPY coated fabric (CNPPYCT) 49 13 85 63
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reactive species generation by the action of natural 
irradiation was clearly described using Eqs.  (3–10 
and 11). These findings suggest that the CNPPY com-
posite-coated cotton fabric possesses significant anti-
microbial activity against Escherichia coli.

Conclusion

The CN and PPY composite were synthesized using 
oxidative chemical polymerization, and a modified 
pad dry cure method was employed to coat the cotton 
fabrics with PPY, CN, and CNPPY. Elemental analy-
sis and XPS, RAMAN and FTIR studies confirmed 
the interaction of PPY and CN on the cotton fabrics 
(CT). The addition of PPY to the CN-coated fabric 
resulted in improved photodegradation efficiency, 
stability, and reusability. Furthermore, the CNPPY 
composite-coated fabrics exhibited excellent photo-
catalytic self-cleaning properties and antimicrobial 
activity. A minimal water consumption of 1 cm2/ml 
was validated through a photocatalytic self-cleaning 
test.  This study presents a promising avenue for the 
advancement of smart textiles that integrate photocat-
alytic self-cleaning. The implementation of this tech-
nology could potentially lead to reduced water and 
surfactant usage, thus contributing to the mitigation 
of water pollution.
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