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Abstract Crop wastes are renewable and abundant lignocellulosic resource, while their effective utilization is 
limited due to the recalcitrance of plant cell wall. In this study, by using a facile mechanochemical method, reed 
straw fiber was simultaneously cationized and defibrillated to obtain cationic lignocellulose nanofibers (LCNFs) 
without organic solvent. The obtained cationic LCNFs were 2–4 nm wide and several micrometers long with 
excellent re-dispersibility in water arising from the high zeta potential of + 40 mV. As a paper-reinforcement 
agent, cationic LCNFs could give coated paper good oil resistance with the maximum Kit rating of 12/12. Mean-
while, the mechanical properties of the coated paper were also remarkably enhanced with the tensile strength and 
Young’s modulus increased by 144% and 124%, respectively. They also gave the paper antibacterial properties 
because of the presence of quaternary ammonium groups. Overall, this study provides an efficient utilization 
option for crop wastes as well as a value-added lignocellulosic product.
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Introduction

Crop wastes, including various straw, rice husk, corn 
cob, bagasse, etc., are rich biomass resources, which 
mainly consist of cellulose, lignin, and hemicellu-
lose. They are potential substitutes for fossil energy 
because of their renewability, abundance, less pol-
lution and low price (Yan et  al. 2020; Zhang et  al. 
2019a, b). In China, a large amount of crop straw is 
produced annually, but only a small amount is used 
effectively because of their recalcitrance. Com-
mon reed (Phragmites australis), as one kind of 
crop wastes, is widespread with annual production 
reaching millions of tons in Chinese wetlands (Ye 
et al. 2016). In addition to applications for pulp, ani-
mal feed, and weaving, reed straw is always burned 
to generate low-value heat or discarded in nature, 
which not only causes a waste of resources, but also 
further aggravates environmental pollution (Zhang 
et al. 2016). In order to alleviate the energy crisis and 
reduce environmental pollution, the exploitation and 
utilization of biomass resources have attracted peo-
ple’s attention. The three main components (cellu-
lose, lignin, and hemicellulose ) of biomass are used 
to prepare target chemicals and fuels by the process 

of oxidation, hydrogenation, dehydration, pyrolysis, 
catalytic polymerization, dissolution and biorefining 
(Cheng et  al. 2021; Jiang et  al. 2021; Padilla et  al. 
2021). Nevertheless, these steps are so complicated 
and the yields of the product are not always satis-
factory (Fahmy et  al. 2020; McClelland et  al. 2017; 
Pourkarimi et al. 2019; Yang et al. 2019).

In recent years, to achieve innovative valorization 
of crop wastes, many efforts have been focused on 
preparing cellulose nanomaterials (CNM) (Priyadar-
shana et al. 2022; Rajinipriya et al. 2018; Ramadhani 
et  al. 2022; Ventura-Cruz et  al. 2021). For instance, 
the crop wastes of orange bagasse, corn husks, sugar-
cane straw produced in Brazil, were used to prepare 
cellulose nanofibers by alkali treatment, bleaching 
with sodium chlorite and extraction with oxalic acid, 
followed by sonication. This approach could add new 
value to crop wastes and might bring great economi-
cal valorization to crops production (Marino et  al. 
2021). Cellulose nanowhiskers were also successfully 
obtained from agricultural wastes and isolated with 
a 33% average yield by mild acid treatment (Moreno 
et al. 2018).

In addition, several studies prepared functional 
CNM from crop wastes, especially the cationic CNM, 
such as cationic nanocrystalline cellulose and cel-
lulose nanoparticles (Arnata et  al. 2020; Gu et  al. 
2020). Cationic CNM have received extensive atten-
tion recently and were used as antibacterial agent, 
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biological flocculant, adsorbent and emulsion stabi-
lizer for wastewater treatment, papermaking, compos-
ite and other fields (Lai et al. 2021; Zhang et al. 2021; 
Morantes et al. 2019; Sehaqui et al. 2016; Silva et al. 
2020). The techniques of preparing cationic CNM 
mainly rely on a two-step method. For one, the raw 
material was reacted with cationic agent following by 
mechanically treating to obtain cationic CNFs (Rol 
et  al. 2019; Ru et  al. 2019). For another, the CNM 
were fabricated firstly, which were then reacted with 
cationic agent (Wei et  al. 2021). Aulin et  al. (2010) 
were the first to obtained cationic CNFs by reacting 
with 2,3-epoxypropyl trimethylammonium chloride 
(EPTAC) in water, isopropanol and sodium hydrox-
ide, following with microfluidization. After that, 
many different preparation processes of cationic 
CNM were reported and the cationic agents used 
were 2,3-epoxypropyl trimethylammonium chloride 
(EPTAC), 3-chloro-2-hydroxypropyltrimethylammo-
nium chloride (CHPTAC), 3-chloro-2-hydroxy-propyl 
dodecyl dimethyl ammonium, N,N-dimethyl-1-octa-
decylamine, Girard’s reagent T ((2-hydrazinyl-2-ox-
oethyl) trimethylazanium chloride, GT), cetyltrime-
thyl ammonium bromide (CTAB), etc. (Arnata et al. 
2020; Keyvani et al. 2021; Lu et al. 2020; Rol et al. 
2019). Among these, EPTAC has the highest reaction 
efficiency and is commonly used in industry (Prado 
et al. 2014; Zaman et al. 2012).

However, the above method of preparing CNM or 
cationic CNM always contained delignification and 
bleaching processes and only cellulose was utilized, 
which caused a waste of other components. Actually, 
the lignin component can endow CNM with advanced 
properties, such as hydrophobicity, UV absorption 
ability and thermal stability (Bai et  al. 2021; Pylyp-
chuk et  al. 2021; Shao et  al. 2021). Therefore, the 
lignin-containing cellulose nanomaterials (LCNM) 
obtained from crop wastes were studied and various 
techniques have been applied to prepare LCNM based 
on mechanical methods, chemical treatments and 
their combination (Liu et al. 2021; Zhou et al. 2023). 
Among these, commonly used mechanical methods 
were high pressure homogenization (Tarres et  al. 
2020; Zhang et  al. 2019a, b), ball-milling (Ewulonu 
et  al. 2019) and ultrasonication. For improving the 
efficiency of mechanical processing, chemical meth-
ods were used for pretreatment, such as traditional 
pulping process, alkali treatment, acid hydrolysis, 
TEMPO oxidation and enzymatic hydrolysis (Ehman 

et  al. 2016). Other treatment was also designed for 
preparing LCNM such as pretreating thermomechani-
cal pulp and bagasse in deep eutectic solvent (Jiang 
et  al. 2020; Zou et  al. 2022). However, few studies 
about functional LCNM prepared from crop wastes 
were reported as far as we know except one report 
about cationic LCNFs prepared by sugarcane bagasse 
reacting with glycidyltrimethylammonium chloride 
and following by high pressure homogenization. 
There are hardly any researches on one-step prepara-
tion of functional LCNM from crop wastes.

Here, we developed a one-pot method for the prep-
aration of cationic LCNFs from reed straw, which 
was achieved simply by ball milling reed flour with 
EPTAC in mild alkaline condition. During ball mill-
ing process, the straw fiber was defibrillated and 
cationized simultaneously. Long nanofibers were 
obtained only by ball milling for 2 h. The composi-
tion, morphology, chemical and crystalline structures 
of the obtained cationic LCNFs were systematically 
characterized, and the zeta potential of the cationic 
LCNF suspension was also tested. Furthermore, the 
barrier and mechanical properties of paper coated by 
cationic LCNFs were analyzed.

Experimental

Materials

Reed (Phragmites australis) straw was collected at 
Baiyang Lake in Hebei Province, China. The root 
of the straw was removed and the stem was dried at 
60 °C and cut into approx. 50 mm-long pieces after 
being rinsed with water. The straw was pulverized by 
a waring blender and 80-mesh-pass fraction was col-
lected as flour (Fig. S1). 2,3-epoxypropyl trimethyl 
ammonium chloride (EPTAC, 95%) was purchased 
from Innochem (Yinuokai Technology Co., Beijing, 
China). Deionized water was used in all experiments 
while Milli-Q water was used for dialysis.

Preparation of cationic LCNFs

Dried reed flour (0.5 g), EPTAC and 10 mL of NaOH 
solution (3.7 wt%) were added to a 45 mL zirconia 
pot containing seven zirconia balls (d = 10 mm) and 
milled by a planetary ball mill (Pulverisette 7, Fritsch, 
Germany). Control experiment was also performed 
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without EPTAC. Ball-milling was carried out with 
punctuated operation (working time 20  min and 
interval of 2 min) with a rotation speed of 300  rpm 
at room temperature. The milling time was varied 
from 1 to 12  h. The milled mixture was neutralized 
to pH = 7 with dilute HCl (3 wt%) and washed with 
water several times until no free chloride detected in 
the supernatant. Finally, the product was purified by 
dialyzing against Milli-Q water for 3 days.

aAmount of hydroxyl group was calculated by 
3 m/162 (assuming all solid was cellulose).

Redispersion of dried cationic LCNFs

About 0.3  g freeze-dried cationic LCNFs (1-M4) 
were dispersed in 100 mL of water by sonication for 
2, 4, 10 min in an ice bath by intermittent operation 
(2  s run-2  s pause at the power of 180  W (Scientz-
IID, Ningbo Scientz Biotechnology)) and the cationic 
LCNF dispersion was obtained. The dispersion was 
centrifuged at 2000 rpm for 5 min. The sediment and 
the turbid supernatant were separated by pipetting 
and dried following by weighing. The yield of LCNFs 
was calculated according to Eq. (1) as follows:

where ms is the solid weight of supernatant, and M is 
the total dry weight of redispersed cationic LCNFs.

Compositional analysis

The compositional analysis of raw reed flour and 
obtained samples were analyzed according to labora-
tory procedures of Determination of Structural Car-
bohydrates and Lignin in Biomass by the National 
Renewable Energy Laboratory (NREL) (Sluiter et al. 
2011). Briefly, cellulose and hemicellulose were 
hydrolyzed into monosaccharides by sulfuric acid, 
and then the concentration of monosaccharides was 
detected by external standard method using HPLC 
to calculated the content of cellulose and hemicellu-
lose. The total content of lignin included acid-soluble 
lignin and acid-insoluble lignin and the later was cal-
culated by measuring the absorbance of the sample at 
320 nm on a UV–visible spectrophotometer.

(1)Yield(%) =
m

s

M
× 100

Morphology analysis

The morphology of the cationic LCNFs was observed 
by atomic force microscopy (AFM, Bruker Multi-
mode 8, Germany) in ScanAsyst mode to evaluate the 
extent of defibrillation of the fibers. 5 µL of diluted 
LCNF suspension (0.01%) was deposited on freshly 
cleaved mica after sonicating for 2  min, and it was 
completely dried at room temperature before testing.

The surface morphology of paper coated by cati-
onic LCNFs was observed using Scanning electron 
microscopy (SEM, Hitachi S-4800, Japan) at 5  kV 
acceleration voltage. The SEM samples were pre-
coated with gold for 60 s using a vacuum-ion sputter-
coater (Hitachi MC1000).

Chemical structure analysis

The cationization of the reed flour was characterized 
by Fourier transform infrared spectroscopy (Varian 
3100) with the KBr disc method (1:100 dilution by 
KBr) for 400–4000  cm− 1 with 64 scans in absorption 
mode.

X-ray photoelectron spectroscopy (XPS) spectra 
were obtained with an ESCALAB220i-XL Photo-
electron Spectrometer (VG Scientific). A Gaussian 
curve fitting program was used to analysis the signal 
of C1s, O1s, N1s and the following binding energies.

Crystalline structures analysis

X-ray diffraction (XRD) patterns of the products were 
recorded using an X’Pert PRO X-ray diffractometer 
with Cu Kα radiation (λ = 0.154184  nm) in the 2θ 
range of 5–50° with increment step of 0.02°. Then, 
the crystallinity index (CrI) of samples was calculated 
according to the empirical Eq. (2) (Segal et al. 1959):

where I200 is the maximum peak intensity of the crys-
talline region of cellulose (2θ = 22.3°), and Iam is the 
intensity of the amorphous phase (2θ = 18.6°).

(2)CrI(%) =
(I
200

− I
am
)

I
200

× 100
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Quaternary ammonium group content determination

The content of trimethylammonium chloride groups 
in cationic LCNFs was measured by elemental anal-
ysis of N. Elemental analysis was performed using 
Vario MACRO cube (Elementar, Germany). The 
content of quaternary ammonium group in cationic 
LCNFs was determined by the following Eq. (3):

where  Nc is the content of quaternary ammonium 
group, and the x is the weight% of N element in the 
cationic LCNFs (x wt%).

Zeta potential

Zeta potential of LCNFs was measured using Zeta-
sizer Nano ZS (Malvern) at the concentration of 0.1 
wt%. Each sample was tested three times at 25 °C and 
the results were averaged.

Application of cationic LCNFs to paper

The cationic LCNF (1-M4) dispersion was coated on 
the paper (grammage 80 g/m2) surface by vacuum fil-
tration. The coating level was controlled by changing 
the concentration of LCNF suspensions.

Grease resistance of coated paper

Grease resistance of the paper coated with cati-
onic LCNFs was tested according to the TAPPI T 
559 cm-12 standard. The solution containing different 
ratios of castor oil/heptane/toluene ranging from No. 
1 to 12 was dropped on the paper surface and wiped 
out after 15 s. The results were reported as Kit rating 
number, where a higher number indicates a better oil 
resistance performance.

Mechanical properties of coated paper

The mechanical properties of paper with the cationic 
LCNF coating were measured by an MTS Sintech 
tensile tester (MTS Sintech, Beijing) with a strain rate 
of 5  mm/min. Specimen strip was 5  mm wide and 
60 mm long with a gauge span of 30 mm. At least five 
strips were measured and the results were averaged.

(3)Nc(mmol∕g) =
x × 10

14

Results and discussion

Cationization and defibrillation of reed flour and 
chemical compositional analysis

Cationic lignocellulose nanofibers (LCNFs) were 
prepared by a mechanochemical method. Dur-
ing the ball milling process, the lignocellulose fiber 
would be swelled by NaOH solution and defibril-
lated under the action of mechanical force, exposing 
more hydroxyl groups. Meanwhile, hydroxyl groups 
reacted with EPTAC to increase the electrostatic 
repulsion between fibers, which in turn could further 
promote defibrillation of fibers (Fig.  1). As a result, 
LCNFs were obtained and the compositional analysis 
of the reed flour and LCNFs was performed (Fig. 2). 
In reed flour, the content of cellulose, hemicellulose, 
and lignin was 42%, 19%, and 26%, respectively. 
With the ball milling time increasing, the content of 
hemicellulose and lignin was decreased. The hemicel-
lulose content was reduced by 71.4% after ball mill-
ing 12 h, since the hemicellulose could be dissolved 
and removed during milling. In addition, lignin-hemi-
cellulose ester bonds could also be hydrolyzed by the 
alkaline treatment, which also resulted in the hemi-
cellulose and lignin dissolution (Liu et  al. 2019; Ru 
et al. 2019).

Chemical structure of cationic LCNFs

The reaction mechanism of lignocellulose and 
EPTAC under alkaline condition is that the alkali-
activated hydroxyl groups of lignocellulose react with 
epoxy groups of EPTAC. Figure  3a, b show FT-IR 
spectra of reed flour and LCNFs. The chemical struc-
ture of the LCNFs is similar to that of the reed flour. 
The absorption peaks at 1600   cm−1, 1508   cm−1 and 
1238   cm−1 are the characteristic peaks of the aro-
matic structure of lignin, which are the stretching 
vibration absorption peaks of the aromatic structure 
skeleton C=O and C=C (McClelland et  al. 2017). 
The absorption peak at 1735  cm−1 represents the car-
bonyl groups, which are attributed to the hemicellu-
losic acetate and uronate ester groups, or ester groups 
of lignin/hemicellulose (Yang et al. 2018). Addition-
ally, the absorption peak at 1735  cm−1 almost disap-
peared after ball milling, indicating that ester groups 
were hydrolyzed as well as hemicellulose was lost in 
alkaline condition evidenced by the hemicellulose 
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content reduced during ball milling (Fig. 2). Appear-
ance of new peak at 1489  cm−1 belongs to the stretch-
ing of methyl groups on the quaternary ammonium 
group (Zaman et  al. 2012). The peak at 1418   cm−1 
is ascribed to C–N stretching (Pal et  al. 2005; Song 
et  al. 2010). These are evidences of successful cati-
onization of reed flour by EPTAC during ball milling.

Additional evidence of the cationization was 
obtained by X-ray photoelectron spectroscopy 
(XPS). Results of curve-fitting for the C1s, O1s and 
N1s region using a Gaussian function are shown in 
Fig. 4. Compared with the reed flour, a new peak of 
N1s appeared at 403 eV characteristic for C–N of the 
substituted ammonium. This further confirms that 
LCNFs are cationized by EPTAC. The content of qua-
ternary ammonium groups on the fiber surface was 
tested as shown in Table 1. The content of quaternary 

Table 1  Preparation condition of cationic LCNFs

Sample Ball-milling 
time/h

EPTAC molar 
ratio/hydroxyla

N+ 
content 
(mmol/g)

0-M4 4 0:1 –
0.5-M4 4 0.5:1 0.41
1-M4 4 1:1 0.68
1.5-M4 4 1.5:1 0.89
2-M4 4 2:1 0.95
1-M2 2 1:1 0.35
1-M6 6 1:1 0.96
1-M8 8 1:1 0.92
1-M10 10 1:1 0.91
1-M12 12 1:1 0.93

Fig. 1  Scheme of the cationic LCNFs fabrication from reed straw and application to paper
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ammonium groups on the fiber surface was increased 
with increasing milling time and the molar ratio 
of EPTAC/hydroxyl. However, milling more than 
8 h and more EPTAC did not give more quaternary 
ammonium groups on the fiber surface. These could 
be resulted from the hydrolysis of EPTAC occurred in 
the reaction system, which would reduce reaction effi-
ciency (Odabas et al. 2016; Zaman et al. 2012). Fur-
thermore, the cationic LCNFs would also hydrolyze 
in alkaline condition (Moral et al. 2015).

Crystal morphology and crystallinity of cationic 
LCNFs

The crystal morphology and crystallinity of cati-
onic LCNFs were characterized by X-ray diffraction 
(XRD) analysis (Fig. 5). It shows that the mechano-
chemical process did not change the crystal form of 
the cellulose and the cationic LCNFs maintained cel-
lulose I crystallinity. The peak positions of samples 
before and after cationization were almost the same, 
appearing at 14.9°, 16.5° and 22.3° 2θ, respectively, 
which were corresponding to Miller indices [(1−10), 
(110) and (200)]. However, the degree of crystal-
linity decreased from 65.3 to 46.3% after 12 h mill-
ing at a constant molar ratio (EPTAC/hydroxyl) of 
1. The degree of crystallinity was also decreased 
with increasing the molar ratio of EPTAC/hydroxyl 
and the molar ratio of 2 gave a lower crystallinity 
of 44.8%, which was likely to be associated with the 
increase of chemically modified cellulose chains on 
the fibril surfaces.

Morphology of cationic LCNFs

The morphology of prepared samples was examined 
by AFM (Fig. 6, Fig. S2). The fiber was partial defi-
brillated after 4  h ball-milling only under alkaline 
condition, which was same as our previous work 
(Liu et al. 2019). The addition of EPTAC to the mill-
ing system resulted in extensive individualization of 

Fig. 2  Compositional analysis of the reed flour and cationic 
LCNFs

Fig. 3  FT-IR spectra of reed flour and LCNFs prepared by milling with various time (a) and associated partial spectroscopy (b)
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the 2–4 nm-wide elementary fibrils. The diameter of 
lignocellulose fiber decreased with the milling time 
increasing. In fact, the nanofiber with diameter less 
than 10 nm was obtained only by milling for 2 h with 
the assistance of EPTAC. Besides, with the molar 
ratio of EPTAC/hydroxyl increasing, the diameter of 
lignocellulose fiber also decreased and became uni-
form. Since the content of quaternary ammonium 
groups on the fiber surface increased with the molar 
ratio of EPTAC/hydroxyl and milling time increas-
ing, it can be concluded that the cationic groups intro-
duced by EPTAC should be effective in separation of 
fibers by electrostatic mutual repulsion. In the AFM 
images, the minute particles attaching to LCNFs 
or distributing in the background were lignin parti-
cles (Fig.  6b, c) because alkali-soluble lignin could 
be precipitated and agglomerate into particles when 
neutralized.

Zeta potential of cationic LCNF suspensions

Figure  7a and b show the variation of the zeta 
potential of LCNFs with the milling time and molar 
ratio of the EPTAC/hydroxyl, respectively. It can 
be seen that the zeta potential of LCNFs is negative 
(−16 mV) after alkaline milling of the reed flour 
without EPTAC, which was consistent with our pre-
vious work (Liu et  al. 2019). In contrast, the zeta 
potential of LCNFs became positive (+ 30∼ + 40 
mV) by milling with EPTAC and the maximum of 
zeta potential reached at + 40.8 mV. Furthermore, 
the variation trend of the zeta potential was almost 
consistent with the variation trend of the quaternary 
ammonium group content, which further proved that 
the lignocellulose reacted with the EPTAC. Mean-
while, the introduced high electrostatic repulsion 
was beneficial to improving the stability of LCNF 
suspensions. Introduction of positive charge caused 

Fig. 4  a XPS spectra of reed flour and cationic LCNFs, b, c high-resolution scans of C1s and O1s of reed flour, and d, e and f high-
resolution scans of C1s, O1s, and N1s of cationic LCNFs



7259Cellulose (2023) 30:7251–7264 

1 3
Vol.: (0123456789)

remarkable effect on re-dispersibility of LCNFs. 
Figure  7c–e show the AFM images of redispersed 
cationic LCNFs (1-M4) by sonication for different 
time. It was found cationic LCNFs could be quickly 
redispersed in water by short-time sonication 
(4 min, the yield reached 96%). The fibril width of 
redispersed LCNFs was around 4  nm, demonstrat-
ing excellent re-dispersibility and facilitating their 
storage and transportation.

Cationic LCNFs applied to paper

One application of the cationic LCNFs is paper-
making. When the cationic LCNFs were coated on 

the paper surface, the pores on the surface of paper 
were gradually covered with the increasing coating 
weight of the cationic LCNFs (Fig. S3). The fiber 
on the surface of paper was completely covered with 
cationic LCNFs and the fiber outline became blurred 
when the coating weight of the cationic LCNFs was 
5 g/m2. When the coating weight was more than 3 g/
m2, the cationic LCNFs formed a dense layer on the 
paper surface as Fig. S4 shows and the barrier prop-
erty of paper was greatly improved. The air perme-
ability was decreased significantly with the increasing 
coating weight of cationic LCNFs (Table S1) and the 
air permeability was lower than 0.01 μm/(Pa s) at the 
coating weight of 3 g/m2, which confirmed again that 

Fig. 5  X-ray diffraction 
data of the reed flour and 
LCNFs with various milling 
time (a, c) and molar ratio 
of EPTAC/hydroxyl (b, d)
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cationic LCNFs formed a barrier layer on the surface 
of the paper. When cationic LCNFs were applied to 
paper products, the lignin component was expected to 
improve the hydrophobicity of paper (contact angle 
reached 80°, Fig. S5).

The formed dense layer of cationic LCNFs can 
block oil penetration and the oil resistance of coated 
paper was characterized by Kit rating. The variation 
of the Kit rating with the coating weight was shown 
in Fig.  8a. There is a sharp increase in the Kit rat-
ing when the cationic LCNFs were coated on the 
paper surface and the Kit rating reached the maxi-
mum of 12/12 at the coating weight of 5 g/m2, giv-
ing the paper excellent oil-proof performance. The 
cationic LCNF coated paper-based container had the 
capability to hold rape oil for 5 days without leak-
age (Fig. S6). This mainly benefited from the dense 
layer formed by LCNFs and the positive charge on 
the LCNFs, which cannot only block the access of oil 
to penetrate the paper, but also generate electrostatic 
interactions with oleic acid molecules that prevented 
oil from permeating and transferring (Long et  al. 
2015).

The mechanical properties of the paper with 
and without cationic LCNF coating were tested as 
the Fig.  8b show. The tensile strength of the paper 
increased with the increasing coating weight. The 

tensile strength of paper with the coating weight 
of 9  g/m2 (22.5 ± 0.9  MPa) was far beyond that of 
paper without coated (9.6 ± 0.3  MPa). Meanwhile, 
the Young’s modulus of the coated paper also signifi-
cantly increased with the increasing coating weight. 
The Young’s modulus of paper without coating was 
0.8 ± 0.2 GPa while the paper with the coating weight 
of 9 g/m2 reached at 1.9 ± 0.1 GPa. It suggested that 
the cationic LCNFs can strengthen the interactions 
between cellulose fibers in paper. This was mainly 
due to the electrostatic interactions and hydrogen 
bonds formed between the paper fibers and LCNFs. 
The quaternary ammonium groups of LCNFs were 
expected to bind with negatively charged hydroxyl 
on the paper fiber surface through electrostatic inter-
actions and hydrogen bonds can be formed between 
the unreacted hydroxyl groups of LCNFs and the 
hydroxyl groups on the paper fiber surface. The cati-
onic LCNFs acted as a bridge in paper fibers through 
dual interactions, which leads to the mechanical prop-
erties of the coated paper significantly improved. 
Accordingly, the cationic LCNFs can be used as 
effective paper-strengthening agent. Moreover, the 
coated paper was also with good antibacterial prop-
erty and the growth reduction rate against E. coli was 
93% (Fig. S7), which was conducive to expanding the 
application of paper.

Fig. 6  AFM images of prepared LCNFs with EPTAC/hydroxyl molar ratio of a 0:1, b 1:1, and c 2:1
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Conclusion

Cationic LCNFs were successfully prepared by the 
one-pot reaction of reed flour and EPTAC under 
mild alkaline condition. The obtained cationic 
LCNFs were 2–4  nm wide and several microm-
eters long. The suspension of cationic LCNFs with 
a high zeta potential of + 40 mV showed high dis-
persion stability and easy re-dispersibility. When 

cationic LCNFs were coated on paper surface, the 
hydrophobicity and oil resistance of paper were sig-
nificantly improved. In addition, the tensile strength 
and Young’s modulus of the coated paper can be 
increased by 144% and 124%, respectively. The 
cationic LCNFs also endow paper with antibacte-
rial property. This study provides a facile mecha-
nochemical method to achieve value-added material 
from crop straw.

Fig. 7  Zeta potential of the cationic LCNF suspensions with different a milling time and b molar ratio of EPTAC/hydroxyl, AFM 
images of the redispersion of freeze-dried cationic LCNFs (1-M4) by sonication for a 2 min, b 4 min, c 10 min
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