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Abstract Versatile cotton fabrics can be used in a 
variety of special environments and offer unparalleled 
advantages in textile products. In this work, bio-based 
phytic acid (PA), octadecylamine (ODA) and  TiO2 
(NPs) were used as raw materials to prepare multi-
functional cotton fabrics with excellent flame retard-
ant (LOI  =  48.5%), hydrophobic (WCA  =  152°), 
UV-blocking (UPF  =  2000) and antibacterial 
(BR = 100%) properties through a facile and scalable 
dip coating and spraying process. Firstly, the phytic 
acid was grafted onto the surface of cotton fabric by 
esterification reaction between its phosphoric acid 
group and the hydroxyl group of cellulose molecules. 
Then ODA reacted with the residual phosphoric acid 
group of phytic acid to form an ODA layer, for further 

immobilizing  TiO2 (NPs) particles on the surface of 
cotton fabric. The resulting cotton fabric possessed 
excellent flame resistance (LOI > 36.2%), hydropho-
bicity (WCA  >  138°), UV-blocking (UPF  =  2000) 
and antibacterial abilities (BR > 96.0%) even after 20 
washing cycles. Moreover, this modification process 
did not sacrifice the desired cotton properties, includ-
ing water vapor permeability, flexibility and tensile 
strength. This work proposed a simple and scalable 
pad-dry curing method to construct stable and mul-
tifunctional cotton textiles, which have broadened 
application prospects in many fields.
Graphical abstract 
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Introduction

Cotton fabrics are widely used in home decoration, 
clothing and technical textiles (Yetisen et  al. 2016; 
Ahmed et al. 2020; Karim et al. 2020; Balasubrama-
nian et al. 2021; Li et al. 2021) because of their wide 
sources, degradability, low cost, breathability, soft-
ness and wearing comfort (Flint 1950; Rowland et al. 
1976; Park et  al. 2004; Klemm et  al. 2005). Unfor-
tunately, they have some disadvantages, for example, 
their moisture-absorbing properties easily lead to 
the multiplication of bacteria on the surface. When 
a large number of microorganisms multiply, cross-
infection, unpleasant odor and quality deterioration 
may occur (Zhou and Kan 2015; Cai et al. 2018; Duan 
et al. 2020; Gao et al. 2021; Wang et al. 2021). Cotton 
fabrics have a low limiting oxygen index and a low 
onset ignition temperature (360–425 °C), which make 
these materials highly flammable. When exposed to 
flame, cotton fabrics will burn quickly, emitting large 
amounts of heat and toxic fumes (Xu et al. 2019; Li 
et al. 2020; Chen et al. 2021). In addition, cotton fab-
rics also suffer from oxidation aging and performance 
degradation, when exposed to high UV intensity of 
the atmosphere for a long time. (Abidi et  al. 2009; 
Yin et al. 2014; Liu et al. 2022a, b). Hence, it is vital 
to develop multifunctional cotton fabrics with hydro-
phobic, antibacterial, flame retardant and UV resist-
ance properties to provide a safe environment for 
human beings.

Halogenated compounds have been the most 
effective and widely used flame retardants on cotton 
fabrics in the past decades. But halogenated flame 
retardants are gradually disappearing from research 
laboratories, due to their negative impact on the envi-
ronment and health (Zaikov and Lomakin 2002). The 
use of renewable resources including nucleic acid 
(DNA), protein, phytic acid (PA) and other formal-
dehyde-free, halogen-free, environmentally friendly 
and efficient bio-based flame retardants has attracted 
widespread attention (Alongi et  al. 2014; Qiu et  al. 
2018; Li et  al. 2019; Miao et  al. 2021; Wan et  al. 
2021; Sykam et al. 2021; Özer and Gaan 2022). For 
example, DNA coatings were constructed on cotton 
fabrics using a layer-by-layer technique, resulting in 
self-extinguishing properties and achieving a 28.0% 
limiting oxygen index  (LOI) (Alongi et  al. 2013). 
Nevertheless, the limited source of DNA hinders 
its large-scale application. By contrast, the amino 

acids in whey protein are mostly sulfur-containing 
amino acids, and casein is a phosphorylated protein. 
When the surface of cotton fabric was coated with 
whey protein or casein suspension, the burning rate 
of cotton fabric was reduced and the burning time 
was effectively increased (Alongi et al. 2013; Bosco 
et  al. 2013; Faheem et  al. 2019; Liu et  al. 2020). 
However, it is difficult to endow cotton fabrics with 
self-extinguishing properties, due to insufficient con-
tent of flame retardance elements in these proteins. 
Phytic acid  (PA), a natural molecule extracted from 
plant tissues such as grains and rapeseed, has been 
widely used for flame retardant fabrics, because of 
its environmental friendliness, biocompatibility and 
phosphorus-rich nature (one phytic acid molecule has 
six phosphate groups) (Li et al. 2019, 2020; Liu et al. 
2019, 2020; Thota et  al. 2019; Sykam et  al. 2021). 
However, PA is limited in making flame retardant 
fabrics as it degrades cellulose by the acidic effect, 
resulting in a significant loss of strength in cotton 
fabrics.

Due to their polyhydroxy structure, cotton fabrics 
are prone to absorb water, which hinders their appli-
cation in special fields (Zhou et  al. 2018; Yang et  al. 
2021; Wang et al. 2022; Wu et al. 2022). Good hydro-
phobicity can reduce the surface contamination of cot-
ton fabrics and facilitate high-value applications in spe-
cial environments (Wang et al. 2014; Xu et al. 2020). 
The hydrophobic treatment of cotton fabric surfaces is 
achieved by a combination of reduced surface energy 
(Latthe et al. 2014) and surface roughening (Zou et al. 
2013), which also has been applied to stain preven-
tion (Xi et al. 2015), self-cleaning (Mishra and Butola 
2018), anti-icing (Latthe et  al. 2019) and oil–water 
separation (Zhou et al. 2019). The low surface energy 
of cotton fabrics is mainly achieved by grafting fluori-
nated compounds (Zhang et  al. 2018) or polysilox-
ane polymers (Przybylak et  al. 2016). However, most 
of these materials are made from non-renewable or 
even toxic raw materials and may have serious conse-
quences for human health and the environment, thus 
running counter to sustainable development goals. 
Octadecylamine (ODA) can reduce the surface energy 
of cotton fabrics to achieve hydrophobicity, due to its 
extra-long alkane chain. (Yan et al. 2020; Lin and Lee 
2021; Liu et  al. 2022a, b). Moreover, ODA possesses 
the characteristics of low cost, wide source, degrada-
bility and biocompatibility, which have attracted great 
interest from researchers (Hu et al. 2022). Besides, the 
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micro/nano-structures on the fabric surface are mainly 
achieved by loading some inorganic nanomaterials, 
such as ZnO (Athauda et  al. 2013),  SiO2 (Lin et  al. 
2018) and  TiO2 (Lee et al. 2013; Yang et al. 2018). Due 
to its UV absorption ability,  TiO2 is also widely used in 
functional textiles for realizing self-cleaning, antibacte-
rial and UV protection properties (Wu and Long 2011; 
Yu et al. 2013; Shaheen et al. 2019; Raeisi et al. 2021; 
Sheng et al. 2021; Zhu et al. 2021). However, the weak 
interface bonding force between inorganic nanomateri-
als and textile fibers is a major challenge for the further 
application of  TiO2 (NPs).

In this work, we prepared multifunctional cotton 
fabrics with flame retardant, hydrophobic, UV-resist-
ant and antibacterial properties based on low-cost and 
bio-based raw materials PA, ODA and  TiO2 (NPs). 
Flame retardant fabric P-CO was prepared by cova-
lently grafting phytic acid onto the surface of cotton 
fabric through esterification reaction in phytic acid, 
urea and dicyandiamide system. Furthermore,  TiO2 
(NPs) particles and ODA were deposited sequentially 
on the surface of P-CO fabrics by atomization tech-
nique. Meanwhile, ODA will react with the residual 
phosphoric acid group on the surface of P-CO fabrics 
via amide reaction and ODA layer was formed on its 
surface. At the same time, the  TiO2 (NPs) particles 
were firmly capsulated by ODA layer on the surface 
of cotton fabric. The synergistic effects of PA, ODA 
and  TiO2 endowed POT-CO fabrics with efficient 
flame retardant, hydrophobic, anti-UV and antibac-
terial properties. To demonstrate the relationship 
between structure and performance, the surface mor-
phology and chemical structure of POT-CO fabrics 
were confirmed by SEM, ATR-FTIR, XPS and XRD, 
and the flame retardancy, hydrophobicity, UV resist-
ance, antibacterial activity and durability of POT-CO 
fabrics were comprehensively evaluated. Finally, the 
effects of the modified process on the inherent prop-
erties of the original fabrics were also assessed care-
fully, including tensile strength, water vapor perme-
ability, and flexibility.

Experimental section

Materials

Cotton fabrics (CO, 120 g/m2 weight) were purchased 
from Shaoxing Qi Dong Textile Co., Ltd (China). 

Before chemical modification, the cotton samples 
(5 cm × 5 cm, 4 pieces) were ultrasonically cleaned in 
a sodium lauryl sulfonate solution (100 mL, 2 wt%) 
for 60 min, washed with ethanol (100 mL, 95 wt%) 
for 30 min, and dried at 80 °C. Then, the cotton fab-
rics were dipped in a sodium hydroxide solution 
(100 mL, 1 wt%) at 90  °C for 60 min, washed with 
deionized water (100 mL, 3 times) and dried at 80 °C 
to obtain alkaline cotton fabrics which were used for 
further experiments. All reagents, including phytic 
acid (PA, 70 wt%), urea (AR, 99.0%), dicyandiamide 
(AR, 98.0%), NaOH (AR, 97.0%), ethanol absolute 
(AR, 99.5%), sodium lauryl sulfonate (AR, 98.0%), 
octadecylamine (ODA, AR, 99.8%) and  TiO2 (60 nm, 
99.8%) were purchased from Shanghai Aladdin Co., 
Ltd (China) and used without further purification.

Preparation of modified cotton fabrics

Firstly, PA solution (0.3  mol/L, 100  mL) was pre-
pared, and the urea (0.45 mol, 27.00 g) was dissolved 
in it to obtain finishing solution, while dicyandiamide 
(0.06 mol,

5.04 g) was added as catalyst. The alkaline cotton 
fabric was moved into the finishing solution at 70 °C 
for 60  min with a weight ratio of 1:20 (Wcotton fabric: 
Wfinishing solution). Then, the cotton fabric was taken out, 
squeezed to control the wet absorption of the fabric at 
120%, and baked at 180 °C for 5 min. Finally, the cot-
ton fabric was washed with deionized water to remove 
the extra finishing solution and dried thoroughly in 
the oven at 80 °C to obtain P-CO fabrics. The crease 
recovery angle of CO and P-CO samples(Fig. S1a) 
and the pH change of washing leachate solution of 
P-CO samples (Fig. S1a) proves that the unreacted 
PA on the surface of P-CO fiber has been completely 
washed away.

TiO2 nanoparticles were dispersed in ethanol and 
sonicated for 15  min to dispersed uniformly. After-
wards, the  TiO2 ethanol solution (10  mL, 1  wt%) 
was sprayed on P-CO fabric samples (5 × 5 cm, both 
sides) by an air-compression-type atomizer for 1 min 
and heated at 100  °C for 30  min. Octadecylamine 
ethanol solution (10 mL, 1 wt%, 3 wt%, 5 wt%) was 
prepared at 60 °C, and then the solution was sprayed 
on the cotton fabric samples (5 × 5  cm, both sides). 
The obtained cotton fabric samples in the previous 
step were experienced under an air-compression-type 
atomizer for 5 min and heated at 160 °C for 20 min. 
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The final obtained samples were washed in ethanol 
(three times, 10  min each time) and dried at 80  °C 
for 2 h to obtain POT-CO-n fabrics (n represented the 
mass concentration of ODA), and the POT-CO-5 fab-
ric sample with excellent comprehensive performance 
was used for all performance characterizations. The 
preparation process of the POT-CO fabrics is shown 
in Scheme 1.

For comparison, P-CO fabric loaded with ODA 
(PO-CO fabric) and P-CO fabric loaded with  TiO2 
(PTCO fabric) were also prepared. PO-CO fabrics 
were obtained by spraying ODA ethanol solution 
(10 mL, 5 wt%) on P-CO fabrics for 5 min through an 
atomizer, followed by heating at 160 °C for 20 min. 
PT-CO fabrics were obtained by spraying  TiO2 eth-
anol solution (10 mL, 1 wt%) onto P-CO fabrics for 

1 min by an atomizer, and then heated at 100 °C for 
30  min. The final obtained samples were washed in 
ethanol (three times, 10  min each time) and dried 
at 80 °C for 2 h. Also, CO fabric loaded with ODA 
alone (ODA-CO fabric) and CO fabric loaded with 
ODA and  TiO2 (ODA/TiO  TiO2-CO fabric) were pre-
pared, and the whole preparation process conditions 
were the same as above.

Characterizations

The chemical structures of control cotton fabric and 
modified cotton fabrics were evaluated by infrared 
spectroscopy (FTIR, Thermoelectric Corporation 
of America). The scanning range of the ATR-FTIR 
spectrometer was 4000–500   cm−1. X-ray diffraction 

Scheme 1  The preparation process of the POT CO fabrics
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(XRD) was performed in reflection mode on an X-ray 
diffractometer (Bruker AXS D8 Advance, Germany), 
and the 2θ ranged from 10° to 80° with a speed of 5°/
min. XPS analysis was performed by an AXIS multi-
functional X-ray photoelectron spectrometer (ULTRA 
DLD, Shimadzu Ltd., Japan) at a power of 450  W. 
Ultra-high resolution field emission scanning electron 
microscope (SEM, Zeiss, UK) with Energy Disper-
sive X-Ray Spectroscopy (EDX, Zeiss, UK) was used 
to observe the surface morphology of the fabric and 
the surface elemental composition before and after 
finishing. All samples (2  mm × 2  mm) were coated 
with gold before SEM testing and EDX was operated 
with a primary electron beam at an accelerating volt-
age of 2 kV. The thermal stability of the samples was 
determined by a thermogravimetric analyzer (TG, 
Netzsch, Germany) in the air and nitrogen atmos-
phere, respectively. After chopping the samples, of 
which 5– 6 mg was prepared for testing in the range 
of 30–800 ℃ with a heating rate of 10 ℃/min.

The water vapor permeability, tensile strength, 
flexibility and washing durability of the fabric sam-
ples were carried out according to our previous 
reports (Wang et al. 2021; Xu et al. 2017, 2019). The 
test methods of the grafting rate (GR), hydrophobicity 
analysis, antibacterial property, flame retardant prop-
erty and UV resistant property of the cotton fabrics 
were also introduced in the “Supporting information”.

Results and discussion

Chemical structure of modified cotton fabrics

The control cotton fabric (CO) and the modified 
cotton fabric were characterized by FTIR, and the 
results are shown in Fig.  1a, b. Compared with the 
CO sample, the P-CO, PO-CO and POT-CO-5 fabrics 
displayed additional peaks at 1230 and 1056   cm−1, 
which were attributed to the P=O and P–O–C stretch-
ing vibration (Ma et al. 2021), indicating that PA can 
be grafted on the cotton fabric surface by P(=O)–O–C 
bonds through the esterification reaction between 
the −P=O(O-NH4

+)2 group and the –OH group of 
cellulose (Liu et al. 2017; Xu et al. 2019). The band at 
1719  cm−1 was attributed to C=O stretching vibration 
caused by the oxidation of PA during phosphorylation 
(Lu et al. 2018; Ma et al. 2021). Meanwhile, the new 
absorption peaks at 2923 and 2850   cm−1 of PO-CO 

fabrics and POT-CO-5 fabrics were corresponding to 
the  CH3 and  CH2 groups of ODA (Yan et  al. 2020; 
Lin and Lee 2021), which indicated that ODA was 
grafted onto the cotton fabric by amide reaction with 
the phosphate group on P-CO fabrics. Furthermore, a 
new broad peak at 850–740   cm−1 in the POT-CO-5 
fabric was attributed to the O–Ti–O bond (Pal et al. 
2021; Rashid et al. 2022; Refaee et al. 2022), indicat-
ing the successful deposition of  TiO2 (NPs) on the 
surface of the cotton fabric.

XRD analysis was also carried out for the control 
cotton fabric and modified cotton fabric. As shown 
in Fig. 1c, the peaks at 2θ = 14.7°, 16.5°, 22.7°, and 
34.3° were. typical peaks of crystalline structure of 
cellulose I, which appeared in the XRD spectra of 
both control cotton fabric and modified cotton fabrics 
(Xu et al. 2017, 2020; Duan et al. 2020), illustrating 
that the modification did not destroy the crystalline 
structure of cellulose. Compared to other samples, the 
characteristic peaks of  TiO2 at 2θ = 25.5° and 48.2° 
appeared in the POT-CO-5 fabrics (Shaheen et  al. 
2019; Sheng et al. 2021), which proved that the  TiO2 
(NPs) were successfully deposited on the surface of 
the POT-CO-5 fabric. Furthermore, the increment in 
fabric weight also revealed the successful grafting 
of PA,  TiO2 (NPs) and ODA on the fabric surface, 
and the GR of POT-CO-5 fabric reached up to 8.5% 
(Fig. 1d).

To further confirm the chemical structure, the con-
trol cotton fabric and the treated cotton fabrics were 
analyzed by XPS and the results are shown in Fig. 2. 
From the wide-scan XPS survey spectra (Fig.  2a), 
new elements (N and P) appeared in all modified 
cotton fabrics compared to the CO sample, with 
the additional presence of Ti elements in the POT-
CO-5 fabrics. Fig.  2b, c showed the high-resolution 
C 1s XPS spectra of CO and POT-CO-5, respec-
tively. The former can be deconvoluted into three 
peaks at 288.05  eV (O–C–O), 286.40  eV (C–OH) 
and 284.80 eV (C–C/C–H), whereas the latter can be 
deconvoluted into two peaks at 286.32  eV (C–OH) 
and 284.50 eV (C–C/C–H) (Wang et al. 2021, 2022; 
Shen et al. 2022). To confirm the existence of cova-
lent bonds between PA, ODA and cellulose chains 
of cotton fibers, high-resolution N 1s and P 2p XPS 
spectra of the POT-CO-5 fabrics were also analyzed. 
As shown in Fig.  2d, the N 1s peaks of POT-CO-5 
fabrics appeared at 400.89, 399.87 and 398.58  eV, 
attributed to –NH2, –NH– and –N= bonds (Yan 
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et  al. 2020; Lin and Lee 2021), respectively. The P 
2p peaks of POT-CO-5 fabrics appeared at 134.32 
and 133.38  eV (Fig.  2d), which was corresponding 
to P=O)–O–C bond between phytate and cellulose, 
and  PO2

2− for the unreacted –P=O(O–NH4
+)2 group 

(Liu et al. 2017; Xu et al. 2019; Ma et al. 2021). The 
high-resolution Ti 2p XPS spectra of POT-CO-5 
fabrics were presented in Fig.  2f. The Ti 2p peaks 
of POT-CO-5 fabrics were deconvoluted at 465.00 
and 457.00 eV, corresponding to the Ti  2p2/3 and Ti 
 2p1/2 bonds (Shaheen et al. 2019; Raeisi et al. 2021; 
Sheng et  al. 2021), respectively, which proved the 
successful deposition of  TiO2 (NPs) on the POT-
CO-5 fabrics surface. The element contents in the 

fiber surfaces were calculated based on these XPS 
results (Table  S1). The data clearly demonstrated 
a significant difference between POT-CO-5 fab-
rics (78.59%  C, 11.88%  O, 2.55%  N, 3.15%  P and 
3.84%  Ti) and the control cotton fabric (54.63%  C 
and 45.37% O). These XPS results suggested the suc-
cessful grafting of PA,  TiO2 and ODA on the surface 
of cotton fabrics.

The surface morphologies of CO, P-CO, PO-CO, 
PT-CO and POT-CO-5 fabrics were characterized by 
SEM observation. As shown in Fig.  3a–c, it can be 
seen that the control cotton fabric exhibited a smooth 
and clear morphological structure as stated in previ-
ous reports (Xu et al. 2017, 2020; Wang et al. 2021, 

Fig. 1  ATR-FTIR (a and b)and XRD (c) spectra of CO, P-CO, PO-CO and POT-CO-5 fabrics; and the GR values of all samples (d)
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2022). The surface of P-CO fabric was slightly rough 
(Fig.  3d–f) and a thin film appeared on the surface 
of PO-CO fabric (Fig. 3g–i), which can be attributed 
to the grafting coating of PA and ODA, respectively. 
It is worth noting that the surface of PT-CO fabric 
(Fig.  3j–l) was as smooth as the control cotton fab-
ric, suggesting that the  TiO2 (NPs) have been washed 
off easily from the fiber surfaces. In contrast, many 
nanoparticles appeared on the surface of POT-CO-5 
fabric (Fig.  3m–o), while the fiber surface was cov-
ered with a grainy thin film, which indicated the ODA 
layer successfully immobilized the  TiO2 (NPs) on 
the surface of POT-CO-5 fabric. In order to further 

analyze the surface structure of the modified cotton 
fabrics, EDS element mapping tests were performed 
on both the control and modified cotton fabrics (Fig. 
S2). Compared to the control cotton fabric, new ele-
ments N and P appeared on the P-CO, PO-CO and 
POT-CO-5 fabrics and were uniformly distributed on 
the surface of the cotton fabric. The N and P elements 
on the P-CO fabric were derived from urea and PA, 
and the N and P elements on the PO-CO and POT-
CO-5 fabrics were derived from ODA, urea and PA. 
Furthermore, the additional presence of uniformly 
distributed Ti elements on the surface of POT-CO-5 
fabric revealed the successful deposition of  TiO2 

Fig. 2  XPS survey spectra 
of samples on wide range 
of all samples (a), and the 
deconvoluted C 1s XPS 
spectra of CO (b) and POT-
CO-5 fabric (c), and the 
deconvoluted N 1s, P 2p, 
and Ti 2p XPS spectra of 
POT-CO-5 fabric (d–f)
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(NPs) on the surface of the modified cotton fabric. In 
conclusion, SEM and EDS provided strong evidence 
for the successful modification of cotton fabrics.

Water retardancy

The surface wettability of the modified cotton fab-
rics was studied by measuring the contact angle of 
a sessile water droplet on their surfaces. As shown 
in Fig.  4a–c, when the control cotton fabric was 
immersed in water, the control cotton fabric read-
ily sank into the water and exhibited the hydrophilic 
properties of the conventional cotton fabric (Fig. 4d) 
(Xu et  al. 2020). In contrast, when the POT-CO-5 
fabric was immersed in water, the POT-CO-5 fab-
ric exhibited water repellency and could float on the 

water surface (Fig.  4e–g), indicating that the modi-
fication of cotton fabric by ODA and  TiO2 (NPs) 
conferred hydrophobic properties (Fig.  4h). Another 
interesting comparison between control cotton fabric 
and POT-CO-5 fabric is shown in Fig.  4i, j. When 
droplets of various commonly used liquids (10  μL) 
were placed on the fabric samples, the droplets main-
tained a spherical shape on the surface of the POT-
CO-5 fabric, meanwhile the droplets infiltrated into 
the control cotton fabric. Furthermore, as shown in 
Fig.  4k, the modified surface of POT-CO-5 fabric 
showed hydrophobic properties, while the unmodified 
surface showed hydrophilic properties, which indi-
cated that the mist finishing technology endowed both 
sides of the modified fabric with different properties. 
Fig. 4l exhibited the contact angle of all samples, and 

Fig. 3  SEM images of the 
fiber surface of CO (a–c), 
P-CO (d–f), PO-CO (g–i), 
PT-CO (j–l) and POT-CO-5 
(m–o) fabrics
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the POT-CO-5 fabric showed superhydrophobic prop-
erty, the contact angle of which reached 152°. Hence, 
the modified cotton fabrics realized good water repel-
lency, which have potential for application in anti-
fouling fabric.

We also observed the self-cleaning ability of the 
modified cotton fabric. As shown in Fig.  5a–c, the 
control cotton fabric rapidly absorbed the dye solu-
tion and was permeated by the contaminated solu-
tion, after immersing in a colored aqueous solution 
of blue ink. However, the POT-CO-5 fabric main-
tained a clean surface after immersion in the effluent 
(Fig.  5d–f). In another experiment, methyl orange 

(MO) powder was used to simulate the dust on the 
surface of the fabrics. When MO adhered to the fab-
ric samples and they were rinsed with water drop-
lets, there were significant differences between the 
control cotton fabric and POT-CO-5 fabric samples. 
As shown in Fig. 5g–i, the control cotton fabric was 
immediately wetted and contaminated with MO pow-
der, even when rinsed with a large amount of water. 
In contrast, on the POT-CO-5 fabric, the fluid water 
carried away the MO powder quickly, showing a 
clean surface (Fig.  5j–l). These results indicate that 
the POT-CO-5 fabrics have excellent stain resistance 
and can be used in self-cleaning situations such as 

Fig. 4  Optical images of CO (a–c) and POT-CO-5 (e–g) fab-
rics on water surface. SEM images of CO (d) and POT-CO-5 
(h) fabrics. Photographs of various solution droplets (10 μL) 

on CO (i) and POT-CO-5 (j) fabrics. Optical image of modi-
fied side and unmodified side of POT-CO-5 fabric (k). Contact 
angle of all samples (l)
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homes, industrial activities and outdoor decoration. 
Moreover, the POT-CO-5 fabrics also have a certain 
photocatalytic degradation ability because of the 
 TiO2 (NPs) fixed on the surfaces (Chimeh et al 2013; 
Chimeh and Montazer 2015). By placing the POT-
CO-5 fabrics under UV irradiation,  TiO2 (NPs) on 
the surface of POT-CO-5 fabrics will degrade the dye 
molecules to achieve a self-cleaning ability (Fig. S3).

We also tested the contact angles of the POT-CO 
fabrics after exposuring to daylight simulator (a cabi-
net equipped with a UVC 4P SE tube lamp, T5 15W 
G13) for different times (Razaghpour et  al. 2022), 
and the results were shown in Fig.S4. There was a 

negligible change in the contact angles of the POT-
CO fabrics after UV-lighting. Interestingly, the con-
tact angle undergoes a small decrease with the light 
exposure time increasing, which is attributed to the 
certain photocatalytic degradation ability of the  TiO2 
(NPs) that affects the stability of the ODA coating on 
the fiber surface to some extent.

Flame retardant behavior analysis

Vertical burn test and LOI measurements were per-
formed to evaluate the flame resistance of control 
cotton fabric and modified cotton fabrics. Fig.  6a, b 

Fig. 5  Self-cleaning ability 
of CO (a–c) and POT-CO-5 
(d–f) fabrics in polluted 
solutions. The self-cleaning 
behavior of the contami-
nated fabrics: the CO fabric 
(g–i) and POT-CO-5 fabric 
(j–l)
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showed the combustion process of the control cot-
ton fabric and POT-CO-5 fabric in the vertical burn 
test, and possible flame-retardancy mechanism of 
POT-CO-5 fabric. It was evident that when the con-
trol cotton fabric was exposed to the flame for only 
1s, it burned strongly, quickly and completely, leav-
ing only a small char residue. In contrast, POT-CO-5 
fabric could not be ignited in the vertical burn test, 
even when exposed to the flame for 12s, and pro-
duced large amounts of char (char length = 3.0 cm) 
in the ignition area. The LOI values of all samples 
were shown in Fig. 7a, compared to the CO sample 
(LOI  =  18.0%), POT-CO-5 showed excellent flame 
resistance (LOI = 48.5%) and much higher than pre-
vious reported cellulose-based materials treated by 
PA or other flame retardants (Fig. 7b; Table S2).

Subsequently, CO sample and POT-CO-5 fabric 
were tested by microscale combustibility calorim-
etry (MCC) to further evaluate the combustion and 
heat release processes. The lower heat release dur-
ing combustion may reduce harm to people wearing 
fabrics made from modified cotton, and it may also 
protect the material underneath the fabric from heat 
(Chen et al. 2021; Miao et al. 2021). The heat release 

rate (HRR) of CO sample and POT-CO-5 fabric are 
shown in Fig.  7c. From the HRR curve we can see 
the obvious difference between CO sample and POT 
cotton fabric, compared to the peak of HRR (PHRR) 
−  287.56  W/g for CO sample, the PHRR of POT-
CO-5 fabric is only 31.45 W/g, which is decreased by 
89.06%. The difference in HRR between the control 
cotton fabric and the modified cotton fabric may orig-
inate from the fact that the phytate groups in the mod-
ified cotton fabric produce dehydrating agents such as 
polyphosphoric acid and phosphate during pyrolysis, 
thus accelerating the dehydration/carbonation and 
heat release from the cotton fiber, resulting in a lower 
temperature of peak HRR (Liu et al. 2017; Xu et al. 
2019; Ma et al. 2021). Moreover, the fiber morphol-
ogy of POT-CO-5 fabric before and after VFT was 
also measured by SEM. As shown in Fig.  7d–i, the 
overall woven structure of POT-CO-5 fabric remained 
intact after VFT, which indicated that PA could pro-
mote the dehydration and carbonization of cellulose 
to achieve flame retardant effect.

The results of vertical burn test, LOI and micro-
scale combustibility calorimetry tests showed that the 
flame retardancy of cotton fabrics was significantly 

Fig. 6  Images during VFT of control cotton fabric and POT-CO-5 fabric (a), and possible flame-retardancy mechanism of POT-
CO-5 fabric (b)
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improved via impeding combustion and promoting 
carbonization.

The thermal degradation properties of control 
and modified cotton fabrics were evaluated by TG 
and derived thermogravimetric (DTG) in  N2 and 
air atmospheres (Fig.  8). The corresponding data 
obtained from the TG and DTG curves are shown 
in Table  1, including 90%  (T10%) mass retention 
temperature, maximum rate degradation tempera-
ture (Tmax), maximum decomposition rate (Vmax) 
and char residue at 800  °C. The T10% of the con-
trol cotton fabric in a  N2 atmosphere was 343.0 °C. 
The main pyrolysis phase occurred in the range of 
300.5–400.3 °C, and Vmax was 2.6%/°C at 372.7 °C 
(Tmax). The main pyrolysis phase of the control cot-
ton fabric corresponded to the depolymerization of 
cellulose to form flammable gases, volatile liquids 

and solid residues, and finally at 800  °C retained 
0.9% of the residue. Compared to the control cot-
ton fabric, both T10% (243.2 °C) and Tmax (284.0 °C) 
of the POT-CO-5 fabric were significantly reduced, 
with the main pyrolysis phase occurred in the range 
of 209.0–298.5  °C, and the char residue at 800  °C 
increased to 36.5%. Phytic acid is rich in phos-
phorus and hydroxyl groups, which may produce 
phosphoric acid and polyphosphoric acid during 
thermal degradation. The derived phosphoric acid 
and polyphosphoric acid can promote catalysis, 
dehydration and carbonization of cellulose, inhib-
iting the production of levoglucan and leading to 
the formation of more protective layers of residual 
carbon (Cheng et  al. 2020; Zhou et  al. 2020; Ma 
et al. 2021). The formed carbon residue will impede 
heat transfer, formation and diffusion of volatiles, 

Fig. 7  LOI values of all samples (a); comparison on LOI values from other literature reports with this work (b); HRR as function of 
time for CO and POT-CO-5 fabrics (c); SEM images of POT-CO-5 fabrics before (d–f) and after (g–i) VFT test
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resulting in a flame resistance effect for fabrics. 
Meanwhile, urea and ODA-treated modified cotton 
fabrics contain certain N elements, which enable the 
modified cotton fabrics to release inert gases such 
as  NH3 and  N2 during combustion, thus preventing 
the transfer of heat, flame and oxygen. Fig.  8c, d 
show the thermal oxidation stability of the fabrics 
in air atmosphere. The thermal degradation behav-
ior of the control cotton fabric in air atmosphere 
was similar to that in nitrogen atmosphere, with the 
main thermal decomposition phase occurring from 
295.7 to 393.5  °C. The T10%, Tmax and Vmax were 

335.8  °C, 357.8  °C and 2.8%/°C, respectively, and 
the coke residual at 800  °C was 10.3%. Similarly, 
the decomposition temperature of POT-CO-5 fabric 
was reduced and the main thermal decomposition 
stage occurred between 200.3 and 299.3  °C. The 
T10%, Tmax and Vmax were 246.8  °C, 283.1  °C and 
1.8%/°C, respectively, and the coke residue rate at 
800 °C was 40.3%. In conclusion, an earlier initial 
decomposition occurs at lower temperature, which 
is ascribed to the deposition of PA. The phosphoric 
acid and polyphosphoric acid derived from PA pro-
motes char residue generation, inhibiting heat and 

Fig. 8  TG and DTG curves 
of cotton samples in  N2 
and air

Table 1  TGA data for 
cotton samples in air and  N2 
atmospheres

Atmosphere Samples T10% (°C) Tmax (°C) Vmax (%/℃) Residue at 
800 °C (%)

Air CO 335.8 357.8 2.8 10.3
P-CO 243.5 280.2 1.9 34.2
PO-CO 249.1 277.3 1.8 39.4
POT-CO-5 246.8 283.1 1.8 40.3

N2 CO 343.0 372.7 2.6 0.9
P-CO 230.0 280.2 1.8 29.5
PO-CO 243.0 279.1 1.7 34.1
POT-CO-5 243.2 284.0 1.7 36.5
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mass transfer. These characteristics lead to the mod-
ified cotton fabrics possessing excellent thermal 
oxidation stability and flame resistance.

UV resistance of the modified cotton fabrics

Figure  9 shows the UV transmittance spectra and 
UPF values of the CO, P-CO, PO-  CO, PT-CO and 
POT-CO-5 fabrics. As shown in Fig. 9, the CO sam-
ple shows a higher transmittance and a lower UPF 
value (UPF  =  37.91) with UV transmittance of 
2.21% and 2.52% for UVA and UVB, respectively. 
This means that UV can easily penetrate through 
CO samples, resulting in insufficient UV protection 
of cotton fabrics for human health (Shaheen et  al. 
2019; Raeisi et al. 2021). In contrast, P-CO, PO-CO, 
PT-CO and POT-CO-5 fabrics show excellent UV 
shielding properties, and the UPF values are sig-
nificantly increased to 657.12, 1463.42, 868.96 and 
2000, respectively, while all have low UVA and UVB 
transmittance (0.05%). PA is a kind of natural anti-
oxidant which imparts UV resistance to the modified 
cotton fabric (Diouf-Lewis et  al. 2017; Kirschweng 
et al. 2017; Li et al. 2022). Moreover, the UV absorp-
tion of  TiO2 is carried out by electron leap, and the 

absorption wavelength of UV light is equal to or less 
than the wavelength of  TiO2 band gap. When  TiO2 is 
exposed to incident light, it absorbs photon energy, 
allowing the valence band electrons of low energy to 
cross the band gap into the conduction band of high 
energy (Wu et  al. 2021; Rashid et  al. 2022). There-
fore, with the synergistic effect of PA and  TiO2, POT-
CO-5 fabric exhibits excellent UV protection ability 
(UPF = 2000, UVA = 0.05%, UVB = 0.05%).

Antibacterial effects of the modified cotton fabrics

Figure 10 showed the antibacterial activity of modi-
fied cotton fabrics against E. coli and S.  aureus. 
All modified cotton fabrics showed excellent anti-
microbial activity compared to the control cotton 
fabrics. The bacterial inhibition rates (BR) of P-CO 
and PO-CO fabrics against E. coli and S.  aureus 
were 93.6% and 89.6%, 96.8% and 91.6%, respec-
tively. This is due to the strong acidity of phytic 
acid, which endows the modified cotton fabrics with 
antibacterial properties (Li et  al. 2021). It is note-
worthy that POT-CO-5 fabric achieved 100% anti-
bacterial rate against both E. coli and S.  aureus. 
The antibacterial activity, reflected in the fact that 

Fig. 9  Transmittance 
curves (a), UPF (b), UVA 
(c) and UVB (d) value of 
the CO, P-CO, PO-CO, 
PT-CO and POT-CO-5 
fabrics
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 TiO2 can generate ROS, including bactericidal  OH. 
radicals, on its surface under photocatalysis (Sheng 
et  al. 2021; Liu et  al. 2022a, b). The synergistic 
effect with phytic acid at the same time resulted in 
POT-CO-5 fabric possessing excellent antibacterial 
properties. Moreover, the inhibition rates of PT-CO 
fabric against E. coli and S. aureus were only 98.2 
and 94.4%, which were lower than those of POT-
CO-5 fabric, indicating that the physically coated 
 TiO2 on P-CO fabric could be easily washed off by 
deionized water. Comprehensively, the POT- CO-5 
samples showed superior hydrophobic, fireproof, 
UV-blocking and antibacterial effects among all 
samples (Table S3).

Washing fastness of the modified cotton fabrics

As shown in Fig. 11, the durability of the POT-CO-5 
fabric for flame retardancy, hydrophobicity, UV 
resistance, and antimicrobial resistance was evaluated 
after multiple washing cycles according to the ISO 
105-C10 standard method. As shown in Fig. 11a, the 
LOI of POT-CO-5 fabric was above 36.2% even after 
20 washing cycles, and it also showed remarkable 
fire-retardant property with a self-extinguishing effect 
by vertical combustion test. Moreover, the water con-
tact angle of POT-CO-5 fabric remained 136°, the 
UV resistance of UPF value kept at 2000, and the 
BR rate against both E. coli and S. aureus maintained 
above 96.0%. These data showed that POT-CO-5 

Fig. 10  Optical images of the antibacterial tests of control cotton fabric and the modified fabrics (a), statistical results of BR values 
of E. coli (b) and S. aureus (c)
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fabric still maintains excellent flame retardant, hydro-
phobic, anti-UV and antibacterial properties even 
after 20 washing cycles.

Inherent properties of modified cotton fabrics

Good water vapor permeability, mechanical prop-
erty, flexibility, and color are the signature features 
of cotton fabrics. Hence, the corresponding inherent 
properties of the modified cotton fabrics were tested, 
and the results were summarized in Fig.  12a–d. As 
shown in Fig.  12a, normal fluctuations of water 
vapor permeability were observed when compared 
the modified fabrics to the CO sample, and the fluc-
tuation range was within the range of the error bar. 
So, the modification process had rarely impact on 
the breathability of cotton fabrics. Interestingly, the 
principle that hydrochloric acid meets ammonia gas 
to produce white particles was also used for prov-
ing the breathability of cotton fabrics. As showed in 
Fig.  12b, two bottles containing hydrochloric acid.
and ammonia respectively were placed next to each 
other. The bottle containing ammonia was packaged 
with cotton fabrics (CO fabric and POT-CO-5 fabric), 
and the bottlecontaining hydrochloric acid was sealed 

with cap. When the cap of bottle was removed, both 
had a large amount of white smoke produced, reveal-
ing the breathability of the CO fabric and POT-CO-5 
fabric. The tensile strength of different modified sam-
ples was slightly reduced compared to the CO sam-
ple (Fig. 12c). While the POT-CO-5 fabric still had a 
high strength retention (about 80%), which was suf-
ficient to satisfy the application of the textile fabric. 
Moreover, there was no significant difference in the 
maximum loop height between the CO sample and 
the modified fabrics (Fig.  12d), indicating that their 
fabric flexibilities were comparable. Interestingly, 
our modification process shows insignificant color 
changes on fabric, as shown in Fig. S5. These results 
demonstrate that the modification process gave an 
insignificant impact on the desired features of cotton 
fabric.

Conclusions

In this work, versatile cotton fabrics with excel-
lent flame retardant, hydrophobic, UV-blocking 
and antibacterial properties were constructed 
through a simple and scalable pad-dry curing 

Fig. 11  LOI (a), contact 
angle (b), UPF value (c) 
and BR (d) of POT-CO-5 
fabric after washing resist-
ance test
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process. Specifically, cotton fabrics were success-
fully modified with bio-based materials PA,  TiO2 
(NPs) and ODA in three steps. Firstly, PA mol-
ecules were covalently bonded to the cotton fiber 
surface through an esterification reaction to obtain 
the flame-retardant cotton fabric P-CO. Then,  TiO2 
(NPs) and ODA were loaded onto the surface of 
P-CO fabric by atomization technique. ODA was 
not only grafted onto the surface of P-CO fab-
ric by amide reaction, but also formed a thin film 
to fix the titanium dioxide particles on the surface 
of P-CO fabric. The resulted multifunctional cot-
ton fabric (POT-CO-5) possessed excellent flame 
retardance (LOI  =  48.5%), hydrophobic properties 
(contact angle = 52°), UV resistance (UPF = 2000) 
and antibacterial properties (BR = 100%) compared 
to the untreated cotton fabric. POT-CO-5 fabric 
also showed excellent resistance to washing, main-
taining excellent flame retardance (LOI  >  36.2%), 
hydrophobicity (contact angle  >  138°), UV resist-
ance (UPF  =  2000) and antimicrobial properties 
(BR > 96.0%) even after 20 washing cycles. It was 
worth mentioning that the surface modification pro-
cess provided cotton fabric versatility without sig-
nificantly sacrificing desired cotton properties such 
as water vapor permeability, tensile strength and 

softness. Due to the combination of excellent multi-
functionality and durability, POT-CO-5 fabric have 
a strong potential for the future application in the 
field of multifunctional textiles.
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