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laboratory-laboratory variation as compared to man-
ual, suggesting that the variability of analyst bias of 
manual approach was removed and demonstrates an 
opportunity with SMART to improve the standardi-
zation of CNC size characterization. An approach to 
estimate the likelihood of reaching a representative 
measurement for CNC particle size was developed. 
SMART area analysis found that less than 10% of 
CNCs were used in morphology characterization; to 
assess more CNC material, SMART was used to ana-
lyze CNC agglomerates as a proof-of-concept dem-
onstration. The total SMART image analysis time for 
each laboratory, having between 115 and 244 images, 
was less than 15  min, after selection of appropriate 
parameters. The SMART code is now available for 
the public to use for free at Github™.

Abstract A semi-automatic image analysis pro-
gram, SMART, was used to analyze transmission 
electron microscopy (TEM) images from four labo-
ratories that participated in an interlaboratory com-
parison study by Meija et  al. on CNC particle size 
measurement by TEM using conventional manual 
image analysis approaches. Detailed image-to-image 
comparisons found that the percentage of “cor-
rectly” identified CNCs by SMART was 58% to 
78%, while manual was 70% to 87%, depending on 
TEM image quality from a given laboratory. SMART 
was able to parameterize image quality, and it was 
found that SMART had difficulties in CNC iden-
tification for images with a combination of higher 
noise, lower contrast, and higher CNC density. 
Overall, the SMART image analysis was consistent 
with the manual approach. SMART showed lower 
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Introduction

Cellulose nanocrystals (CNCs) are cellulose based 
nanomaterials extracted from different biologi-
cal sources, typically as a product of strong acid 
hydrolysis process. In general, CNCs have a spindle-
like particle morphology (4  to  20  nm in diameter, 
50 to 500 nm in length, with tapered ends), but they 
exhibit varying particle morphologies and size distri-
butions depending on the hydrolysis process param-
eters and cellulose source (Foster et  al. 2018; Moon 
et al. 2011). When working with CNCs, it is critical 
to have a comprehensive and accurate characteriza-
tion of the particle morphology, size, and surface 
characteristics. Measurement techniques for length, 
width and height have recently been extensively 
developed, including interlaboratory comparisons 
of dimensions obtained using transmission electron 
microscopy (TEM) (Meija et  al. 2020) and atomic 
force microscopy (AFM) (Bushell et  al. 2021), 
as well as an ISO technical specification (ISO/TS 
23151). The current state-of-the-art image analysis to 
measure CNC length, width and particle size distri-
bution is based on manual measurements, which are 
subject to variability and error due to the subjectivity 

in the identification of individual CNCs (as opposed 
to agglomerated CNCs) and are time consuming and 
can suffer from analyst fatigue. There is a need to 
develop automated approaches for CNC particle size 
measurements to improve the consistency of CNC 
selection and to reduce the analysis time. Commer-
cial or open source [e.g., plugins for ImageJ, such as 
FibrilJ (Sokolov et al. 2017)] semi-automated image 
analysis programs for TEM and AFM image analysis 
of nanosized particles have been inconsistent when 
applied to cellulose nanomaterials due to difficulties 
in correctly identifying single particles. Additionally, 
recent machine learning algorithms by Wang et  al. 
(2021) have demonstrated great capability for TEM 
image analysis of metallic nanomaterials, in particle 
identification, morphology differentiation, particle 
classification, and analysis. The images analyzed had 
low noise and the nanoparticles had high edge con-
trast, facilitating object identification. Applying such 
a program for CNC analysis may prove problematic 
as it is not an idealized particle system and it is dif-
ficult to image, as described below.

Quantitative measurement of CNC morphology 
is challenging because of three factors: CNC mate-
rial issues, imaging issues, and image analysis issues. 
Material issues are related to variability in the shape 
of CNCs (e.g., not perfect rectangles or ellipses), 
broad size distributions, and strong propensity for 
aggregation. Imaging issues are related to limita-
tions from the preparation of well-dispersed, low 
density CNC distribution on the imaging substrate, 
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and measurement technique or equipment such as, 
high level of noise, low feature or edge resolution, 
low contrast between CNCs and background, and 
for AFM, tip convolution effects. The extent of these 
variabilities can be decreased by optimizing and con-
trolling CNC dispersion, sample deposition on (and 
selection of) the imaging substrate, and the staining 
method, as summarized in recent literature (da Silva 
et  al. 2020; Foster et  al. 2018; Kaushik et  al. 2015; 
Ogawa and Putaux 2019; Stinson-Bagby et al. 2018). 
It should be noted that despite these detailed studies 
of the effect of various parameters, the conclusions 
are in many cases qualitative, rather than based on a 
statistical analysis of data obtained by analysis of a 
sufficiently large number of particles. Image analysis 
issues are related to variabilities associated with ana-
lyst bias/subjectivity and inconsistency during image 
analysis, both strongly related to the experience level 
of the analyst, and they can result in unreliable meas-
urement results (Meija et al. 2020).

The impact of TEM imaging conditions and analyst 
subjectivity on the variability of CNC size distributions 
was recently assessed by Meija et al. (2020) in an inter-
laboratory comparison (ILC) study with ten participat-
ing research groups from around the world. This ILC 
study focused on the effect of differences in imaging 
conditions (e.g., different TEM machines and imag-
ing settings) and image analysis (e.g., particle selection 
and measurements) on the particle size distributions of 
a reference CNC material (CNCD-1 2016). The TEM 
samples were prepared by a single laboratory, mini-
mizing any variability associated with sample prepara-
tion. After a rigorous comparison, the study reported 
that the particle selection and sample heterogeneity 
(e.g., agglomerates versus individual CNCs, uneven 
staining/contrast) are primary reasons for differences in 
the measured length and width size distributions.

In an effort to address these issues in CNC parti-
cle size measurement, Yucel et al. (2021) developed 
a semi-automated image analysis framework (Stand-
ardized Morphology Analysis for Research and Tech-
nology—SMART) that can detect and measure the 
dimensions of individual CNCs in TEM and AFM 
images. As is the case for manual image analysis of 
CNCs, it is critical for SMART image analysis to 
have high quality TEM images (e.g., low noise, high 
edge resolution and contrast), with well-dispersed 
CNC particles. The SMART approach was developed 
and compared critically against the TEM and AFM 

image data sets (e.g., 434 TEM images, 66 AFM 
images) and image analysis completed by conven-
tional manual approaches reported by Jakubek et  al. 
(2018). The CNC particle size measurements and dis-
tributions as measured by SMART were consistent 
with those measured from the current state-of-the-art 
manual approaches used by Jakubek et al. but with a 
much faster throughput (e.g., measurements of less 
than 1.5 s/CNC, compared to ~ 30 s/CNC for manual 
approaches). The utility of the SMART approach 
is that it can expeditiously process high-through-
put image data while being minimally impacted by 
human error and variability. Our first SMART paper 
(Yucel et  al. 2021) used images from a single labo-
ratory, while this current study uses images from 
several laboratories to assess the generality of the 
method to data collected in different laboratories, and 
with different instruments, etc.

In this study, the SMART approach was used in 
the analysis of TEM images from four laboratories 
that participated in the ILC study on CNC particle 
size measurement (Meija et  al. 2020). The follow-
ing aspects were explored using SMART: effects of 
image contrast and heterogeneity on CNC identifica-
tion (e.g., noise, contrast, CNC density), image analy-
sis issues (e.g., SMART versus manual approaches), 
assessment of representative measurements for 
length and width, and image analysis of agglomer-
ated CNCs. The results obtained from the SMART 
approach were compared critically against the results 
obtained from the conventional manual approaches 
used within the ILC study.

Methodology

TEM sample preparation and imaging

For quantifying CNC particle morphology high qual-
ity images are needed, which is contingent on hav-
ing a homogeneous dispersion of CNC particles 
with minimal CNC-CNC contact or agglomeration, 
a uniform contrast across the image, and high edge 
contrast between CNC particles and the support-
ing substrate. The TEM images used in this current 
study were from the ILC study by Meija et al. (2020), 
which reported on the optimized methods for CNC 
dispersion, TEM sample preparation and image 
acquisition. Overall, the image quality was high for 
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all laboratories, a representative example of which is 
shown in Fig. 1a. The ILC used the CNC certified ref-
erence material (CNCD-1) produced by the National 
Research Council, Canada (CNCD-1 2016), and all 
TEM samples were prepared as previously reported 
by depositing 0.02 wt% CNC aqueous suspension 
onto a plasma-exposed carbon-coated copper grid and 
then staining with uranyl acetate to improve contrast. 
The TEM samples were prepared at a central labo-
ratory and sent to each participating laboratory for 
imaging and CNC particle size analysis.

From the ten laboratories that participated in 
the ILC study, four data sets (Lab1, Lab2, Lab6, 
and Lab7) were selected for SMART analysis (see 
Table  1), based on the relatively large variation in 
their reported CNC particle size measurements and 

the imaging parameters used. Note that for Lab1, 
TEM images were taken at two different magnifica-
tions resulting in different pixel size, but the image 
analysis results were combined in the ILC report 
since no statistical difference between the two was 
detected. The 8-bit grayscale TEM images were 
exported as TIF files from the microscope software 
and analyzed by either the manual approach (using 
Image J) or SMART.

SMART semi-automated image analysis framework

The identification of CNC particles and their size 
measurements were completed using the recently 
developed SMART framework that employs a com-
bination of automated and semi-automated image 

Fig. 1  Image quality assessment illustrating contrast and 
noise assessment using a TEM image from Lab2. a Original 
(grayscale) TEM image with pixel values from 0 to 255. Back-
ground pixels have darker and lower intensity values, while 
CNC pixels have lighter and higher intensity values (see part 
c). b Segmented (binary) image for which pixels are either 0 

(background) or 1 (CNCs). c Histograms of the grayscale 
intensity values for background (blue bars) and CNC pixels 
(orange bars). The black vertical lines show the mean values 
(120 for background and 150 for CNC pixels), and ∆ (30) is 
the difference between the means. Noise is the standard devia-
tion of the blue bar histogram (background intensity scatter)

Table 1  Imaging parameters and measurement summaries for each laboratory in the ILC study report (Meija et al. 2020)

*The values for mean length (L), width (W), and aspect ratio (AR) are for skew normal fits to the data. The skew normal distribution 
has 3 parameters: a mean representing the central location, a scale factor as a measure of the distribution width (1 standard deviation 
in parentheses) and a shape factor that accounts for the distribution (positive or negative) asymmetry or skew

Lab1 Lab2 Lab6 Lab7

Number of images 185 115 244 125
Image area (nm x nm) 705 × 705 and 574 × 574 890 × 890 675 × 675 403 × 403
Pixel size (nm) 0.347 and 0.281 0.463 0.330 0.197
Number of CNCs 627 525 1179 561
Mean L (nm)* 116.6 (44.5) 94.5 (23.9) 77.8 (35.2) 87.6 (35.6)
Mean W (nm)* 7.8 (1.9) 8.0 (1.9) 7.5 (2.5) 6.9 (1.9)
Mean AR* 15.7 (6.4) 12.6 (4.1) 11.1 (5.0) 13.5 (5.8)
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processing algorithms. All analysis/calculations 
reported in this manuscript were completed on a 
desktop computer with an i7 processor. A brief 
description is given here, but for complete details see 
Yucel et  al. (2021). The SMART framework uses a 
multi-step process that includes: (i) pre-processing 
to remove noise and improve contrast in the image, 
and segmentation to identify CNC edges, (ii) CNC 
classification to identify individual CNCs for meas-
urement, and (iii) digital measurements and analysis 
tools for CNCs. Pre-processing is critical for TEM 
images of CNCs that are typically noisy and have 
low contrast and low edge sharpness. Pre-processing 
used a sequence of image processing algorithms that 
included: contrast enhancement, smoothing (for noise 
removal), and sharpening. Segmentation was used to 
process the grayscale image into a binary image of 
only 0’s (background) and 1’s (CNCs), which sepa-
rates the objects being imaged from the substrate 
background and facilitates SMART in identifying 
CNC edges.

For pre-processing, choosing the proper filter 
levels is important for detecting the CNC edges. 
Image processing filter size (N by N neighborhood) 
and pixel size are inversely proportional; for further 
details see Yucel et al. (2021). Filter size for smooth-
ing and sharpening operations (i.e., choosing the 
level 1–5 filter sizes) was determined after an initial 
analysis of a 10-image data set for each laboratory. 
Noisy image data sets (all but Lab2) were processed 
with level 5 for smoothing and level 5 for sharpening, 
while the less noisy data set (Lab2) was processed 
with level 1 for smoothing and level 5 for sharpen-
ing. The filter size for segmentation is automatically 
calculated based on the pixel size information. The 
time to determine pre-processing filter levels ranges 
between 5 and 20 min for each laboratory depending 
on the quality of TEM images.

Image quality assessment

Image quality influences how effective SMART is at 
the identification and measurement of CNCs. Images 
were analyzed qualitatively (e.g., CNC density, and 
individual CNC selection) and quantitatively (e.g., 
CNC groupings, image noise and contrast). To quan-
tify image noise and contrast, SMART first performs 

image segmentation so that each pixel in the image is 
either assigned as CNC or background. Each pixel has 
a grayscale density value between 0 and 255, and the 
segmentation process, which was explained in our ini-
tial study in detail (Yucel et al. 2021), assigns 0’s for 
background pixels and 1’s for CNC pixels (Fig. 1b). 
The original grayscale values of background pix-
els (black pixels in Fig. 1b) are analyzed (the histo-
gram of these pixel values is shown with blue bars 
in Fig.  1c), and the standard deviation of these val-
ues is used to parameterize the background noise of 
the image. If the background region consists of pix-
els with a large variation in grayscale intensity values 
(i.e., high standard deviation), it appears as a noisy 
and grainy background that challenges the detection 
of CNC edges. The original grayscale values of CNC 
pixels (white pixels in Fig. 1b) are also analyzed (the 
histogram of these pixel values is shown with orange 
bars in Fig. 1c). The difference between the mean of 
CNC pixel values and the mean of background pixel 
values is used to parameterize the contrast of the 
image. This difference is represented as ∆ in Fig. 1c 
where black vertical lines show the means of both 
histograms. In the 10-image date set study, the influ-
ence of image noise, contrast and CNC agglomeration 
on individual CNC identification and measurement 
was investigated.

CNC grouping identification

The ideal well separated and uniformly distributed 
CNC configuration on a TEM grid is difficult to 
achieve. In this work, CNCs were categorized into 
three groups: border CNCs, isolated CNCs (e.g., no 
contact with other CNCs), and agglomerated CNCs 
(e.g., multiple CNCs touching, overlapping, parallel 
stacked, etc.). Border CNCs are objects that touch one 
of the edges of the image and are identified using the 
built-in MATLAB function imclearborder (MATLAB 
2020). Isolated and agglomerated CNCs were identi-
fied using a 2-step process: coarse grain selection and 
a fine grain selection. The coarse grain selection is 
based on encapsulating the object within an ellipse 
and calculating the major and minor axes lengths 
(Fig.  2a, b). By selecting  a unique combination of 
ranges for aspect ratio (i.e., the ratio of the length of 
the major axis over the length of the minor axis) and 
size limitation (e.g., minimum and maximum lengths 
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of major and minor axis), isolated CNCs can be dis-
tinguished from agglomerates. The parameters used 
in this study for isolated CNCs are typical of those 
produced from wood pulps: aspect ratio greater than 
2.5, major axis length between 15 and 250  nm, and 
minor axis length of less than 15 nm. These param-
eters were selected based on prior reports in the lit-
erature (Jakubek et al. 2018).

The fine grain selection used chord length analy-
sis to further assess the width of an object, to iden-
tify if there are parallel stacked or “stepped” CNCs 
(Figs.  3e, S1). Chord length analysis of each object 
in the segmented image starts with the rotation of the 
object so that the major axis lies horizontally (as in 
Fig. 2c), then measures the lengths of vertical chords 
(e.g. red lines in Fig.  2c) which represent the width 

profile of the object (Fig.  2d). This same procedure 
is repeated to obtain the length profile. A specific 
width ratio, the ratio of the maximum width over 
the average width (e.g.,  wratio =  wmax/wave), is defined 
 (wratio > 1.5) and used to remove parallel stacked 
CNCs. Figure 3 demonstrates an example of the fine 
grain selection by comparing an approximately ellip-
tical-shaped CNC and a stepped object that could be 
parallel stacked CNCs.

The CNC length and width are obtained by aver-
aging the chord values (black data points in Fig. 3d). 
The selection of the averaging regions for length and 
width was empirically based on comparisons between 
SMART and manual measurements as described in 
detail (Yucel et al. 2021). The range over which aver-
aging occurred was based on maximum chord minus 

Fig. 2  Schematic showing coarse grain selection: a an isolated 
CNC and b overlapping CNCs, with their corresponding ellip-
tical construct (black line), minor axis (red line), and major 
axis (blue line) overlaid. The fine grain selection is based on 
cord length analysis. c The segmented CNC image horizontally 
rotated, vertical and horizontal cords are measured. The three 

red lines represent three chords that are perpendicular to the 
long axis of the CNC and representing particle width. d The 
width profile (red thin line) consists of the collection of verti-
cal chord lengths along the long axis of the CNC particle. The 
black points mark the range used to estimate the width of the 
CNC. The red dashed line is average value of the black points

Fig. 3  Width-based CNC selection using vertical chord pro-
files. a Starting Lab6 TEM image. b and e SMART encap-
sulation of CNC objects (green line). c and f segmented and 
rotated CNCs. d and g width profiles. While an isolated CNC 
(b, c, and d) has a smooth width profile, parallel stacked CNCs 

(e, f, and g) have a “stepped” structure and as a result was 
removed from being considered as an isolated CNC. h CNC 
grouping and area percent of isolated CNCs (red objects – 
12%), agglomerated CNCs (yellow objects – 57%), and border 
CNCs (blue objects  – 31%)
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10% of the range of all chords for length and 50% 
for width. Averaging over the selected longest cords 
removes  artifacts associated with noisy background 
pixels becoming “attached” to the periphery of the 
CNC and artificially increasing the corresponding 
chord length. This attachment effect is more domi-
nant for width chords, as the size of the attachment 
can be a significant fraction of the width of a CNC. 
As a result, the averaging range for width measure-
ments was increased to 50%. This averaging approach 
reduces artifacts resulting from edge effect attach-
ments on the measurement of CNC length and width.

It is possible to assess CNC agglomerates by 
selecting intermediate sized objects (e.g., greater in 
length or width and lower in aspect ratio than isolated 
CNCs). To illustrate this a CNC grouping defined by 
aspect ratio higher than 4 and a minor axis length 
between 10 and 20 nm was used. This grouping would 
typically be several CNCs bundled together either as 
parallel stacked, linear aligned or a combination of 
these two (Fig. S1). The resulting length and width 
of such objects were estimated by fitting the SMART 
identified periphery with an oval shape using MAT-
LAB’s regionprops (MATLAB 2020). The estimated 
agglomerated object length and width were the maxi-
mum and minimum ellipse axis, respectively (Fig. 
S1). A word of caution: the agglomerates observed 
for CNCs deposited on the TEM grid may not rep-
resent the CNC configurations within a given CNC 
suspension. However, if such agglomerates are con-
firmed to exist in the original suspension, they may 
affect the performance of the suspension and should 
be characterized.

Area percent

Area analysis is an additional metric that SMART 
can employ to characterize the CNC configuration 
within TEM images. The area percent of individual, 
agglomerated, and border CNCs with respect to the 
total image area or total CNC area can be calculated. 
Each area value is obtained by counting the pixels of 
each color-coded group (e.g., area of isolated CNCs 
is the number of red pixels, Fig. 3h). While the total 
CNC area is the total number of all CNC pixels (i.e., 
sum of red, yellow, and light blue pixels, Fig.  3h), 
the total image area is the total number of pixels in 
an image (e.g., images are 2048 × 2048 pixels). Cal-
culating these area percentages, SMART can provide 

additional details on the configuration, size and area 
percent of each group. As shown in Fig. 3h, the area 
covered by isolated CNCs is a low fraction of the 
total area covered by CNCs.

Results and discussion

This study used SMART to analyze TEM images 
from the ILC study by Meija et al. on CNC particle 
size distributions measured by TEM (Meija et  al. 
2020). The advantages of this ILC data set are that 
a well characterized CNC certified reference mate-
rial was used, all TEM samples were prepared by the 
organizing team using optimized techniques and sent 
to the participating laboratories, and all laboratories 
followed detailed guidelines for TEM imaging, the 
identification of isolated CNCs and measurements of 
their length and width; all these factors help to mini-
mize measurement artifacts. This allowed the ILC to 
assess variations in laboratory-to-laboratory meas-
urements associated with differences in TEM equip-
ment, image acquisition settings, resolution, and CNC 
selection. It is critical for both manual and SMART 
image analysis of CNCs to have high quality TEM 
images (e.g., low noise, good contrast between CNCs 
and the background region, distinct CNC edges, and 
a low density of CNCs homogeneously distributed 
on the imaging substrate), requiring special care in 
TEM sample preparation and imaging as explained 
in references (Meija et  al. 2020; Yucel et  al. 2021). 
The SMART analysis was completed in two phases: 
a detailed 10-image data set study (e.g., 10 TEM 
images from each laboratory), and a more general 
analysis of the complete TEM image data set.

10 TEM image data set analysis

Detailed direct image-to-image comparisons between 
laboratories and between image analysis approaches 
(SMART versus manual) was completed using a small 
subset of TEM images. This was necessary to analyze 
and confirm how SMART identifies and selects dif-
ferent objects within a given TEM image. For each 
laboratory, 10 TEM images were randomly selected 
from their data set, and SMART image analysis was 
completed, and comparisons were made to assess: (i) 
image quality differences between laboratories, (ii) 
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CNC identification differences between SMART ver-
sus manual approaches, and (iii) differences in meas-
ured dimensions between SMART versus manual 
approaches for commonly identified CNCs. For this 
10-image data set study we have separated Lab1 into 
Lab1-a and Lab1-b because TEM images were taken 
at two different magnifications resulting in differ-
ent pixel size and this separation allowed SMART to 
assess these data sets separately.

Image quality assessment

Image quality strongly influences the identification 
of CNCs and their size measurements, affecting both 
SMART and manual image analysis approaches. 
Thus, it is important to parameterize the features of 
image quality that directly affect image analysis so 
that these factors can be considered. The ILC study 
reported that imaging resolution, contrast, and analyst 
bias all contributed to variation in measurement. The 
study suggested that a higher resolution (0.2 nm/pixel 
rather than the recommended 0.3  nm/pixel) would 
give a more accurate estimate of CNC width but was 
not a factor in the accuracy of the estimate of CNC 
length. In the current study, the image quality from 
each laboratory was sufficient for SMART analysis. 
However, as shown in Fig. S2, there was some vari-
ation in image quality between the laboratories and 
an attempt was made to assess these differences and 
understand how they affect the SMART identification 
and size measurement of CNCs.

Image quality was parameterized using noise, 
contrast, pixel size, and CNC density within TEM 
images. SMART assessed noise, contrast, and CNC 
area percentages as described in the methods section. 
The results are summarized in Table  2 show a low 
level of variation between the laboratories. Images 
with lower noise, higher contrast, smaller pixel size 
(e.g., higher magnification), and lower CNC density 
are expected to facilitate image analysis and improve 
the capability of SMART and manual approaches 
to correctly identify and measure individual CNCs 
(Fig.  4). CNC density was qualitatively assessed by 
relating the CNC area percent (e.g., total CNC area 
divided by total image area) to the relative percent-
ages of isolated CNCs versus agglomerated and bor-
der CNCs. The total area percent of CNCs within the 
images for each laboratory was less than ~ 12%, and 
represented a combination of isolated, agglomer-
ated and border CNCs with a reasonable low level of 
CNC density. In general, a lower CNC area fraction 
with a higher percentage of isolated CNCs indicates 
a lower CNC density. Examples of very low and high 
CNC density levels are shown in Fig. S3. The pixel 
size was inversely related to noise, with smaller pixel 
size associated with images with greater noise, but 
was not related to contrast, CNC total area or CNC 
density. Pixel size was partially accounted for in the 
SMART analysis during image pre-processing opera-
tions with the selection of filtering operations (e.g., 
smoothing, sharpening, and segmentation) as men-
tioned in the methods section and described in greater 
detail in Yucel et al. (2021).

Table 2  Image parameters for each laboratory (10-image dataset)

*The observed range of pixel values is listed with the average in parentheses
# SMART assessed noise, contrast and the area perecentages

Lab1-a Lab1-b Lab2 Lab6 Lab7

Noise*,# 33.7–40.4
(36.3)

29.9–48.0
(36.3)

15.2–38.1 (24.4) 35.6–43.1
(38.6)

46.6–48.5
(47.8)

Contrast*,# 13.8–21.5
(17.8)

23.5–36.3
(27.8)

7.0–39.6
(19.9)

6.8–47.5
(31.3)

6.2–24.4
(15.6)

Pixel size (nm) 0.347 0.281 0.463 0.33 0.197
CNC % of total image area # 4.6 12.1 8.6 3.9 9.5
Isolated % of total CNC area # 8.7 4.1 5.8 17.9 15.8
Agglomerated % of total CNC 

area #
70 69 65 51 56

Boarder % of total CNC area # 21.3 26.9 29.2 31.1 28.2
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Interestingly, even with optimized TEM sample 
preparation and imaging parameters there was still 
variation within TEM images, both intra- and inter-
laboratory, with respect to noise, contrast, and CNC 

dispersion. One advantage of SMART image quality 
assessment is that it is based on individual images via 
parameterizing the noise, contrast, and CNC density 
within TEM images and can also assess the effect of 

Fig. 4  TEM images show-
ing differences in image 
quality and the effect on 
individual CNC identifica-
tion. a and b are images 
with mid-level contrast, low 
noise, and a lower CNC 
density (Lab2), while c 
and d are images with low 
contrast, high noise, and 
higher CNC density (Lab7). 
Manual identification of 
individual CNCs from the 
ILC study are shown in 
parts a and c, in which the 
superimposed blue ovals 
highlight the identified 
CNCs. SMART identified 
individual CNCs are shown 
in parts b and d, where the 
green outline is the SMART 
identified object perimeter. 
The high noise, low con-
trast, and CNC agglom-
eration in TEM images 
increases SMART misiden-
tification of CNC fragments 
as individual CNCs (part 
d). Misidentified CNCs are 
labeled with*

Fig. 5  Comparison of 
SMART and manual 
analysis for CNC identifi-
cation from the 10-image 
data set study: 1 Shared 
identification (correctly 
identified by both methods) 
2 Unshared identification 
(correctly identified by one 
method but not the other) 
3 Misidentified (incorrect 
identification)
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pixel size. This gives a more robust and quantitative 
assessment of the image quality and potential influ-
ence on image analysis.

CNC identification assessment

A detailed side-by-side comparison between SMART 
and manual analysis of each image was used to assess 
the capability of SMART to identify individual 
CNCs and measure their dimensions. Based on visual 
inspection of the TEM images, three aspects were 
considered and grouped as: (i) “shared” identification, 
where the same CNC was identified in both SMART 
and manual, (ii) “unshared” identification, where 
CNCs were identified only in SMART or manual but 
not both, and (iii) “misidentification” where objects 
were incorrectly identified as individual CNCs. The 
total number of CNCs measured by both analysis 
methods and the number of CNCs for the three groups 
are summarized in Fig.  5. By taking the number of 
identified objects in each group and dividing by the 
total number of objects identified for each laboratory, 
we can assess the percentages. The shared identifica-
tion group accounted for approximately half of all the 
CNCs identified, except for Lab1-b, which is much 
lower. Interestingly, the observation that the shared 
identification accounts for only approximately half of 
the identified CNCs indicates that SMART analyzes 
features within the images differently than the manual 
approach. Likewise, this also leads to higher percent-
ages of the unshared identification groups, where the 
range was between 14 and 35% for SMART (e.g., 
manual did not identify these), and between 18 and 
58% for manual (e.g., SMART did not identify these). 
Combining the shared and unshared identification 
groups gives the percentage of “correctly” identified 
CNCs. For SMART Lab1-a (78%), Lab1-b (58%), 
Lab2 (78%), Lab6 (72%), and Lab7 (59%), while for 
manual Lab1-a (76%), Lab1-b (87%), Lab2 (73%), 
Lab6 (81%), and Lab7 (70%). There was fairly good 
agreement between SMART and manual approaches 
except for Lab1-b, and Lab7, which revealed a higher 
level of misidentification for SMART.

The level of misidentification, as identified by one 
of co-authors, was within the range of 22% to 41% 
for SMART, and 13% to 30% for manual depending 
on the given laboratory data set. Some level of misi-
dentification is to be expected, but it should be noted 
that our visual assessment of “misidentification” is 

subjective, and thus should be considered a qualita-
tive assessment. Regardless, the observation that 
both SMART and manual approaches have misiden-
tified objects as individual CNCs shows that neither 
approach is perfect.

Misidentification by SMART was primarily based 
on identifying fragments of agglomerated CNCs as 
isolated CNCs as shown in Figs. 4d, S4 and seemed 
to be exacerbated in images with higher noise, lower 
contrast, smaller pixel size and higher CNC density. 
These four parameters act concurrently, making it 
challenging to observe trends as to the impact of each 
parameter on the level of misidentification for these 
five data sets (Table 2). The highest misidentification 
for SMART was 41% for Lab7 and Lab1-b, and for 
manual it was 30% for Lab7. The Lab7 images had the 
highest noise, lowest contrast, smallest pixel size, and 
a higher CNC density, while Lab1-b images had high 
noise, high contrast, small pixel size, and the high-
est CNC density (e.g., a total CNC area of 12.1%, of 
which 96% was either agglomerated or border CNCs, 
see Figs. S2b, S3b). This combination for Lab1-b was 
challenging for SMART, but less so for the manual 
approach in which only 13% of CNCs were misidenti-
fied. Interestingly, when comparing Lab1-a and Lab1-
b, SMART analysis had fewer misidentifications for 
Lab1-a, despite having the same level of noise, lower 
contrast, and larger pixel size. The key difference was 
in the CNC distribution within the images, in which 
Lab1-a had a lower CNC density as compared to 
Lab1-b (e.g., Lab1-a had a lower CNC area fraction 
consisting of a lower percentage of agglomerated and 
border CNCs as compared to Lab1-b). Lower CNC 
density within images seems to facilitate SMART 
analysis. In support of this, the highest shared CNC 
identification for both SMART and manual was for 
Lab1-a and Lab6, both of which have a lower CNC 
density within the images. In general, higher CNC 
area fraction and a larger number of agglomerated 
CNC configurations are extremely challenging for 
SMART, since the localized contrast variations cause 
SMART to misidentify agglomerate fragments as iso-
lated CNCs (Figs. 4d, S4).

Misidentification by manual image analysis was 
primarily based on identifying multiple CNCs aligned 
end-to-end or parallel stacked CNCs as single parti-
cles. For example, as shown in Fig. 4c (lower right), 
there are three objects identified as individual CNCs, 
however, the step-like features of these objects 
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suggests that they may be parallel stacked CNC 
agglomerates. Note that this assessment is subjec-
tive as CNC identification is tricky at best, which is 
why the analyst’s experience and ability to consist-
ently apply particle selection guidelines are criti-
cal for manual analysis. The ILC study had initially 
tested the manual image analysis protocol by sending 
a single small image set to multiple labs for analy-
sis. There was significant variation in the number of 
particles counted and the mean lengths and widths. 
Although the protocol was further optimized prior 
to data acquisition and image analysis by each par-
ticipant, the final results indicated that analyst subjec-
tivity was still an important contributor to variation 
between laboratories.

CNC measurement assessment

Considering the commonly identified CNCs by both 
methods (e.g., the shared identification group) length 
and width measurements of each CNC were com-
pared point-by-point in Figs.  6 and S5 where the 
x-axis in Fig. 6c represents the manual measurement 
values and the y-axis represents SMART measure-
ment values. If SMART and manual measure the 
same length or width for a given crystal, the data 
point would fall directly on the black line. In general, 
the length measurements from the two methods are 

in good agreement (i.e., the majority of the points 
lie on the black line, SMART = manual). There were 
a few cases where SMART measurements were 
lower than those from manual, which is indicative of 
SMART “trimming” off the ends of lower contrast 
CNCs as described in Yucel et al. (2021). The width 
measurements have some difference between the 
two approaches; thinner CNCs (e.g., less than 6 nm) 
are larger in SMART measurements, while thicker 
CNCs (e.g., greater than 7 nm) have smaller SMART 
measurements than for manual. Such differences 
are not surprising and can be partially associated 
with SMART calculating an average width for each 
CNC while only a single measurement was made for 
manual measurements. The SMART averaging was 
used to help negate the effects of noisy background 
pixels that inadvertently add to the CNC edge and 
make the CNCs appear wider than they should be. 
With the variability as to the extent of noisy pixels 
that may increase the size, SMART averaging may 
slightly overestimate or underestimate the CNC 
width. Additionally, there may be some variability in 
the manual measurements of width. For example, the 
CNC widths are so small that the manual selection of 
the particle edge using a cross-section perpendicu-
lar to the long axis of the particle is very difficult. In 
addition, placing the line on the particle edge versus 
just outside the edge would introduce differences in 

Fig. 6  Side-by-side image analysis comparison between 
SMART and manual methods for Lab1-a. a Manual identi-
fication and measurements. Three CNCs were identified and 
measured (blue ellipses superimposed only as a highlight), b 
SMART identified four CNCs (green outline is SMART identi-

fied CNC perimeter), three of which were identical to manual 
measurement, c one-to-one comparison of measured length 
and width for each of the 19 commonly identified CNCs in the 
10-image data set for Lab1-a
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width measurement. The level of analyst fatigue com-
pleting such measurements can be high. The average 
length and width measures are reported in Table S1; 
for the shared CNC group the difference between 
SMART and manual for each laboratory was typi-
cally less than 5%, except for the Lab6 width meas-
urement which was about 15% larger for the manual 
method. These results indicate that the SMART and 
manual approaches give very similar values for the 
same particle. When considering all CNCs (e.g., 
shared, unshared, and misidentified) the mean values 
of length for each lab change by up to 20%, but less 
than 10% for width. The inclusion of the unshared 
and misidentified objects can increase the differences 
between SMART and manual length measurements, 
substantially, as was the case for Lab1-a (45%), and 
Lab1-b (31%), and is indicative of the effect of dif-
ferences in object selection between SMART and 
manual approaches. Despite the level of unshared and 
possibly misidentified objects, the overall agreement 
between the two methods suggests that SMART is “as 
good as a human”.

Complete TEM image data set analysis

The complete TEM image data sets for each labora-
tory were analyzed by SMART. This larger image data 
set is more representative of that used for typical CNC 
particle morphology characterization, where the num-
ber of measured CNCs is more likely to reach the criti-
cal threshold necessary to obtain representative values 
for particle length and width. The image data sets for 
Lab1-a and Lab1-b were combined as the ILC study 
confirmed that the manual measurements were not sta-
tistically different. From the complete TEM image data 
set the following five aspects were studied: (i) Com-
paring laboratories with SMART, (ii) SMART versus 
manual assessment, (iii) representative measurement 
assessment, (iv) area fraction assessment, and (v) CNC 
agglomeration assessment.

Comparing laboratories with SMART 

Comparison of the SMART length–width 2D histo-
grams for each laboratory (Fig.  7) shows a similar 
profile shape, length and width ranges and the loca-
tion of a higher intensity probability zone. The histo-
gram profile appears to have an “oval” shape with one 
end positioned at low width and length and the other 
end position at high width and length, which indicates 

Fig. 7  2D-probability histograms for CNC length and width 
measurements for SMART and manual analysis. Each small 
box within the plots represents an interval of 10 nm for length 
and 0.5 nm for width. Less than 2% of the data lies outside of 

these plots (e.g., 1.8% of Lab1 – manual data set has CNCs 
with length > 250 nm). Note that probability times total num-
ber of CNCs (Table 3) for a given laboratory gives the count 
for each box
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that wider CNCs have longer lengths. There is also 
a smaller zone of higher probability, centered near 
a length of 60 nm to 70 nm and a width of 6 nm to 
7 nm. This zone of higher probability is similar to the 
results reported by Jakubek et  al. (2018) for manual 
analysis of TEM images of the same CNC certified 
reference material (CNCD-1) that is used in this cur-
rent study (CNCD-1 2016). In Table 3, the SMART 
mean length (92.4 nm, 98.4 nm, 89.2 nm, 77.9 nm), 
mean width (7.9  nm, 8.1  nm, 7.0  nm, 7.6  nm), and 
mean aspect ratio (11.7, 12.1, 12.9, 10.2) for each 
laboratory (Lab1, Lab2, Lab6, Lab7, respectively) 
were similar and variations in the means between 
laboratories was well within the range of standard 
deviation for the 4-laboratory mean. This consistency 
in measurements suggests that the variations in image 
contrast, noise, pixel size and CNC density (Table 2) 
from the different laboratories did not have a signifi-
cant effect. However, there may be some limited dis-
crepancy for Lab7 as it has the lowest mean length 
and aspect ratio, which may be attributed to the com-
bination of the highest noise, lowest contrast, smallest 
pixel size, and high CNC density within TEM images 
(Table 2, Fig. 4c, d), which caused SMART to misi-
dentify fragments as single CNCs and subsequently 
shift the measurements to lower lengths and aspect 
ratios.

SMART versus manual assessment

The number of TEM images for the four laboratories 
ranged between 115 and 244 (Table  1), from which 
the SMART and manual approaches identified similar 
numbers of CNCs (e.g., 500 to 600 CNCs) except for 

Lab6 for which the manual approach identified 1179 
CNCs (Table 3). The average number of CNCs ana-
lyzed per image for laboratories 1,2,6,7 was similar 
(SMART: 2.9, 3.9, 2.3, 5.1; manual: 3.4, 4.6, 4.8, 
4.5, respectively). The analysis time for SMART 
was less than 15  min for each laboratory (Table  3). 
The analysis time for the manual approach was  
not reported by ILC participants, so an estimate of 
30 s/CNC was used here, which includes the analyst’s 
time to identify isolated CNCs, measure their dimen-
sions, and record and plot the data. While the shorter 
analysis time is an important advantage of SMART, 
consistency in particle selection and measurement is 
essential.

In general, there was reasonable agreement in CNC 
particle size measurements between SMART and 
manual approaches as assessed by considering the 
mean lengths and widths, (Table  3), the length and 
width distributions (Fig. S6), and the length–width 
2D histograms (Fig.  7). Both approaches measured 
similar means for length (77 nm to 99 nm, except for 
the manual—Lab1 of 116.6  nm), width (6.9  nm to 
8.1 nm) and aspect ratios (10.2 to 15.7). Interestingly, 
the average mean for the four laboratories is remark-
ably similar for SMART and manual approaches 
(length 89.5  nm, 93.9  nm, width 7.7  nm, 7.5  nm, 
and aspect ratio 11.7, 13.1, respectively). The meas-
urement distributions for both SMART and manual 
were similar. Length and aspect ratio measurement 
had asymmetrical distributions with the peak shifted 
to lower values and a tail to higher values (Fig. S6). 
The width measurement distribution was nearly sym-
metrical for both SMART and manual approaches, 
with SMART having a narrower distribution (Figs. 7, 

Table 3  SMART versus manual analysis summary for each lab. (Complete image data set)

-Numbers in brackets are 1 standard deviation
*Estimated analysis time based on 30 s per CNC
**SMART analysis time does not include time to optimize pre-processing parameters

Lab1 Lab2 Lab6 Lab7

SMART Manual SMART Manual SMART Manual SMART Manual

# of CNCs 536 627 449 525 580 1179 633 561
L(nm) 92.4 (36.7) 116.6(44.5) 98.4 (43.3) 94.5 (23.9) 89.2 (39.8) 77.8 (35.2) 77.9 (34.1) 87.6 (35.6)

W(nm) 7.9 (1.1) 7.8 (1.9) 8.1 (1.5) 8.0 (1.9) 7.0 (1.5) 7.5 (2.5) 7.6 (1.4) 6.9 (1.9)

AR(nm) 11.7 (4.2) 15.7 (6.4) 12.1 (4.6) 12.6 (4.1) 12.9 (5.1) 11.1 (5.0) 10.2 (3.9) 13.5 (5.8)

Time (mins) 11.3** 313 * 12.2** 262* 14.2** 589* 11.9** 280*
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S6). The width distributions may be narrower for 
SMART (than manual) due to the filter parameters 
used, though as demonstrated in the fitting parameter 
study in Yucel et  al., there was only a maximum of 
10% error in width measurement when comparing 
the smallest and largest filter parameters (Yucel et al. 
2021).

In general, the length–width 2-D measurement 
histograms show a good level of overlap between the 
SMART and manual approaches (Fig. 7, top vs. bot-
tom row, respectively). As described in the prior sec-
tion the SMART histogram profile is oval shaped, has 
a higher probability zone and is consistent between 
the four laboratories. In contrast, the manual profile 
appears to be more circular in shape, with a less well-
defined zone of higher probability, and is less con-
sistent between the four laboratories. Manual analy-
sis of Lab1 appears to be more of an outlier having 
a wider spread in length and width. Interestingly, 
since SMART shows lower laboratory-laboratory 
variation as compared to manual, it suggests that by 
using SMART the variability of analyst bias of man-
ual approach, which is different at each laboratory, is 
removed and thus improves the consistency in CNC 
size measurement between the laboratories. This out-
come agrees with the conclusions from ILC study that 
generated the data used in the current study (Meija 
et al. 2020). The authors of the ILC paper stated that 
‘analyst bias/subjectivity and sample heterogeneity 
are the main sources of ILC variability. The subjec-
tivity in choice of analyzable CNCs can in principle 

be reduced by use of automated image analysis meth-
ods that are currently being developed.’

The SMART and manual analysis results for the 
four laboratories can also be compared to the overall 
consensus values obtained from the ILC study. The 
latter are based on manual analysis of ten laboratory 
data sets and development of a final consensus values 
using a data pooling approach. This gave mean values 
of 95.8 nm and 7.65 nm for length and width, respec-
tively, with distribution widths (1 standard deviation) 
of 39.0 nm and 2.20 nm. The manual analysis for the 
four data sets used here gave means of 94.0 nm and 
7.53  nm for CNC length and width in good agree-
ment with the consensus values. The SMART anal-
ysis means of 89.5  nm and 7.65  nm for length and 
width are also in good agreement with the ILC con-
sensus values, particularly for width. Although the 
length values from SMART and manual analysis dif-
fer by ~ 5 nm, the standard deviations are sufficiently 
large that one cannot distinguish whether this is a 
statistically meaningful difference. Nevertheless, the 
level of agreement for a limited number of data sets 
is impressive and indicates the utility of the SMART 
approach for dramatically reducing the analysis time 
compared to a manual approach.

Representative measurement assessment

The SMART analysis can simultaneously calcu-
late cumulative means (length and width) for every 
measured CNC and give feedback to the analyst to 

Fig. 8  SMART assessment of the critical number of ana-
lyzed CNCs to reach a representative measurement  for Lab1. 
a Cumulative mean length and width versus number of CNCs 
measured, where the dashed lines show the calculated mean 

length and width value for the entire TEM data set (e.g., 536 
CNCs measured). b Percent change in cumulative mean length 
and width versus number of measured CNCs
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help assess when measurements are representative 
(e.g., reach a stable or steady-state value). By track-
ing the percentage change from the overall mean for 
each cumulative mean value it may be possible to 
assess when a representative measurement has been 
achieved. The cumulative mean length and width and 
the percent change versus number of CNCs measured 
for each of the four laboratories are shown in Fig. S7. 
During analysis as more measurements are added the 
cumulative means and the percent change curves will 
oscillate and generally taper off to a constant value. 
This is what was observed for each laboratory, indi-
cating that a sufficient number of CNCs were meas-
ured to obtain a representative measurement. The 
horizontal dashed lines represent the mean length or 
width values for the entire data set, which are listed 
in Table 3. For Lab1, 536 CNCs were measured and 
gave a mean length and width of 92.4 nm and 7.9 nm, 
respectively (Fig.  8a). The percent change curves 
can highlight the scale of deviation from the data 
set mean value and can give more confidence when 
assessing if a representative measurement has been 
achieved. For example, if 300 CNCs were measured 
(Fig. S8), the corresponding mean length (96.8  nm) 
and width (7.9  nm) differ from the means obtained 
after 536 CNC measurements by only 4.7% and 0%, 
respectively (Fig. 8b). Thus, with the additional CNC 
measurements from 300 to 536 the change in mean 
length and width were small, which further confirm 
that the overall means are representative measure-
ments. Interestingly, for this example, width measure-
ments were stable with near zero percent differences 
after only 200 measurements, demonstrating that a 
stable measurement was achieved more readily for 
width than length. When assessing how many meas-
urements to perform, the analyst needs to determine 
what percent difference (or error) is acceptable for 
their measurement purposes. Additionally, if SMART 
is run concurrently with the imaging experiments, it 
can be used to help guide the analyst when an ade-
quate number of images has been collected. This is 
not practical with manual analysis of particle size as 
used in the ILC study.

Area fraction assessment

The area fractions of isolated and agglomerated 
CNCs provided by SMART can be used to provide 
a quantitative assessment of the CNC density within 

TEM images. Correct identification and measure-
ments of the CNCs depend on how well dispersed 
the CNCs are on the TEM grid. The dispersion level 
varies significantly both within and between samples, 
as illustrated in Fig. S3 which shows very low (Lab6) 
and high (Lab1-b) CNC densities. Assessment of the 
CNC density was performed by relating the total CNC 
area to the total image area as well as to the specific 
CNC grouping areas (i.e., isolated, agglomerated, 
and border). Figure 9 shows the area percentages for 
the three CNC groupings for each laboratory. Each 
stacked bar represents the area percent of isolated 
CNCs (red), CNC agglomerates (yellow), and border 
CNCs (blue). The total CNC area percent over total 
image area for each laboratory ranged between ~ 6 
and  ~ 14%, with the corresponding area percent 
ranges for isolated CNC (0.3% to 1.4%), agglomer-
ated CNCs (4.0% to 9.3%), and border CNCs (2.1% 
to 3.4%) as summarized in Table S2 and Fig. 9. The 
relevance of this area analysis is that it gives a quick 
quantitative indicator as to the CNC density within 
the image. Isolated CNCs account for 3.7% to 10.1% 
of the total area covered by CNCs within the images, 
demonstrating that only a small fraction of the CNCs 
seen within a TEM are used to assess CNC particle 
morphology. This is currently standard practice and 
reflects the challenges with obtaining well-dispersed 
CNC samples.

Fig. 9  Area fractions of each CNC group (i.e., isolated, 
agglomerated, and border) over total image area for each labo-
ratory. The values are the average of the entire image data set 
for each lab analyzed by SMART 
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CNC agglomeration assessment

To provide additional morphology information, 
SMART can analyze the agglomerated CNCs, which 
compose 59% to 66% of the CNCs within the TEM 
images. CNC agglomeration can take many forms, 
including multiple CNCs touching, overlapping, 
linearly linked, parallel stacked, etc. SMART was 
used to identify two subsets of linearly and paral-
lel stacked agglomerate morphologies (Fig. S1). 
These objects were identified by two approaches: 
(i) “stepped” objects were the objects removed by 
width-based selection from the standard SMART 
analysis (i.e., aspect ratio greater than 2.5, major axis 
length between 15 and 250 nm, minor axis length of 
less than 15 nm), and a width ratio greater than 1.5 
as defined by the maximum width over the aver-
age width, and (ii) “grouped” objects were defined 
by having an aspect ratio greater than 4 and minor 
axis length between 10 and 20 nm. Other agglomer-
ate morphologies could also be analyzed, requiring 
only small adjustments to object selection criteria. 
Visual inspection of features that SMART identified 
as “stepped” and “grouped” (Fig. S9) confirmed that 
object selection was consistent with the “stepped” 
and “grouped” selection criteria. The stepped CNC 
objects were predominately isolated objects that had 
a rougher edge profile than the isolated CNC selec-
tion, a result consistent with parallel stacked CNCs. 
Additionally, some objects were identified where the 
roughness was caused by interaction of background 
noise with the CNC edge. The grouped CNC objects 
were typically longer, wider, and had a rougher edge 
profile than the isolated or stepped CNC selections. 
These objects appeared to be multiple CNCs; many 
were isolated objects, but some were fragments from 
larger agglomerates. The selection of the stepped and 
grouped CNC objects also appeared to be influenced 
by image quality. The length and width measurements 
of the stepped and grouped CNC objects were based 
on the maximum and minimum ellipse axis used 
to encapsulate the object. As shown in Fig. S9, the 
ellipse simplifies the object, while still capturing the 
average length and width of the object.

A summary of the size measurement of isolated 
CNCs, stepped CNCs and grouped CNCs is given 
in Fig. 10. For all four laboratories, the mean length 
measurements of the stepped CNCs were similar to 
the isolated CNCs. In contrast, the grouped CNCs 

were longer and had a broader distribution, which 
was expected based on the object selection criteria. 
The width measurements of the stepped and grouped 
CNCs were larger than that of the isolated CNCs. The 
length–width 2D histograms for isolated, stepped, 
and grouped CNC plots for Lab1 are given in Fig. 
S10, and show pictorially how the stepped objects are 
wider and how the grouped objects are much wider 
and longer than the isolated CNCs. The inclusion of 
the stepped and grouped objects increased the num-
ber of objects (e.g., for Lab1, 706 stepped, 1416 
grouped) and area percentage of the cellulose within 
the TEM image to be analyzed. The area percent for 
the stepped and grouped objects for each lab was: 
Lab1 (0.5%, 0.9%), Lab2 (0.9%, 1.1%), Lab6 (0.4%, 
1.1%), and Lab7 (0.7%, 1.7%), respectively. When 
combined, this stepped and grouped area percent 
accounts for approximately a quarter of the agglomer-
ated CNCs within the TEM images, which could give 

Fig. 10  Size measurements of isolated CNCs, stepped CNCs 
and grouped CNCs. Object length and widths are estimated by 
the major and minor axis length of the oval encapsulation of 
the given object, respectively. Diamond and star markers rep-
resent mean values for each group, with filled symbols for the 
isolated CNCs. Upper and lower edges of the vertical rectan-
gles correspond to the 75th and 25th quartiles for each group
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greater insight into the types of object morphologies 
that make up a given CNC suspension. These results 
should be considered cautiously as it is unclear if 
such agglomerates are artifacts from the TEM sample 
preparation or are hard agglomerates that existed after 
CNC preparation in suspension. The relevance here 
is that hard CNC agglomerates are likely to influence 
the properties of suspensions (e.g., rheology, self-
assembly, etc.) and their utilization in various appli-
cations. With SMART we have a tool to facilitate 
investigation of such questions.

Applicability of SMART to different CNC 
morphologies

The spindle or rod-like morphology of CNCs 
extracted from wood or plant sources remains fairly 
consistent between species, with process conditions, 
and if produced in the laboratory or industrially, as 
shown in the following papers (Delepierre et al. 2021; 
Kaushik et al. 2015; Reid et al. 2017). Provided that 
the objects are not branched, or agglomerated, and 
the TEM images are of high quality with a low CNC 
density, SMART can accommodate deviations from 
the “ideal” spindle shape by adjusting the object iden-
tification parameters listed in section—Methodology/
CNC Grouping Identification. For cases where the 
CNCs are in tight agglomerate bundles, such as in 
Gicquel et al. (2019), SMART will exclude almost all 
features as being agglomerates. Even though SMART 
cannot identify the individual CNCs within the 
agglomerates, it is possible to analyze the agglomer-
ates by adjusting the object identification parameters. 
The proof of principle of this was demonstrated in the 
current study by adjusting parameters to isolate larger 
length objects. SMART can then provide additional 
analysis of the fraction of isolated CNC particles ver-
sus agglomerated CNC bundles.

Considerably different morphologies are observed 
for algal, bacterial and tunicate CNCs, which are 
wider and much longer than the wood based CNCs. 
The much larger sizes can be accommodated/identi-
fied by adjusting SMARTs aspect ratio or minimum, 
maximum length criteria. However, these objects 
may have kinks, curvature, overlap with other par-
ticles, or be agglomerated (Dunlop et  al. 2020; 
Sacui et al. 2014), which will be problematic for the 
SMART analysis. Incidentally, there are other types 
of image analysis programs that may be better suited 

for fiber-like geometries, as summarized by Usov 
and Mezzenga (2015), who developed the analysis 
software FiberApp and demonstrated that it can be 
used to measure length, width, height, curvature, and 
kinking for various fiber systems including cellulose 
nanofibrils.

Conclusion

A semi-automatic image analysis program, SMART, 
analyzed TEM images from four laboratories that 
participated in a recent ILC study (Meija et al. 2020) 
on CNC particle size measurement. The SMART 
results were compared to the manual analysis of the 
same images by ILC participants. It was critical for 
SMART analysis to use high quality TEM images 
(e.g., low noise, good contrast between CNCs and 
the background region, distinct CNC edges, and a 
low density of CNCs homogeneously distributed on 
the imaging substrate); SMART was ineffective at 
identifying individual CNCs in poor quality images. 
The SMART analysis was completed in two phases: 
a detailed image-to-image study of 10 TEM images 
from each laboratory, and a more general analysis of 
all TEM images from each laboratory.

In the detailed image-to-image study, comparisons 
in CNC identification between SMART and manual 
approaches were classified into three categories: (i) 
“shared” identification, where the same CNC was 
identified in both SMART and manual, (ii)”unshared” 
identification, where CNCs were identified only in 
SMART or manual but not both, and iii) “misidenti-
fication” where objects were incorrectly identified as 
individual CNCs. In general, 50% of the CNCs iden-
tified by SMART and manual approaches were the 
same CNCs (e.g., shared CNCs), for which the per-
centage of “correctly” identified CNCs (e.g., shared 
and unshared CNCs) by SMART was 58% to 78%, 
and for manual was 70% to 87%. The inclusion of 
the misidentified objects (22–42% for SMART, and 
13–30% for manual) in CNC size measurements was 
the primary cause of deviations between SMART and 
manual image analysis results. SMART was able to 
parameterize image quality, quantifying noise and 
contrast and qualitatively assessing CNC density 
within TEM images. In general, the noise, contrast 
level and CNC density for the images were compat-
ible with use of the SMART approach for identifying 
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isolated CNCs and measuring their dimensions. How-
ever, it was observed that images with a combination 
of higher noise, lower contrast, smaller pixel size, and 
higher CNC density, resulted in increased SMART 
misidentification of CNC agglomerate fragments as 
individual CNC particles (e.g., Lab1-b and Lab7).

The SMART analysis of all TEM images was a 
large data set in which the number of images ana-
lyzed and number of CNCs measured was as follows: 
Lab1 (185, 536), Lab2 (115, 449), Lab6 (244, 580), 
and Lab7 (125, 633), respectively. In general, there 
was overall good overlap in SMART and manual 
image analysis of CNC length and width. SMART 
had narrower distributions in width and contained a 
smaller zone of higher probability in length–width 
2D histograms, centered near the length of 60 nm to 
70 nm and width of 6 nm to 7 nm, which was con-
sistent across all four labs. SMART also showed an 
expected trend that wider CNCs have longer lengths, 
which was less apparent with the manual measure-
ments. Laboratory-laboratory variation was lower for 
SMART as compared to manual, suggesting that by 
using SMART the variability of analyst bias of man-
ual approach was reduced. By plotting the cumulative 
mean length and width and the percentage change 
from the overall mean versus number of CNCs meas-
ured, the SMART analysis provides a mechanism 
to assess the likelihood of reaching a representative 
measurement for CNC particle size. SMART area 
analysis of CNCs within the TEM images found that 
less than 10% of the total area covered by CNCs was 
due to isolated particles, indicating that the majority 
of CNCs within a given TEM image are not char-
acterized. As a demonstration to assess more of the 
CNC material within the TEM images, a function 
was added to SMART to analyze a small subset of 
linearly aligned and parallel stacked CNC agglomer-
ates. However, as it is unclear if such agglomerates 
are artifacts from the TEM sample preparation or are 
hard agglomerates that existed in the starting CNC 
suspension, the implications of such results should be 
considered cautiously.

After the initial optimization of processing param-
eters, the SMART image analysis time was less than 
15  min for each laboratory (having between 115 to 
244 images). This analysis included object identifi-
cation (individual, agglomerate, and border CNCs), 
object measurements (length, width, aspect ratio, 
area), and all plotting of data (e.g., 1-D histogram, 

2-D histograms, cumulative means and percent 
change). The utility of the SMART approach for dra-
matically reducing the analysis time compared to a 
manual approach is demonstrated by the encourag-
ing level of agreement in CNC particle size meas-
urements from the SMART and manual approaches. 
The level of agreement in CNC size measurement 
between SMART and manual approaches, the lower 
laboratory-laboratory variation, the lower analyst bias 
and fatigue, the additional measurement capability, 
and the increased speed of image analysis highlights 
an opportunity with SMART to improve the stand-
ardization of CNC size characterization. A stand-
ard approach for image analysis will also facilitate 
a more in-depth exploration of the effect that CNC 
properties, sample deposition for imaging and micro-
scope parameters have on the reliability of CNC size 
measurements. The SMART code and tutorial is now 
available for the public to use for free at Github™ 
(https:// github. com/ seyuc el/ CNC- SMART).
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