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Abstract Bacterial cellulose (BC), a promising
polysaccharide of microbial origin, is usually pro-
duced through synthetic (chemically defined) or
natural media comprising of various environmental
wastes (with exact composition unknown), through
low-cost and readily available means. Various agri-
cultural, industrial, and food processing wastes have
been explored for sustainable BC production. Both
conventional (using one variable at a time) and sta-
tistical approaches have been used for BC optimiza-
tion, either during the static fermentation to obtain
BC membranes (pellicle) or agitated fermentation
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that yields suspended fibers (pellets). Multiple stud-
ies have addressed BC production, however, the
strategies applied in utilizing various wastes for BC
production have not been fully covered. The present
study reviews the nutritional requirements for maxi-
mal BC production including different optimization
strategies for the cultivation conditions. Further-
more, commonly-used applications of BC, in various
fields, including recent developments, and our current
understanding have also been summarized.

Keywords Bacterial cellulose - Low-cost media -
Optimization strategies - Applications

Introduction

The growing environmental challenges and the
human race has been facing since the last few decades
have made implementation of efficient and sustaina-
ble eco-friendly products, absolutely imperative (Kar-
dung et al. 2021; Witek and KuZniar 2021). Bacterial
cellulose (BC), among other cellulose sources, meets
the required eligibility for green applications (Urbina
et al. 2021a). Unlike plant cellulose, BC is produced
as an extracellular polymer, which facilitates its
extraction in high purity, completely free from lignin
and hemicellulose (Betlej et al. 2021). BC polymer is
also characterized by its high degree of polymeriza-
tion and crystallinity with a unique fiber network in
the micro or nano-size, which increases its surface
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to volume ratio, a unique feature over other cellu-
lose sources (Zhong 2020). These salient properties
qualify BC for several applications in various medical
(Seddiqi et al. 2021; Swingler et al. 2021), environ-
mental (de Medeiros et al. 2021; Saleh et al. 2021),
and industrial sectors (Lin et al. 2020).

BC production depends mainly upon the avail-
ability of the nutritional components of the produc-
tion medium, especially carbon (Fernandes et al.
2020). Different carbon sources and cultivation
media have been screened and reported, however,
Hestrin—Schramm (HS) medium remains the most
commonly used for BC production (Lu et al. 2020).
The high production cost attributed to the medium
(30% of the total cost) represents a major challenge
for fulfilling the commercial manufacturing require-
ments (Fernandes et al. 2020; Rahman et al. 2021).
In recent decades, the implementation of the agro/
industrial wastes for sustainable BC production repre-
sent a promising cost-effective alternative for the cur-
rent applied media (Raiszadeh et al. 2020; Saleh et al.
2021). On the other hand, BC producing organism, is
another important element regarding commercial pro-
duction. Till date, Gluconacetobacter xylinus is the
model producer for the BC at the commercial levels
(Aswini et al. 2020; Wang et al. 2019). The high pro-
duction capacity of this organism is attributed to the
multiple copies of BC synthesis genes in its genome
(Lu et al. 2020). Research for novel BC producers in
different niches, in addition to deeper studies at the
molecular level for BC production pathway continues
toward improving the production titer.

Controlling and optimizing the production condi-
tions and media also improves the yield and reduces
production costs (Rahman et al. 2021). The one-var-
iable at a time (OVAT) approach is the most applied
strategy for BC production optimization (Alemam
et al. 2021; Bera et al. 2021). Due to the intensive
labor and high cost involved in this strategy, more
attention, in recent times, has been directed toward
the implementation of statistical numerical designs
as a more reliable and cost-effective alternative for
BC production optimization (Bagewadi et al. 2020;
Singh et al. 2017). The scope of this review is to
discuss the current advances in BC production, the
application of different agro/industrial wastes as alter-
native media for sustainable BC production, process
optimization, and its applications in various medical
and industrial fields also discusses.

@ Springer

Nutritional requirements for bacterial cellulose
production

BC yield depends mainly on the availability and qual-
ity of the carbon sources on the production medium
(Fernandes et al. 2020; Gullo et al. 2019). Various
simple and complex carbon sources through different
organisms, including glucose, fructose, sucrose, man-
nitol, starch, and glycerol have been used for BC pro-
duction (Lu et al. 2020; Mikkelsen et al. 2009Rangas-
wamy et al. 2015). Many studies have reported that,
ethanol indirectly influences the enzymes involved
in the BC synthesis pathway (glucokinase and fruc-
tokinase) thereby improving ATP yield (Andriani
et al. 2020; Fernandes et al. 2020; Jacek et al. 2021).
Ethanol also diminishes the spontaneous mutation
rate of BC producing strain in agitating culture (Bul-
dum et al. 2018; Son et al. 2001). Li et al., signified
the role of ethanol supplementation in the reduc-
tion of glycerol formation (main by-product) during
BC production (Li et al. 2012). Though BC produc-
tion is a growth-dependent process (Singhania et al.
2021), some nutritional sources could support bacte-
rial growth without any BC production (Aswini et al.
2020). The impact of the carbon source types on the
final quality and crystallization of the BC is not fully
determined; some studies have reported the direct
impact of various nutritional sources on the final
BC production and quality (Mohammadkazemi et al.
2015; Ruka et al. 2012), while others have reported
the opposite (Aswini et al. 2020; Mikkelsen et al.
2009; Saleh et al. 2021).

The independent synthesis of BC, regardless of the
carbon substrate, may be attributed to the ability of
the producing organism to synthesize glucose from
various carbohydrate sources, followed by polymeri-
zation to cellulose (Aswini et al. 2020; Rangaswamy
et al. 2015). A suitable nitrogen source is also crucial
for maximum BC production (Lahiri et al. 2021). The
production of BC is commonly supported with com-
plex organic nitrogen sources such as yeast extract
(Aswini et al. 2020), peptone (Rangaswamy et al.
2015), casein hydrolysate with peptone (Lahiri et al.
2021), and soybean molasses (Souza et al. 2020),
contrary to inorganic nitrogen that usually retards
the bacterial growth and hence inhibits the BC pro-
duction (Aswini et al. 2020). Determination of opti-
mum nitrogen source for maximum BC production is
influenced by the organism type as well as the carbon
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source. Lahiri et al. reported maximum BC produc-
tion by Acetobacter xylinum using casein hydrolysate
with sucrose, while peptone was the most effective
nitrogen source in presence of mannitol (Lahiri et al.
2021). Recently, more attention has been directed
toward the implementation of agricultural and indus-
trial-waste products as alternative cost-effective car-
bon/nitrogen sources (Ogrizek et al. 2021; Saleh
et al. 2021; Singh et al. 2017). Several by-products
successfully applied for cost-effective BC production
included: a 50:50 mixture of date syrup and cheese
whey (Raiszadeh et al. 2020), sugar beet molasses
and cheese whey (Salari et al. 2019), and starchy
kitchen wastes (Saleh et al. 2021).

Numerous additives have been screened and evalu-
ated regarding their effect on BC production includ-
ing, vitamins, minerals, and water-soluble polymers.
Ascorbic acid (vitamin C) supplementation to the
BC production media was investigated through many
reports (Cielecka et al. 2021; Raiszadeh et al. 2020).
Enhancement in BC production (one fold increase)
from four isolates of Gluconacetobacter xylinus
through ascorbic acid (0.5% w/w) supplementation
in the production medium was previously reported,
due to reduction in by-product concentration (glu-
conic acid) in the production medium (Keshk 2014).
Water-soluble polymers including agar, alginate, and
carboxymethyl cellulose (CMC) also play an impor-
tant role in BC production by avoiding clumping
and coagulation of BC (Cheng et al. 2009). In the
same context, Aswini and his colleagues reported an
increase in the BC production through the addition of
polyethylene glycol-6000 to the production medium
(Aswini et al. 2020).

Bacterial cellulose from a low-cost media

Culture or growth medium is a liquid or solid sub-
strate, containing nutritive components for growth of
microorganisms, cells, or small plants. Culture media
are classified into two major subtypes based on their
composition and application: defined (synthetic)
media and undefined (natural) media (Fan et al. 2014;
Meenakshi 2013). Defined media has known chemi-
cal compositions and concentrations, like Hestrin
and Schramm (HS) media which used for the culti-
vation of the BC-producing bacteria is expensive and
requires additional resources like glucose, peptone,

yeast extract, ethanol, etc. (Ayed et al. 2017; Hestrin
and Schramm 1954). The undefined media, on the
other hand, depend on the use of natural sources with-
out a specific chemical composition and is character-
ized as the unknown composition of the media, like
pineapple peel, sugar beet molasses, etc. used for BC
biosynthesis (Revin et al. 2021; Santoso et al. 2021).

BC production process is costly, owing to the
low productivity of known strains and the use of
extremely expensive fermentation medium (defined
media). For BC production, where the defined
medium represents around 30% of the total cost, this
high expense becomes an obstacle for expanding
into large scale production and further applications
(Jozala et al. 2016). As a result, the major challenge
of the fermentation process is the identifying of new
effective and low-cost culture media that can promote
a high yield within a short cultivation time. This can
be obtained from various sources such as agriculture,
industrial and food processing wastes (Table 1), and
include low-price organic waste products that are eas-
ily available in high quantities (undefined media).
Using these wastes as media effectively remove
the wastes from the environment and reduces pollu-
tion associated with industrial waste disposal (Castro
et al. 2011; Fan et al. 2016).

Various studies have recently focused on using
alternative, natural and effective nutritional sources
like agricultural, industral and food processing wastes
as a carbon source in order to reduce the cost of BC
biosynthesis. Spruce hydrolysate (Guo et al. 2013),
wood hot water extracts (Kiziltas et al. 2015), pine-
apple agro industrial residues (Algar et al. 2015), cit-
rus juices (Andritsou et al. 2018), rotten fruit (Hun-
gund et al. 2013; Jozala et al. 2015), cotton-based
waste textiles (Hong et al. 2012), beet and sugar cane
molasses (Cakar et al. 2014), food processing waste
(Saleh et al. 2021; Suwanposri et al. 2014), wine fer-
mentation waste broth (Ogrizek et al. 2021; Wu and
Liu 2012), waste water of candied jujube-processing
industry (Li et al. 2015a, b),waste and by-product
streams from biodiesel and confectionery indus-
tries (Tsouko et al. 2015), acetone-butanol-ethanol
fermentation wastewater (Huang et al. 2015), cit-
rus peel (Fan et al. 2016; Giizel and Akpinar 2018),
hemicellulose (Penttild et al. 2017), konjac (Liu et al.
2020), rice husk (Goelzer et al. 2009), wheat straw
(Chen et al. 2013), maple syrup (Zeng et al. 2011a,
b), coffee cherry husk (Rani 2013), dried olive mill
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residue (Gomes et al. 2013), waste beer yeast (Lin
et al. 2014a, b), date syrup (Mohammadkazemi et al.
2015) have been reported. BC production process
from low-cost effective media can be divided into
four general steps (Fig. 1). Each step includes sev-
eral options, but the overall effect remains the same
(Algar et al. 2015; Hong et al. 2012; Vasconcelos
et al. 2017).

Pretreatment of wastes

Pretreatment of different wastes, especially agri-
cultural wastes, is a vital step in BC production. It
includes altering the size, structure and chemical
properties of the biomass thus optimizing the condi-
tions for efficient hydrolysis (Saini et al. 2015). The
yield of reducing sugars from hydrolysis of natural
biomass is low; therefore, one of the major challenges
is to demonstrate effective pretreatment methods
that affect the structure, chemical composition, and
hydrolysis rate of pretreated biomass (Podgorbun-
skikh et al. 2019; Sun et al. 2016). Consequently,
pretreatment must meet the following: (1) enhance
sugar yield or the ability to subsequently form sugars
by enzymatic hydrolysis; (2) eliminate carbohydrate
degradation; and (3) be cost-effective. Chemical and
physical processes have been used for a common pre-
treatment of agricultural wastes (Abol-Fotouh et al.

Fig. 1 The general steps

for bacterial cellulose

production from a low-cost

media "2

Different wastes

® Physical == o Enzymatic )
,, Pretreatment @ Hydrolysis Fermentation
—_— . — ——

2020; Li et al. 2021). A variety of chemical (acid,
alkali, ozone) and, physical (comminution and hydro-
thermolysis) techniques have been established for the
pretreatment of biomass for BC production (Palamae
et al. 2017).

Chemical pretreatment

Chemical pretreatments are considered promising,
being quite effective in degrading more complex-
structured substrates (Song et al. 2014). Various acid,
alkali, combined acid-alkali and ionic liquid have
been adopted to pretreat lignocellulosic biomass. By
comparing the quantity of reducing sugars obtained
from hydrolysis of pretreated wastes, the effectiveness
of various chemical pretreatments was investigated.

Acid pretreatment

Organic (acetic) or inorganic (nitric) acids can
decompose the biomass wastes and enhance cellulose
availability, further facilitating BC production. Acetic
acid at 2.0% (w/v) is an organic acid used for pretreat-
ment of 200 g corn stalk at the desired temperatures
of 140 °C, 160 °C, 180 °C, and the reaction time was
30 min, 60 min, 90 min respectively, and the opti-
mized parameters include 160 °C, 60 min of pretreat-
ment, with 28.84% of total sugars (Cheng et al. 2017).
Nitric acid at 2, 4 and 6 wt% as mineral acid used for

) o Acid
o Chemical
, o Static
® BCpellicle \O‘
Purification —
by NaOH

® BC pellets \@‘ s Apiaiad
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pretreatment of 150 g oat hulls at 90-95 °C for 1 h in
41 flask has been reported. The optimum nitric acid
concentration for oat hulls pretreatment was found to
be 4 wt%, with 79.5% reducing sugars (Skiba et al.
2020).

Alkali pretreatment

Alkali pretreatment is the most widely used method
to enhance the digestibility of the lignocellulose, by
swelling of biomass and thus causing an increased
surface area, decreased crystallinity and lignin struc-
ture disruption (Singh et al. 2016). This process pre-
sents a simple way to modify the surface of the wastes
to remove cationic species (Ponce et al. 2021). Cara-
gana Korshinskii Kom (20 g) was pretreated by mix-
ing with 1.8-7.2 g of NaOH. The mixture was then
autoclaved at 150 °C for 30 min, to yield 40-45%
total sugars by using 7.2 g NaOH (Li et al. 2021). Sil-
ver grass at 10 kg was pretreated by a 3—6 wt% NaOH
solution at 90-95 °C for 6-8 h, to yield 85% reducing
sugars (Kashcheyeva et al. 2019). In NaOH pretreat-
ment, the OH™ targets the carbon of the ester linkage
between lignin and hemicellulose, resulting in the
irreversible hydrolysis of the ester bond and weak-
ening the structural integrity of the lignocellulose
(Modenbach and Nokes 2014).

Ionic liquid pretreatment

Imidazolium-based ionic liquids (ILs), having anions
of chloride, acetate or alkyl phosphonate as soluble
cellulose liquids, are being used for pretreatment of
wastes like switchgrass (Singh et al. 2009) and wheat
straw (Chen et al. 2013). 1-allyl-3- methylimidazo-
lium chloride is a type of novel ionic liquid that is
recognized as one of the most effective reagents for
improving enzymatic saccharification of wheat straw
and cotton cloth wastes for BC production. Wheat
straw of 150, 250 and 500 mg were pretreated by dis-
solving in 1-allyl-3-methylimidazolium chloride of
5 g at 100 °C for 2 h to obtain dosages of 3, 5 and
10 w/w%, respectively. The optimum conditions for
pretreatment was found to be 3 w/w% dosage of ionic
liquid, to yield 71.2% of total sugars, compared to
19% of untreated wheat straw after enzymatic hydrol-
ysis (Chen et al. 2013). Cotton cloth of 0.05 g was
pretreated with 10 g of 1-allyl-3-methylimidazolium
chloride in a 50 ml solution, agitated at 500 rpm

@ Springer

and incubated in an oil-bath heater at 90 °C, 110 °C,
and 130 °C. The optimum condition was found to be
110 °C for 90 min for pretreatment of cotton cloth
(Hong et al. 2012).

Physical pretreatment

Physical pretreatments, commonly used to degrade
wastes, include steaming, grinding and milling, irra-
diation, temperature and pressure. These methods
increase the accessible surface area and size of pores.
Several researchers reported that, different wastes
were beat in a blender for shredding and grinding, as
a physical pretreatment, and then used for BC pro-
duction. Aqueous extracts of fruit peels (ex. pineap-
ple, orange, sweet lime and banana) wastes have been
used as a nutrient and carbon source for the produc-
tion of BC through physical pretreatment. The dried
peels were ground and immersed in distilled water
at 90 °C for 60 min. The supernatant was used as a
substrate for BC production by using Komagataeibac-
ter xylinus IITR DKH20, to achieve BC of 11.4 g/l
(Khan et al. 2021). Extracts from citrus processing
waste peels of grapefruit and lemon have also been
reported (Andritsou et al. 2018). Table 1 summarizes
the physical pretreatments used for processing of sim-
ple sources like fruit peels and other food processing
wastes.

Hydrolysis of wastes

Hydrolysis is the main step for BC production from
alternative media. It is responsible for the conversion
of treated or untreated wastes to sugars, formed dur-
ing fermentation by producer strains to BC. The rate
of hydrolysis of wastes depends on two factors: pre-
treatment technology and type of hydrolysis (acid or
enzymatic).

Acid hydrolysis

Acid hydrolysis has several detrimental effects
including considerable energy consumption equip-
ment corrosion, and the formation of inhibitory
chemicals (Chen et al. 2013). This process also
reduces the complexity of the carbon source to simple
sugars which can otherwise be easily assimilated by
the microorganism for BC production (Jaramillo et al.
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2014). However, hydrolysis of lignocellulosic mate-
rials causes disruption of lignocellulosic hydrogen
bonds with byproducts like carboxylic acids (formic
acid) and furan aldehydes (furfural and 5-hydroxym-
ethylfurfural) which can be toxic to bacterial growth
and inhibit fermentation. To reduce the formation of
these toxic compounds, additional detoxification step
is necessary to promote proper bacterial growth and
fermentation (Santoso et al. 2021; Steinbach et al.
2017). The most commonly used acid for saccharifi-
cation of wastes for BC production is diluted sulphu-
ric acid and the hydrolysate is detoxified by atmos-
pheric cold plasma (Santoso et al. 2021). In another
study, elephant grass was hydrolysed by 2.5% (w/v)
sulphuric acid at 135 °C for 1 h to achieve (g/1) 12
glucose, 20.3 xylose and 2.3 arabinose (Yang et al.
2013).

Enzymatic hydrolysis

Enzymatic hydrolysis is a promising waste-sacchari-
fication process, performed at moderate pH and tem-
perature conditions. It is eco-friendly and does not
generate toxic compounds or degraded sugars (Kuo
et al. 2019). Different enzymes used for saccharifica-
tion of wastes for BC production include cellulases
for cotton cloth (Hong et al. 2012), Cellic®CTec?2 for
sugarcane straw (Dhar et al. 2019), Avizyme® for rice
bark (Goelzer et al. 2009), amylase for starch kitchen
wastes (Saleh et al. 2021) and lactase for cheese whey
(Salari et al. 2019). Pretreated sugarcane straw (10%
(w/v)) was hydrolyzed by enzymatic treatment of 15
FPU/g cellulase, the hydrolysis was performed using
citrate buffer (pH 5) at 250 rpm and 50 °C to achieve
(g/1) 49.2 glucose; 6.1 xylose; 1.8 cellobiose and 2.9
acetic acid after two days of enzymatic hydrolysis
(Dhar et al. 2019).

Fermentation of bacterial cellulose
Bacterial cellulose producing strains

One of the crucial factors controlling the BC yield
is the producing strain. The strain also influences
the quality and polymerization of the produced BC
membranes (Lu et al. 2020; Wang et al. 2019). Many
bacterial genera have been reported for BC produc-
tion including Gluconacetobacter, Azotobacter,

Pseudomonas, and Salmonella (Arrebola et al. 2015;
Lu et al. 2020; Zhong 2020). Gram-negative bacteria,
particularly Gluconacetobacter xylinus (Komagataei-
bacter xylinus) fulfill the industrial production level
with a high yield of extracellular BC especially under
static conditions (Keshk 2014; Lin et al. 2013; Wang
et al. 2019). Gluconacetobacter species are regularly
isolated from rotten fruits (Khan et al. 2020; Ran-
gaswamy et al. 2015), vinegar (Du et al. 2018; Top
et al. 2021), sugarcane juice (Aswini et al. 2020), and
kombucha (Zhang et al. 2018). On the other hand,
BC production using Gram-positive bacteria is quite
uncommon and few organisms only including Lacti-
plantibacillus plantarum (Saleh et al. 2022), Lacto-
bacillus hilgardii (Khan et al. 2020), Bacillus licheni-
formis (Bagewadi et al. 2020), and Rhodococcus sp
(Tanskul et al. 2013) have been studied.

At the molecular level, the full genome for several
wild type, potent BC producing strains, have been
sequenced and investigated including; Gluconace-
tobacter xylinus CGMCC 2955 (Liu et al. 2018b),
Komagataeibacter xylinus K2G30 (UMCC 2756)
(Gullo et al. 2019), and Komagataeibacter uva-
ceti FXV3 (Nascimento et al. 2021). Together these
genomic data provide a deeper insight into the poly-
mer synthesis pathway that mainly engaged the BC
synthase operons (bcs operon). This operon encoded
the four essential cellulose synthesis genes, namely
besA, besB, besC, and besD (Buldum and Mantala-
ris 2021; Liu et al. 2018b). In addition, several regu-
lating genes were also identified and located up and
downstream from the cellulose synthase operons (Lu
et al. 2020; Singhania et al. 2021). The exceptional
cellulose production capacity of Gluconacetobacter
xylinus is attributed to multiple built-in copies of cel-
lulose synthase operons (up to 4 copies) on the strain
genome (Lu et al. 2020). Based upon the genomic
data, numerous attempts have been reported for inten-
sifying the BC yield to the commercial level through
genetic manipulation (Lu et al. 2020; Singhania et al.
2021). To reduce the production time, the cellulose
synthase operon was heterogeneously expressed in
E.coli, as a faster-growing host (Buldum et al. 2018;
Imai et al. 2014). Though the BC production was
detected in the early phase of the fermentation course
(after 3 h), the resulted BC yield did not fulfill the
expected commercial level (Buldum and Mantalaris
2021). More recent research has been directed toward
the endogenous and heterologous expression of the
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cellulose regulating genes in the potent BC producing
organisms (Jacek and Kubiak and et al. 2019; Jacek
and Ryngajtto et al. 2019), with regards to cheaper
and more available carbon sources, enhancing the
oxygen assimilation under hypoxic conditions (Liu
et al. 2018a), or knocking-out the genes responsible
for by-product accumulation (gluconic acid) during
the fermentation course (Chun et al. 2014), all caus-
ing an increase in BC productivity. Till date, explor-
ing new BC producers is completely dependent on the
culturing techniques, though only 1% of the micro-
bial population can be cultured (Bodor et al. 2020).
Application of modern molecular strategies, such as
the metagenomics library, may extend the scope of
BC production through exploring these microbial
communities (ex. in wild niches and extreme environ-
ments), that cannot yet be cultured.

Co-culturing is a recent effort for improving the
quality and productivity of BC. Hu et al. studied the
co-culturing of Aureobasidium pullulans in the BC-
production medium of Komagataeibacter hansenii
and reported enhanced BC productivity with better
mechanical properties, attributed to the introduc-
tion of pullulan polysaccharide in the produced BC
microstructure (Hu et al. 2021). Liu and Catchmark
evaluated the co-culturing of Escherichia coli (E.
coli) in the fermentation medium of Gluconaceto-
bacter hansenii and reported enhancement in the
productivity and quality of the produced BC through
the incorporation of mannose-rich exopolysaccha-
ride, generated by E.coli, into the growing cellulose
network (Liu and Catchmark 2019).

Cultivation conditions affecting the bacterial
cellulose production

BC production is directly affected by the various
cultivation conditions such as temperature, medium
pH, incubation time, and nature of cultivation (Fer-
nandes et al. 2020). The physiological state of the
applied microorganism governs its optimum culti-
vation conditions, thereby determining the medium
nutrients and maximizing the yield. Medium pH is
a vital cultivation parameter that directly affects car-
bon assimilation and hence BC production (Rangas-
wamy et al. 2015; Yassine et al. 2016). The optimum
pH for BC yield is strain-dependent, a slightly-acidic
pH is most recommended for maximum BC pro-
duction (Dirisu et al. 2017; Fernandes et al. 2020),

@ Springer

although an optimum alkaline pH has been reported
as well (Abdelraof et al. 2019; Farrag et al. 2019; Lin
et al. 2016). In their research for potent BC produc-
ers, Lin et al. isolated Komagataeibacter intermedius
from fermented fruit juice that can produce BC at a
wide pH range (4-9) where the maximum production
(1.2 g/l/4 days) was at pH 8 (Lin et al. 2016). Assimi-
lation of carbon sources usually resulted in pH drop-
ping in the fermentation medium below the initial
optimum level, and this is attributed to the production
of numerous organic acids (gluconic and acetic acids)
as by-products (Blanco et al. 2020; Esa et al. 2014).
Hence, medium pH control during BC production is
very important as any pH below 4 does not support
BC production at all (Klemm et al. 2001). Addition-
ally, the applied carbon source has a direct influ-
ence on the optimum pH for BC production. It was
reported that when bacteria were cultured on glucose,
the optimal initial pH was 5.5. However, when man-
nitol was applied, the optimal pH was raised to 6.5
(Hutchens et al. 2007).

Surface to volume ratio (S/V ratio) represents
another important parameter influencing BC yield
especially under the static production conditions
(Kumar et al. 2021). S/V ratio has a direct influence
on the aeration level in the production medium. At
static cultivation conditions, BC production usually
takes place at a higher oxygen level in the liquid-
surface interface, and hence increases the oxygena-
tion level resulting in higher BC yield (Rodrigues
et al. 2019). It was reported that the optimum level
of S/V ratio for BC production is a strain-dependent
trait and is crucial, since the higher/lower ratios dras-
tically declined the BC membrane thickness and yield
(Kumar et al. 2021). Various studies reported differ-
ent S/V ratios for optimum BC production including
1.22 em™! (Aytekin A et al. 2016), 0.4 cm™' (Rodri-
gues et al. 2019), and 0.22 cm™! (Kumar et al. 2021),
however, most of them consider the S/V ratio among
the most significant variables for enhanced BC pro-
duction at static condition.

Types of bacterial cellulose fermentation

There are two main models for BC fermentation
using microorganisms: static and agitated fermenta-
tion. The application of BC depends on the type of
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fermentation, as well as, the physical, and mechanical
features of the formed BC (Cacicedo et al. 2016).

Static fermentation

Static fermentation forms a thick and gel-like white
BC pellicle at the air-liquid interface, thus limit-
ing the oxygen (at the side of the pellicle exposed
to media) and nutrient supply (at the upper aerobic
zone of the pellicle) (Sharma et al. 2021). It requires
a longer culture period, larger cultivation area and
intensive manpower, thus resulting in low produc-
tivity (Kuo et al. 2016). Static fermentation is more
suitable for the medical production of BC as wound
dressing materials (Portela et al. 2019) or in dye
removal (Saleh et al. 2021).

Agitated fermentation

Agitated fermentation, wherein the BC is synthesized
in the fermentation medium as randomly distributed
pellets or suspended fibers. The process has higher
yield in lesser time but the shearing stress generated
due to agitation causes the bacterial strain to revert
to non-BC producing mutants (cele) thereby inhibit-
ing the BC production. These mutants have a higher
growth rate compared to the wild type, thus decreas-
ing BC production even more (Sharma et al. 2021;
Singhania et al. 2021). The agitated fermentation
process is more suitable for the industrial production
of BC and can be used for commercial applications
in various fields. Moreover, mutations in the applied
strains are more probable thus influencing BC pro-
duction (Chawla et al. 2009; Tyagi and Suresh 2016).

Conventional and statistical optimization
strategies for bacterial cellulose production

The relatively high production cost of the BC repre-
sents one of the major challenges facing its commer-
cial implementation (Aswini et al. 2020; Fernandes
et al. 2020). About 30% of BC production cost is
attributed to the growth medium and cultivation con-
ditions (Fernandes et al. 2020), therefore, besides
mining for new superior BC producing organisms,
reducing the production cost and time represent a step
ahead for wide commercial applications (Fernandes
et al. 2020; Jozala et al. 2015; Rahman et al. 2021).

Two approaches were widely reported for improving
the cultivation conditions and medium composition
for BC production, including conventional and statis-
tical optimization approaches. The conventional opti-
mization approach depends upon the OVAT, wherever
optimum conditions were elaborated through chang-
ing one variable while all other parameters are fixed.
Once the optimum level of this variable is attained,
another variable is evaluated in the same manner
(Shojaei et al. 2021). The OVAT strategy is straight
forward, and many studies rely on this strategy for
optimizing different nutritional and physical param-
eters for BC production, as indicated in Table 2. Two
fundamental drawbacks of the OVAT strategy include
the long experimentation time and the strenuous labor
(Abdel-Fattah et al. 2009). Furthermore, the OVAT
strategy is incapable of elucidating the factor inter-
actions and their consequences upon the final yield
(Abdel-Fattah et al. 2009; Fernandes et al. 2020;
Yousef et al. 2021).

The second optimization approach relies upon
statistical mathematical designs. Unlike the OVAT
method, in this approach multiple factors are evalu-
ated simultaneously in one experiment (Singh et al.
2017). Besides, the data could be fitted in mathemati-
cal models, where the experimental results may be
manipulated, analyzed and optimum expected (Bage-
wadi et al. 2020; Fernandes et al. 2020). The statis-
tical optimization approach is a sequential process
involving three main steps: (1) setting the range for
studied variables and developing the design matrix
and model, (2) conducting the experiment in the labo-
ratory, recording the process yield, fitting the results
to the applied model, and expecting the optimum lev-
els toward maximum productivity, and (3) validating
computationally expected results to ensure the ade-
quacy of the applied model in terms of the expected
response (Das and Dewanjee 2018). Analysis of vari-
ance (ANOVA) and regression analysis are the most
applied methods for evaluating the accuracy and
significance of the results of the statistical designs
(Rahul and Pretesh 2018; Shojaei et al. 2021).

The statistical designs could be categorized into
screening and optimization designs. The screening
design is usually applied to elucidate the impact of
each studied variable upon the final process yield,
assuming that variable interactions are neglected
(Das and Dewanjee 2018). In this process, all stud-
ied variables are evaluated for their positive/negative

@ Springer
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effects on the process yield. The insignificant fac-
tors are excluded, to obtain a smaller controllable
set of factors, which are likely to elicit optimal or
nearly optimal responses. Plackett—Burman design
(PBD) represents one of the widely applied screen-
ing designs that rely upon the first-order reaction
model as follows: ¥ =A + Y’ BX, where Y is the
process response (dependent variable) and X is the
studied factors (independent variable). Plackett—Bur-
man design is a two-levels screening where the effect
of each factor is evaluated between low settings, high
one coded+ 1, and low value coded -1 (Plackett and
Burman 1946). In this design, up to N—1 factors
could be screened with N trials, however, screening
reasonable numbers of variables (between 12-20 var-
iables) is more applicable, as with screening a large
number of factors, a partial confounding between fac-
tors and factor interactions was reported which may
lead into unreliable results (Kulahci and Bisgaard
2007).

Taguchi method (TM) is another statistical screen-
ing design that elucidates the effect of each factor at
a lower cost and a better quality outcome (Shojaei
et al. 2021). This design is based upon formulating
the lowest amount of experiments (fraction of all fac-
torial combinations) called orthogonal array, with-
out affecting the product quality (Das et al. 2014).
The orthogonal array guarantees that all factors are
weighted equally, and the evaluation of the one-factor
effect, within the experiment, does not influence the
other factors implemented in the experiment (Das
and Dewanjee 2018). Taguchi method involves two
types of factors; controlled factors (under our con-
trol) called inner array and noise factors (can’t be
controlled) called outer array (Malhotra and Cha-
padgaonkar 2020). In this design, the signal-to-noise
(S/N) ratio was proposed to measure design results
quality, where S is the targeted signal and N is the
interfering noise. The S/N ratio is usually determined
in two categories: larger-the-best, when maximizing
the response is the target or smaller-the-best, in the
opposite situation (El-Moslamy et al. 2017; Rahul
and Pretesh 2018). Though the Taguchi method is a
straightforward and cost-effective method for process
optimization, it also revealed some limitations as the
results are approximate, in addition, the design’s ina-
bility to specify the parameters influenced the highest
effect on the process performance (Rahul and Pretesh
2018).

The second category includes optimization
designs where the exact values of the most sig-
nificant studied variable are determined to achieve
the maximum desired responses. These statisti-
cal designs are three-or-more-level designs, where
each variable is studied in three or more levels to
ensure attending the real optimum conditions.
Box-Behnken (BBD) and central composite design
(CCD) are examples of the most applied ‘three-five
level’ optimization designs (Table 2). Both belong
to the response surface methodology (RSM) pro-
posed by (Box and Behnken 1960), where the opti-
mization results could be analyzed through surface
plots (2 or 3 dimensional) representing the change
in the response (Y), according to the applied param-
eters (X). The optimization designs rely upon
polynomial quadratic models, where the nature of
variable interactions and the implication of these
on the process yield can also be elucidated (Rah-
man et al. 2021; Yousef et al. 2021). For any two
studied variables, the quadratic polynomial model
represents a second-order reaction as: Y=A+
B, X, +B,X, +B,X,X,+ B, X;*+B,,X,>  where
Y =process response, A=model intercept (rep-
resents the fitted response at the design’s center
point), X,, X,=studied variables, B,, B,_ linear
coefficients; B, = cross-interaction coefficients; and
B, By, =non-linear quadratic coefficients. Integra-
tion between OVAT method and statistical designs
have recently become widely adopted by many
authors as an effective strategy for medium optimi-
zation. In this, the variable under study is generally
screened through the OVAT approach. The levels of
the potent and most significant variables, defined
in the previous step, are further optimized through
statistical optimization designs (Table 2). Integra-
tion between the OVAT and statistical approaches
could be useful in preliminary studies to determine
the appropriate ranges for studied variables (Aswini
et al. 2020; Bagewadi et al. 2020). There have been
debates in the past regarding the accuracy of the
screening designs (Kulahci and Bisgaard 2007) and
their misleading results, especially when faced with
a huge number of factors. This has influenced sev-
eral authors to rely upon the OVAT strategy in vari-
ables screening despite the laborious effort and time
involved (Aswini et al. 2020; Santoso et al. 2020).
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Purification of bacterial cellulose

The BC obtained after fermentation is usually not
pure, containing impurities like cells and medium
components. Several purification methods have been
applied by soaking BC for several days in water with-
out any additives or heating (Li et al. 2021). Other-
wise, BC could be washed several times by water and
then treated with NaOH and HCI (Skiba et al. 2020),
or heating (50-100 °C) with 0.1-0.5 M NaOH for
30-120 min, which facilitates the removal of certain
metabolites. This treatment increases viscosity, pro-
moting surface purification and the elimination of
low molecular mass BC, and finally conferring better
characteristics to the biomaterial (Costa et al. 2017).
The purification of BC obtained through different fer-
mentation strategies is illustrated in Fig. 2.

Applications of bacterial cellulose
Biomedical applications

The unique physico-mechanical properties of BC
such as, high water absorption capacity, good per-
meability, high tensile strength, crystalline structure
and biocompatibility, have made it useful in different
biomedical applications especially in wound dressing
and tissue engineering. As an ideal wound dressing
material, BC is able to accelerate the healing pro-
cess, can prevent microbial infections, and can restore
the structure and function of the skin (Abrigo et al.
2014). The BC fibers have the advantage of being
randomly aligned with nanometer-size distribution
which makes it able to mimic the shape and structure
of natural extracellular matrix that encourage the epi-
thelial cells’ proliferation and enhance the formation
of new tissues (Frone et al. 2020). Moreover, BC is
an excellent wound healing membrane that has the
ability to increase the sorption of wound liquids and
hence cleans the wound exudates, allows the proper
respiration of the cells, and facilitates the pain-
less dressing change to keep the intact of the newly
formed epithelial lining of the skin (Shalumon et al.
2011; Ul-Islam et al. 2013; Zou et al. 2012).
Biocompatibility of BC has been tested in rats
with dural defect, for 120 days, showing good
mechanical stability, absence of inflammatory reac-
tions, and similar properties to the local tissues (de

@ Springer
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Fig. 2 Steps for bacterial cellulose purification obtained from
static and agitated fermentation

Lima et al. 2017). Researchers have succeeded in
modifying the BC in the shape of nanofibers that
are highly similar to the collagen fibers in the body,
thereby making it attractive for tissue engineer-
ing applications (Torgbo and Sukyai 2018). BC
has also been used as scaffold materials (Kumbhar
et al. 2017), artificial skin (Keskin et al. 2017), den-
tal implants (Voicu et al. 2017), and artificial blood
vessels (Lee and Park 2017). BC is still under inves-
tigation in multiple other biomedical applications
such as cartilage replacement tissue substitutes
(Pang et al. 2020), tissue-engineered corneal stroma
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(Zhang et al. 2020), dura mater (Binnetoglu et al.
2020), and nasal septa (Mandour et al. 2019).

Food industry applications

BC membrane has a gelatinous consistency and a
smooth texture that make it a good candidate in vari-
ous food industry applications. It can become as edi-
ble when processed with compounds such as sugar
alcohol or alginate polymer and calcium chloride,
gives it the consistency of fruits or molluscs (Okiy-
ama et al. 1992). Subsequent to, USA Food and Drug
Administration classifying it as a safe type of dietary
fiber, BC can now be accepted as a food ingredi-
ent or food additive (Okiyama et al. 1992). BC has
been used as a water binding, thickening, and gelling
agent (Fig. 3) that improves the rheological profiles of
BC-stabilized emulsions with promising food indus-
try applications (Paximada et al. 2016a; Paximada
et al. 2016b). From a dietary point of view, BC can
substitute fats and lower the cholesterol concentra-
tion (Dourado et al. 2017), it can also be used in ice
creams to reduce the fat content, show observable
improvement in stability and rheological properties
with higher resistance to melting (Guo et al. 2018),
or as a fat replacer in mayonnaise with acceptable

Fig. 3 General applications
of bacterial cellulose in
diverse fields

Electronic

sensory characteristics and other physical properties
(Akoglu et al. 2018).

BC has a strong network and barrier properties
that makes it suitable for food packaging applications.
In the shape of cellulosic nanofiber, use of BC in nan-
opaper production gives the latter high strength, opti-
cal transparency, and thermal stability. BC also has
good oxygen barrier properties, effectively reducing
the penetration of oxygen molecules, thereby making
it a good replacement for traditional micro-sized pulp
papers, currently used for bags and other packages
(Samyn et al. 2018).

Recently, BC has been applied in active packag-
ing where the packing materials may have compo-
nents that extend the shelf-life conditions through
the absorbing or releasing of certain substances from
or into the packaged food or the surrounding envi-
ronment (Urbina et al. 2021b). In this context, BC,
impregnated with lyophilized bacteria of Lactoba-
cillus plantarum has been used as an antimicrobial
nanopaper wrapping of the ground meat in order to
stop the growth and activity of Listeria monocy-
togenes (Yordshahi et al. 2020). In another study, BC
and potato peel films loaded with the phenolic com-
pound curcumin, used for food packaging showed an
improvement in the tensile strength and noticeable

Bacterial
Cellulose
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reduction in the water vapor and oxygen permeability
(Xie et al. 2020).

Environmental applications

BC, a green bio-based material, being biodegradable
and sustainable, conforms to the new environmental
regulations. Accordingly, it is considered a promising
alternative for current wastewater treatment technolo-
gies. Recent studies in our laboratory have shown that
BC, loaded with charcoal or graphite compounds, has
effectively removed cationic dyes such as methylene
blue from contaminated water. When tested alone, BC
membrane was able to clear 53% of methylene blue,
while, this percentage improved to 98.7% and 100%
when loaded with graphite and charcoal, respectively
(Saleh et al. 2021). BC membrane has also been com-
bined with polydopamine and TiO, nanoparticles to
improve the surface area and active sites to enhance
the photocatalytic degradation of dyes (Yang et al.
2020). Studies have shown that BC can serve as a
supporting material for the Cu and Ni nanoparticles,
used for the reduction of 4-nitophenol, a hazardous
pollutant in wastewater originating from dye, paper,
and pharmaceutical industries (Song et al. 2020).

BC membranes have been combined with chelat-
ing agents or absorbent materials such as EDTA,
magnetic nanoparticles, graphene oxide, and chitosan
for the removal of toxic heavy metals, released to
the environment due to industrial activities (ex. fac-
tories producing fertilizers, batteries, or tanneries)
and causing toxicity to organisms including humans.
Zhu and his colleagues have used spherical BC com-
bined with Fe;0, (Zhu et al. 2011) to remove heavy
metal ions such as Cr>*, Mn%*, and Pb**. BC has also
proved a good efficiency template for the removal of
other heavy metals from contaminated environments
such as Sr, Pb, Sb, Cu, Cr, Fe, and As in other studies
(Cheng et al. 2019; Hassan et al. 2019; Meng et al.
2019; Mensah et al. 2019; Stoica-Guzun et al. 2016)
(Fig. 3).

Oil-contaminated wastewater from industrial
activities have a potential hazard for marine life, local
organisms, and humans. Sphere-like BC/graphene
composite, exhibiting a honeycomb-like surface with
3D interconnected porous structure, showed a perfect
ability to absorb oils and organic solvents from con-
taminated water (Wang et al. 2019). SiO, function-
alized BC membrane has shown a high separation
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efficiency in mixed water and oil emulsions with an
oil recovery percentage of 88% (He et al. 2018; Hou
et al. 2019). Galdino and his team also proved the
feasibility of BC membrane as a filter for oil removal
(Galdino Jr et al. 2020).

Electronic applications

Scientists have been searching for glass-alternative
materials in electronic devices, that have transpar-
ency, flexibility and strength (Amorim et al. 2020).
Recent studies reported the synthesis of cellulose
nanofibers that are optically clear and can be used
in electronic devices such as organic light-emitting
diodes, antennas and transistors, flexible displays, and
solar cells (Nogi et al. 2009; Zhu et al. 2014). The
nanocellulose has also been successfully applied in
the development of triboelectric nanogenerator which
is known for its ability to convert mechanical energy
into electric energy. With further enhancement in
electronic technologies, there is now a need for elec-
tronic devices that can store energy without reducing
their performance such as the biodegradable poly-
mers that can replace the presently used, non-renew-
able resources (Kotatha et al. 2018). BC gel electro-
lyte coated with chitosan and alginate and containing
1-ethyl-3-methylimidazolium tetrafluoroborate was
optimized for use in electric capacitors (Kotatha et al.
2018). BC/graphene nanosheets were coated on their
surface with polyaniline to form an electrically con-
ductive nanocomposite for successful use in electro-
magnetic shielding and flexible electrode materials
(Wan et al. 2018). BC can also be used as the mem-
branes of loudspeakers because it can maintain the
speed and the frequency of sounds, and effectively
respond to the sound power (Phruksaphithak et al.
2019; Shah et al. 2013) although at an escalated pro-
duction cost.

Using BC as a base material in a real fractional-
order element device was first reported by Caponetto
and his team (Caponetto et al. 2019). These devices
are used to approximate the fractional differential and
integral equations in capacitors and inductor circuits.
BC has also been incorporated with silver nanopar-
ticles and polyaniline and used to fabricate a highly
flexible ternary system, with a strong energy density,
as an electrode for supercapacitors (Hosseini et al.
2019). In general, the characteristics of BC mem-
branes allow them to be a promising candidate for use
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in electronics and optoelectronic devices. These elec-
tronic devices exploit flexibility, transparency, ther-
mal stability, good mechanical performance, and sur-
face morphology of BC (Urbina et al. 2021b). Other
reported applications of BC are mentioned in Table 3.

Cosmetic applications

Scientists have identified cosmetics as materials
that can enhance the physical appearance and vis-
ible aspects of a person, by incorporating these into
vehicles that facilitate their skin penetration (Amorim
et al. 2020). These cause enhancement of the skin,
hair, nails, eyes, and face in order to promote attrac-
tiveness, cleansing and beatifying without any nega-
tive effects on the body structures of functions (Hasan
et al. 2012). Multiple advantages of BC have sup-
ported its wide applications in the cosmetics field.

Recent cosmetic preparations are more inclined
towards using natural products from botanical
sources, to avoid using chemicals (ex. parabens) that
may have side effects such as skin allergies (Darbre
and Harvey 2008; Hasan et al. 2012). BC has been
applied in cosmetics as a non-allergic biopolymer that
has been extensively used to stabilize oil-in-water
emulsions, without the need for addition of other
skin irritating surfactants. A recent study has suc-
cessfully prepared cosmetic creams of oil-in-water
emulsions using BC and carboxymethyl cellulose that
replaced two of the commonly used chemical sur-
factants (Martins et al. 2021). BC has also been used
in facial masks and scrubs, cleansing formulations,
and contact lenses (Ullah et al. 2016). BC is currently
preferred over the botanical cellulose as it is more
chemically pure lacking hemicellulose or lignin, has
a higher crystalline structure, more porous, and has
better water holding capacity with elevated tensile
strength (Chawla et al. 2009; Jonas and Farah 1998;
Klemm et al. 2001; Mbituyimana et al. 2021).

The general properties of BC in cosmetic field
have been improved by the incorporation of other nat-
ural materials. For instance, propolis extract has been
incorporated into BC films in order to increase its
hydrating and anti-inflammatory properties especially
for sheet masks used for the treatment and healing of
skin prone to acne and inflammations (Amorim et al.
2020). BC has also been used for skin pigmentation
through the transfer of 1,3-dihydroxy-2-propanone in
the corneum extract causing skin color changes. This

application showed an actual skin color that was con-
sidered as the closest to the effect of natural tan and
can probably be applied as an alternative for patients
suffering from vitiligo (Stasiak-R6zaniska and Ptoska
2018). In another study, both in situ and ex situ meth-
ods were applied for the successful functionalization
of BC with hyaluronic acid and silk sericin, to be
used in cosmetic industry, for moisture retaining and
improving skin texture (Wang et al. 2020).

In general, BC has many advantages that inten-
sively support its participation in the cosmetics field.
It has a high absorbance capacity that helps in retain-
ing liquids nearly ten times more than nonwoven
masks and hundred times more than its dry weight
(Trovatti et al. 2012). Its thin thickness gives it more
flexibility for good adhesion to irregular surfaces of
the treated skin, thus allowing it to reach every con-
tour, fine lines, and wrinkles of the face and other
locations that traditional masks otherwise fail to reach
(Wei et al. 2011). Moreover, its soft touch helps in
supporting the skin through its hydration qualities
(Bianchet et al. 2020). To further widen its applica-
tion in the cosmetics field, further research needs to
be done to add active components to BC, to enhance
its anti-aging, cleansing, or whitening properties
(Mbituyimana et al. 2021).

Current stand

Exploring alternative media originating from differ-
ent environmental wastes is an imperative study for
the cost-effective production of BC. Moreover, the
determination of the optimized nutritional require-
ments and the cultivation conditions would enhance
the quantity and quality of the produced BC, leading
to its even wider applications. For example, suitable
physico-mechanical properties, high water absorption
capacity and tensile strength, good permeability, bio-
compatibility, and having randomly aligned nanome-
ter-size distribution, all make BC suitable for wound
dressing and tissue engineering purposes. BC also has
a gelatinous consistency and a smooth texture in addi-
tion to having a strong network and barrier properties
thereby making it a good candidate for food packag-
ing applications. Being a green bio-based material,
biodegradable, and sustainable, BC is a good choice
for other environmental applications as well. BC can
also be used in electronic devices, being transparent,
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Table 3 Additional applications of bacterial cellulose membranes that have been mentioned by other scientists

Field Application

Highlight

Reference

Biomedical application Wound healing

Antimicrobial activity

Tissue engineering

Food applications Drinking agent

Food additives

Food packaging

BC-vaccarin (BC-Vac) membranes prepared by
immersing BC in vaccarin solution to increase
malleability

Silver sulfadiazine (SSD) particles with nar-
row size distribution impregnated with BC
to produce BC—SSD composite membrane.
Used as burn wound dressing which increases
healing rate

BC sheet oxidized by hydrogen peroxide for
6 h to obtain hydrogen-peroxide-oxidized BC
which inhibit Escherichia coli

Antibiotic drug tetracycline hydrochloride
(TCH)-loaded BC composite membranes and
the results demonstrate that thecdeveloped BC
TCH composites displayed excellent antibac-
terial activity

Designed BC sponges composed of reined
nanofibrils with hier-archical pore structure
(including large pores and nanopores), were
fabricated through the emulsion freeze-drying
technique. Results indicated BC sponges as a
promising biomaterial for tissue engineering
applications

BC oxidized by perio-date oxidation to give
rise to 2,3-dialdehyde BC (DABC) with
60.3 +0.5% aldehyde content, further reacted
with gelatin (Gel) for Gel immobilization to
form DABC/Gel nano-composites. Results
indicate DABC/Gel’s use as scaffold material
in tissue engineering

A static fermentation of black or green tea
containing sucrose by cellulose-producers
microbial consortium named Kombucha.
Liquid phase ready to drinkn after surface cel-
lulose membrane removal post 2 weeks

BC is useful as a functional food additive: a
thickener, texturizer, and/or calorie reducer
(ice cream, salad dressing, and weight-reduc-
tion base)

BC sheets are immersed in poly(L-lactic acid)
(PLLA) dissolved in chloroform transpar-
ent films have two fold of tensile strength of
pure PLLA and increased nano composites
crystallinity

Wet BC hydrolyzed with HCI and boiled for
4 h. Different concentrations of BC nanocrys-
tals (BCNCs) are added to gelatin solutions.
Results demonstrated the use of BCNCs in the
fabrication of edible, biodegradable and high-
performance nanocomposite films for food
packaging applications at relatively low cost

Qiu et al. (2016)

Wen et al. (2015)

Tabaii and Emtiazi (2016)

Shao et al. (2016)

Frone et al. (2020)

Gao et al. (2012)

Shi et al. (2014)

Azeredo et al. (2019)

Kim et al. (2009)

George (2012)
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Table 3 (continued)

Field Application

Highlight

Reference

Electronic application Optically transparent

films

Magnetic materials

Electric conductors

Electronic paper

Industrial application Paper making

Environmental applications Dye decolorization

Removal of heavy metals

Agriculture applications Improvement of soil

BC sulfate (BCS) has been rarely reported.
This study highlights using BCS to synthe-
size a highly transparant film by drop casting
method

Flexible magnetic membranes based on BC
with amphiphobicity were prepared by the
in situ synthesis of the Fe;O, nanoparticles
on the BC nanofibers followed by fluoro alkyl
silane (FAS) modification. Magnetically
responsive BC membrane with hydrophobic
and lipophobic surface would have potential
applications in electronic actuators, magneto
graphic printing, information storage, electro-
magnetic shielding coating and anticounterfeit

Free-standing films of BC and polyaniline (BC/
PA) composites with high electrical conduc-
tivity values (0.9 S cm-1) and good mechani-
cal properties (40 MPa) were prepared
through in situ oxidative chemical polymer-
ization of aniline (A) on the surface of synthe-
sized BC nanofibers by using FeCl;.6H,0, as
oxidant

BC converted to an electrically conducting (or
semi-conducting) sheet by depositing ions
around the microfibrils to provide conducting
pathways and then immobilizing electro-
chromic dyes within the microstructure. The
whole system is then cased between trans-
parent electrodes, and switching potentials
(2 -5 V), areversible color change can be
demonstrated to a standard pixel-sized area
(ca. 100 pm2)

Nanopaper was prepared using ground cellulose
nanofibers (GC) from canola straw and BC
nanofibers. BC nanopaper had the highest ten-
sile strength (185 MPa) and Young’s modulus
(17.3 GPa)

The hydroxyl groups of BC were oxidized
into aldehyde groups that served as anchors
for covalent immobilization of laccaseto
the newly developed oxidized BC (OBC)
membrane. TiO, was additionally coimmobi-
lized to OBC to produce a novel material in
which dye degradation was carried out under
specific conditions

Mercury, copper, chrome, lead and cadmium

The addition of BC to soil increases the maxi-
mum water-holding capacity (MWHC) of
sandy loam soil compared with untreated con-
trol soil, while porosity of soil also increased
signiicantly. There is need for a more focused
study to explore the use of BC for soil fertility
improvement

Palaninathan et al. (2014)

Zhang et al. (2011)

Miiller et al. (2012)

Shah and Brown (2005)

Yousefi et al. (2013)

Liet al. (2017)

Min et al. (2011), Suarez-
Avendaiio et al. (2022)

Chawla et al. (2009)
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flexible, strong and thereby a suitable glass-alterna-
tive material.

Present challenges and future prospects
of bacterial cellulose research

In the last few years, integration modern molecular
biology tools and different fermentation strategies has
resulted in considerable improvement in the BC pro-
duction, although some areas remain unexplored and
hence demand deeper research. These include: (1)
implementation of novel and low-cost wastes as alter-
native carbon/nitrogen substrates to diminish the fer-
mentation cost and time and thereby enhance the BC
yield, to fulfill the large- scale commercial produc-
tion requirements, (2) exploring the Gram-positive
bacteria and extremophiles for BC production along
with BC produced from the commonly used Gram-
negative strains. In this regard, application of modern
gene-editing tools like CRISPR and metagenomics
analysis of various strains could expand the profiles
of BC-producers, (3) intensive research should be
conducted in optimizing the cultivation conditions for
BC production, such as the effect of oxygen tensions,
especially at hyper and hypoxic conditions. In the
same line, co-culturing is a recently applied technique
for enhanced yield and requires further studies, and
(4) expanding the scope of applying BC as a green
and sustainable biopolymer to overcome the pressing
environmental challenges.
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