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and smoothness of the film only by adding 1‱ of 
DES, maintaining the optical properties and structural 
stability of the CNC composite film while effectively 
reducing the brittleness of the film (the molar ratio of 
the CNC/DES film with the best performance is 2:1). 
When the amount of DES in the CNC aqueous sus-
pension reaches 10‱, it will destroy the structure 
of the CNC, resulting in loss of the optical proper-
ties of the CNC/DES films. Different from the com-
mon small molecule plasticizers previously reported, 
the addition of DES not only increases the number 
of hydrogen bonds but also introduces charge force, 
which forms a network structure that synergistically 
improves the flexibility of CNC films.

Abstract  Cellulose nanocrystal (CNC) suspen-
sions can form chiral spiral structures because of their 
unique self-assembly characteristics, and their struc-
tures can be maintained in dried films. This makes 
CNC films possess iridescent and liquid crystal prop-
erties at the same time. However, neat CNC films are 
so fragile that they are not suitable for wide use. We 
first explored the influence of a new type of green 
plasticizer-deep eutectic solvent (formed by urea and 
choline chloride) on CNC composite films under dif-
ferent molar ratios and proportions. Deep eutectic 
solvents (DES) have attracted extensive attention in 
recent years due to their low cost, easy fabrication and 
no need for purification. Urea/choline chloride, as the 
original DES, can improve the apparent uniformity 
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Introduction

Cellulose nanocrystals (CNC) are a type of green 
biomaterial derived from natural cellulose, and they 
are sustainable, biodegradable and environmentally 
friendly (Dufresne 2013; Kelly et  al. 2014; Klemm 
et al. 2005; Wang et al. 2019). When a CNC suspen-
sion reaches a certain critical concentration, it can 
self-assemble to form a liquid crystal with a left-
handed spiral structure, and this unique structure can 
be maintained as a dried film (Gray 2016; Edgar and 
Gray 2001). The layered structure and periodic modu-
lation of the refractive index make CNC films behave 
as photonic crystals. CNC films present iridescence 
and structural coloration; they can selectively reflect 
light with wavelengths that are in accordance with 
their pitch length, and it can be observed with the 
naked eye that the film is colored in a certain range 
(Wei et  al. 2021a, b; Beck et  al. 2011). CNC films 
also show strong left-handed circular polarized light. 
Because of these optical properties, this kind of opti-
cally active nanocellulose film has been widely stud-
ied in recent years and applied to sensors, decorative 
coatings and anti-counterfeiting agents (Bardet et al. 
2015a, b; Gan et  al. 2019; Zhao et  al. 2020; Grey 
et al. 2019).

The high stiffness of the rod-like CNC makes 
the neat film inherently fragile, which limits its 

application value (Wang and Walther 2015). At pre-
sent, there have been many studies on improving 
the flexibility of CNC films by adding various sub-
stances. A common method is to add polymers, such 
as polyethylene glycol (PEG) (Kelly et al. 2013; Yao 
et  al. 2017), polyvinyl alcohol (PVA) (Bardet et  al. 
2015a, b; Zhu et al. 2016), waterborne polyurethane 
(WPU) (Wan et  al. 2018) and polyvinylpyrrolidone 
(PVP) (Gao and Jin 2018), into CNC aqueous suspen-
sions to maintain the optical performance and reduce 
the brittleness of CNC films. Another method is to 
add small molecules (glycerol, sorbitol, ethylene gly-
col, etc.) (He et  al. 2018; Meng et  al. 2020; Csiszár 
and Nagy 2017) as additives to the CNC aqueous sus-
pension to construct a flexible iridescent CNC film. 
However, these methods are always accompanied by 
some problems. For example, the pitch of some com-
posite films changes too much, and some bright addi-
tives will affect the color of the CNC films. There-
fore, identifying a convenient method to improve the 
flexibility of CNC films without losing the optical 
response is very important.

Urea, the simplest small organic molecule, can 
be used as a plasticizer in green materials (Ma et al. 
2004; Wang et al. 2014). We noticed that urea/choline 
chloride (ChCl), which was first discovered by Abbott 
et al. (2003) in 2003, is the most widely studied deep 
eutectic solvent (DES). DES are two-component or 
three-component eutectic mixtures of hydrogen bond 
acceptors (such as quaternary ammonium salt) and 
hydrogen bond donors (such as acrylamide, carbox-
ylic acid, polyhydric alcohols), which has the charac-
teristics of ionic liquids and organic solvents (Abbott 
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et  al. 2003; Kareem et  al. 2010; Choi et  al. 2011). 
They are widely used in gas absorption (Sarmad et al. 
2017; Altamash et al. 2016; Trivedi et al. 2016; Yang 
et  al. 2017), electrochemistry (Steichen et  al. 2011; 
Yang et  al. 2011; Yue et  al. 2012a, b), nanomateri-
als (Liao et al. 2008; Dong et al. 2010; Chirea et al. 
2011) and organic synthesis (Imperato et  al. 2005; 
Singh et al. 2011; Santi et al. 2012; Coulembier et al. 
2012).

Currently, DES is used as a cost-effective green 
solvent in biomass-related research. Bi et  al. (2013) 
used ChCl/1,4-butanediol as an extraction solvent to 
obtain flavonoids from Chamaecyparis obtusa leaves. 
Sirviö et  al. (2020) pretreated cellulose with imida-
zole/choline chloride to obtain cellulose nanofibers. 
Ma et al. (2021a; 2021b) explored the delignification 
of poplar by using ethylene glycol-based and glycol-
based DES. Most research on DES in CNC focuses 
on the use of DES instead of the traditional sulfuric 
acid method to prepare CNC particles.

To date, there have been a few reports about add-
ing DES as plasticizers to green materials. Wang 
et  al. (2015) plasticized regenerated cellulose film 
(RCF) using urea/choline chloride and showed it was 
an effective plasticizer. Zdanowicz and Johansson 
(2016) prepared two-component and three-component 
DES and studied their potential as starch plasticizers 
to prepare starch/DES films. Jakubowska et al. (2020) 
used chitosan and choline chloride-based DES with 
malonic acid (MA) to prepare biodegradable and non-
toxic food-packaging materials. However, there are no 
reports on plasticizing CNC or CNC films with DES.

Herein, we first report the production of flex-
ible CNC composite films with DES of different 
molar ratios (urea and choline chloride) as plasticiz-
ers. The effects of the DES content and composition 
ratio of the DES on the optical response and the flex-
ibility of the CNC composite films were investigated. 

The added DES only accounted for 1‱ of the total 
amount and it functioned as a plasticizer that did not 
destroy the optical properties and improved the flex-
ibility of the CNC films. The optical properties of the 
films were investigated by ultraviolet–visible spec-
troscopy (UV–vis) and polarized optical microscopy 
(POM). The morphological and structural features of 
the films were measured by X-ray diffraction spectros-
copy (XRD), Fourier transform infrared spectroscopy 
(FTIR) and scanning electron microscopy (SEM).

Experimental section

Materials

Microcrystalline cellulose (MCC) powder was pur-
chased from Shanghai Chineway Pharmaceutical 
Technology Co., Ltd. (Shanghai, China) as the raw 
material. The DES consisted of choline chloride and 
urea. Urea (≧ 99 wt%), glycerol (≧ 99 wt%) and sorbi-
tol (≧ 98 wt%) were purchased from Damo Chemical 
Reagent Factory (Tianjin, China), and choline chloride 
(ChCl ≧ 98 wt%) was purchased from Shanghai Alad-
din Biochemical Technology Co., Ltd. Ethanol abso-
lute (CH3CH2OH ≧ 99.7 wt%), sulfuric acid (H2SO4 
95–98 wt%) and sodium bicarbonate (NaHCO3 ≧ 99.5 
wt%) were purchased from Sinopharm Chemical Rea-
gent Co., Ltd. (Nanjing, China). All of these reagents 
were used without further purification.

Methods

Preparation of the CNC suspension

CNC aqueous suspension was prepared from MCC by 
sulfuric acid hydrolysis (Bondeson et  al. 2006; Wei 
et al. 2021a, b). In detail, 5 g MCC was hydrolyzed 

Fig. 1   Photographs of urea/
choline chloride DES at 
different molar ratios. Solu-
tions labeled A, B, C and D 
correspond to 1:2, 1:1, 2:1, 
4:1. a DES solution at 90 
℃, b DES solution at 25 ℃
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in 64% sulfuric acid solution (88  mL) for 70  min 
at 50  °C. The reaction suspension was diluted 10 
times with deionized (DI) water and dialyzed against 
DI water for several days until the pH was close to 
6.0–7.0. Ultrasonic treatment was then carried out by 
an ultrasonic instrument (KQ3200DE, Kunshan ultra-
sonic instruments Co., Ltd., China) in an ice cooling 
bath at 200  W for 15  min to disperse the colloidal 
suspension. The solid content of the prepared CNC 
suspension was approximately 1.5 wt%.

Preparation of deep eutectic solvents

Different proportions of urea and choline chloride 
were sealed in a 50 mL flask with magnetic stirring 
and it was heated in an oil bath at 95 °C for 1 h (the 
mixture dissolved as a clear and viscous solution). 
The obtained solution was stored under vacuum at 
room temperature. The molar ratios of urea/choline 
chloride were 1:2, 1:1, 2:1 and 4:1 (Fig. 1).

Preparation of pure CNC and CNC/DES films

The neat CNC and CNC/DES films were all prepared 
from a CNC aqueous suspension with a concentra-
tion of 1.5 wt% and cast into a polytetrafluoroethyl-
ene (PTFE) disk with a diameter of 35 mm. The pure 
CNC film was dried at 25 °C for 4–7 days. The CNC/
DES films were formed by adding various molar 
ratios of DES and prepared by the same method as 
the neat CNC film. The content of the DES solution 
in the CNC suspension was held at 1‱ (1/10000), 
while the molar ratio of urea/choline chloride varied 
from 1:2, 1:1, 2:1 and 4:1, and the corresponding 
films were marked as CNC/DES1, CNC/DES2, CNC/
DES3 and CNC/DES4, respectively. The composite 
film with a urea/choline chloride molar ratio of 2:1 
and DES content of 10‱ (10/10000) was marked as 
CNC/DES5. The CNC composite films prepared by 
adding 1‱ of urea, glycerin, sorbitol and ChCl into 
the CNC suspension were marked as CNC-U, CNC-
G, CNC-S, and CNC-C. The 10‱ content of choline 
chloride was marked as CNC-C-10‱. The compos-
ite film prepared by separately adding 1‱ of urea 
and ChCl (molar ratio of 2:1) was marked as CNC-
UC. The thickness and grammage of all of the films 
were approximately the same, 0.04 mm and 37.50 g/
m2, respectively.

Characterization

NMR

1H NMR spectra were recorded on a Bruker 
AVANCE NEO (600  MHz 1H), and 1H chemical 
shifts are reported in ppm. The spectra were recorded 
in DMSO-d6 as the solvent at room temperature.

Zeta potential, zeta‑size and dispersity measurement

The zeta potential, zeta-size and Dispersity values 
of the aqueous suspension were measured by a Nano 
Zetasizer (Nano ZS90, Malvern, UK). The CNC 
and CNC/DES aqueous suspensions were diluted to 
0.01 wt% at room temperature. Ultrasonic treatment 
was carried out with an ultrasonic bath (KQ3200DE, 
Kunshan ultrasonic instruments Co., Ltd., China) to 
obtain a homogeneous suspension before the meas-
urement. The test was repeated 3 times for each sam-
ple, and the average value was calculated.

Atomic force microscopy

The morphology of the CNC/DES films was exam-
ined by atomic force microscopy (AFM, AFM5100, 
Agilent). AFM was operated in tapping mode. The 
CNC and CNC/DES films were affixed to mica 
sheets.

Scanning electron microscopy

Cross-sections of the films were observed by scan-
ning electron microscopy (SEM, S4800, Rigaku). 
The film was broken under liquid nitrogen and then 
fixed on a vertical specimen holder. The sample was 
covered with a thin spray of gold before observation, 
and the acceleration voltage was 5 kV.

Polarized optical microscopy

The textures of the CNC/DES films were observed 
using polarized optical microscopy (POM, SMART-
POL, OPTEC). (DM2700P, Germany).

Ultraviolet–visible spectroscopy

The ultraviolet–visible (UV–vis) spectra of the 
samples were measured with an ultraviolet–visible 
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spectrophotometer (Cary 5000, Agilent), and the wave-
length ranged from 200 to 800 nm. The sample inter-
val was 5  nm, and the scanning speed was 600  nm/
min.

Fourier transform infrared spectroscopy

The Fourier transform infrared (FT-IR, Bruker, VER-
TEX 70) spectra of the films were used for testing the 
stress–strain, with a resolution of 2 cm−1 and a testing 
range of 400–4000 cm−1. An average of 16 scans was 
reported.

X‑ray diffraction

The X-ray diffraction (XRD) patterns of the sam-
ples were measured by an X-ray diffractometer 
(D8 Advance, Bruker) in the reflection mode. The 
diffracted intensity of the Cu Kα radiation was 
λ = 1.5406  Å. The scan rate of 0.02°min−1 along 
with a diffraction angle from 5° to 50° (2θ). The 
crystallinity index (CrI, %) was determined with the 
intensity ratio between the crystalline peak and the 

non-crystalline intensity obtained after the subtrac-
tion of the background signal according to the follow-
ing Eq. (1):

where I200 is the maximum intensity of the lat-
tice diffraction peak corresponding to the plane in 
the sample with the Miller indices (200) at angle of 
around 2θ = 22.5° and Iam represents diffraction of the 
non-crystalline phase, which is taken at an angle of 
around 2θ = 18° (Segal et  al. 1959; French and San-
tiago Cintrón 2013; Borchani et al. 2015).

Stress–strain measurement

Before mechanical testing, all films were placed at 
55% relative humidity and 27 °C for at least 24 h. The 
mechanical properties of the films were tested by a 
Servo material multifunctional high- and low-temper-
ature control testing machine (AI-7000-AGD, Good-
techwill). Specimens were cut into 20  mm × 2  mm 
pieces. The stretching speed was 1 mm/min, and the 

(1)CrI(%) =
I200 − Iam

I200

× 100%

Fig. 2   1H NMR spectra of a urea, b choline chloride, c urea/ChCl = 1:2, d urea/ChCl = 1:1, e urea/ChCl = 2:1, and f urea/ChCl = 4:1
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gauge length was 10  mm. At least four specimens 
were measured from each sample.

Results and discussion

Chemical composition of the DES and CNC/DES 
suspension

Figure 2 shows the 1HNMR spectra of the urea, cho-
line chloride and DES solutions with different molar 
ratios. In the 1H NMR spectra, the solvent peak of 
DMSO-d6 (C2D6OS) is at ~ 2.54 ppm, and the water 
peak is at ~ 3.33  ppm, which are marked in Fig.  2a 
and b. There are four H with the same chemical 
shift for the urea molecule, so only one peak appears 
at ~ 5.4 ppm, which can be seen in Fig. 2a. Figure 2b 
shows the structural formula of choline chloride, in 
which red numbers represent the serial numbers of 
carbon atoms. Choline chloride has four peaks in the 
1H NMR spectrum, which are ~ 3.1 ppm, ~ 3.5 ppm, ~ 

4.0 ppm and ~ 5.6 ppm, and the H in carbon positions 
1, 2 and 3 have the same chemical shift. Therefore, 
the number of H corresponding to the four peak posi-
tions from left to right is 9, 2, 2, 1. The molar ratios 
of urea/ChCl in DES solution are 1:2, 1:1, 2:1 and 
4:1, and urea and choline chloride in DES both con-
tain H at ~ 5.5 ppm, so the peaks will overlap. It can 
be seen from Fig. 2c–f that the chemical shifts of dif-
ferent H are the same as those of Fig. 2a and b, and 
the amount of hydrogen varies proportionally accord-
ing to the molar ratio, showing that the urea and cho-
line chloride in DES undergo no chemical reaction, 
only forming a simple physical mixture.

To explore the stability of the composite suspen-
sion, the zeta potential, zeta-size and Dispersity are 
shown in Fig. 3. A series of samples prepared under 
different molar ratios of urea/ChCl were measured, 
and the content of DES in the CNC aqueous suspen-
sion accounted for 1‱, except when the CNC/DES5 
accounted for 10‱. All samples in neutral water 
showed a negative zeta potential. When the absolute 

Fig. 3   Photographs of CNC and CNC/DES films. a Neat CNC film, CNC/DES films with different urea/ChCl molar ratios at a DES 
content of 1‱ b 1:2, c 1:1, d 2:1, e 4:1, f CNC/DES5 film with a urea/choline chloride molar ratio of 2:1 and DES content of 10‱
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value of the zeta potential of a suspension is greater 
than 30 mV, it can be said that the suspension is very 
stable (Kagaraeh et  al. 2012). Table  1 shows that 
the absolute values of the zeta potential of the CNC 
composite suspension are all greater than 30 mV, and 
compared with neat CNC, the zeta potential fluctu-
ates less and the value difference is not large (Fig. 3), 
which proves that the addition of DES does not affect 
the stability of the CNC aqueous suspension. As 
shown in Table 1, when the DES content is 1‱, the 
zeta-size differences among the CNC/DES1, CNC/
DES2, CNC/DES3, CNC/DES4 and neat CNC aque-
ous suspensions are very small, the maximum differ-
ence is less than 2 nm, and the zeta-size curve is rela-
tively stable. When the DES content reaches 10‱, 
the zeta-size increases to 90  nm, indicating that 
1‱ DES will not affect the zeta-size of CNC, but 
10‱ DES will. The Dispersity of all composition 

suspensions was kept at a value of 0.4, except 0.3 for 
CNC/DES5. Therefore, compared with Dispersity 
containing 1‱ DES, the composite suspension with 
10‱ DES has poor dispersibility.

Optical properties of the CNC and CNC/DES films

Figure  3 shows photographs of the neat CNC film 
and CNC/DES films with a black board as the back-
ground. Under natural light, the CNC, CNC/DES1, 
CNC/DES2, CNC/DES3, and CNC/DES4 films all 
appear light blue. However, under the same condi-
tions, the CNC/DES5 film cannot be observed with 
the naked eye, and it shows a transparent and color-
less state. The CNC/DES films have iridescence 
when the content of DES is 1‱, but iridescence 
disappears when the content of DES is 10‱. It is 
speculated that DES with a content of 10‱ may 

Table 1   Zeta potential, zeta-size and dispersity value of CNC and CNC/DES aqueous suspensions

Sample CNC CNC/DES1 CNC/DES2 CNC/DES3 CNC/DES4 CNC/DES5

Zeta potential (mV) − 28.8 ± 1.7 − 33.8 ± 2.1 − 30 .8 ± 2.2 − 32.7 ± 0.9 − 30.2 ± 0.5 − 31.1 + 1.2
Zeta-size (nm) 85.6 ± 1.2 83.9 ± 0.4 84.1 ± 0.7 84.8 ± 0.8 83.8 ± 0.3 90.5 ± 0.9
Dispersity 0.433 ± 0.01 0.448 ± 0.02 0.427 ± 0.01 0.446 ± 0.02 0.440 ± 0.03 0.331 ± 0.02

Fig. 4   POM images of CNC and CNC/DES films. a neat CNC, b CNC/DES1, c CNC/DES2, d CNC/DES3, e CNC/DES4, and f 
CNC/DES5. The inserted photo is a high-magnification image taken at the position marked by the red square
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greatly increase the pitch value or directly destroy 
the formation of the CNC spiral structure. For the 
neat CNC film, a rough surface and poor uniformity 
are observed, but the surface of the CNC/DES films 
is relatively smooth. With the increase in the urea 
molar ratio in DES, the flatness was improved. This 
means that only 1‱ DES can effectively improve 
the appearance performance of CNC composite films. 
When the amount of DES in the CNC suspension is 
the same, with the change in molar ratio (the increase 
in urea molar ratio), the uniformity and smoothness 
of the films are improved differently. The CNC/DES3 
film has the best flatness and uniformity, for which 
the molar ratio of urea/ChCl in the film is 2:1.

POM images of the neat CNC and CNC/DES films 
are shown in Fig.  4. Neat CNC, CNC/DES1, CNC/
DES2, CNC/DES3, and CNC/DES4 films are a bright 
blue color, manifesting the characteristic birefrin-
gence phenomenon of the neat CNC film and CNC/
DES films with 1‱ DES content. It is also obvi-
ous that there is no dramatic difference in the color 
of CNC/DES films with 1‱ DES content compared 
with neat CNC film. The "fingerprint" texture of the 
neat CNC film and CNC/DES films with 1‱ DES 
content can be seen in the inserted enlarged photos, 
except for CNC/DES5. The position corresponding to 
the enlarged photos is the position of the red box in 
the picture. The CNC/DES5 film is black under POM, 
and no pattern can be observed (Fig. 4f). After add-
ing 1‱ content of DES into the composite film, and 
with the increase in the molar ratio of urea/ChCl (the 

increase in the urea molar ratio), the birefringence 
and “fingerprint” textures of the optical characteris-
tics of the composite film are not affected. However, 
the CNC/DES5 film shows that when the DES con-
tent is as high as 10‱, the birefringent optical prop-
erty of the CNC film will be destroyed.

Figure  5 shows the wavelength of the selective 
reflection of the neat CNC film and the CNC/DES 
films. With the increase in the molar ratio of urea/
ChCl in DES, CNC/DES1, CNC/DES2 and CNC/
DES3, they have similar wavelength curves of selec-
tive reflection. However, compared with neat CNC, 
the wavelengths of CNC/DES1, CNC/DES2 and 
CNC/DES3 selective reflection are slightly blue 
shifted to lower wavelengths, and their peak patterns 
are narrower. The peak shapes of the neat CNC film 
and the CNCDES4 film are similar, and the maxi-
mum reflection wavelengths are also similar. CNC/
DES5 shows a line without a wavelength peak of 
selective reflection. This proves that 10‱ DES will 
also destroy the optical characteristics of the selective 
reflection of composite films.

Figure  5b shows the points corresponding to the 
maximum reflection wavelength in Fig. 5a. The maxi-
mum reflection wavelengths of the neat CNC film and 
the CNC/DES4 film are 411 nm and 423 nm, respec-
tively, which are not much different. The maximum 
reflection wavelengths of the CNC/DES1, CNC/
DES2 and CNC/DES3 films are also very similar, 
394 nm, 397 nm and 394 nm, respectively. Because 
CNC/DES5 represents a straight line, there is no 

Fig. 5   a UV–Vis spectra of the CNC and CNC/DES films, b The maximum wavelength of selective reflection corresponding to 
CNC and CNC/DES films
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corresponding point in Fig. 5b. Therefore, compared 
with the neat CNC film, the optical properties of the 
CNC/DES films will be maintained when the content 
of DES is 1‱, and different molar ratios of urea/
choline chloride will have different effects on the 
reflection wavelength. The phenomenon of a stable 
wavelength of selective reflection after adding DES is 
different from that of common plasticizers.

Morphology of the CNC and CNC/DES films

The morphologies of the plane surface of the CNC, 
CNC/DES2 and CNC/DES4 films are shown in 
Fig.  6a–c. The neat CNC film shows that the CNC 
rods have a directional arrangement at different posi-
tions on the plane, and the yellow arrows indicate 
the partial position of the directional arrangement. 

The CNC aqueous suspension has the character-
istics of self-assembly to form a spiral structure, so 
the CNC rods will be aligned in one direction in this 
two-dimensional plane. The morphology of the CNC/
DES2 and CNC/DES4 films is similar to that of the 
neat CNC film. However, although they have a direc-
tional orientation, the shape of the CNC rods is not as 
obvious as the neat CNC film shows, and the bound-
ary state between the rods is weakened. This phe-
nomenon may be because the addition of DES forms 
a network hydrogen bond structure within the CNC 
rods, thus filling the gap between the CNC rods and 
allowing the hydrogen bonds to more closely com-
bine. Figure  6c shows that with the increase in the 
molar ratio of urea, this phenomenon becomes more 
obvious (Fig. S1 can be further proved), which may 

Fig. 6   AFM images of the a CNC film, b CNC/DES2 film, 
c CNC/DES4 film, SEM images of the cross-section of the 
d CNC film, e CNC/DES2 film, f CNC/DES4 film, h CNC/

DES5 film with a scale bar of 3 μm, i partial enlargement of h, 
j CNC/DES5 film with scale bar of 1 μm
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be because urea provides more hydrogen bonds and 
increases the interaction force between them.

Figure 6d–f shows the morphologies of the cross-
section surface of the CNC, CNC/DES2 and CNC/
DES4 films. They all show a parallel layered struc-
ture, and the pitch (P) value can be obtained. The 
cross-sectional morphology of the CNC film is clean, 
the fragments appear locally, and the neat CNC film 
shows a P/2 = 186 nm. After adding DES, the CNC/
DES2 and CNC/DES4 films have a more regular 
layered structure (P/2 = 163 nm and 195 nm, respec-
tively), and the cross-sectional surface is uneven 
and has prominent parts parallel to the ridge and 
groove. With the increase in the molar ratio of urea/
ChCl from 1:1 to 4:1, the layered structure seems to 
be more regular, uniform and more prominent. Com-
pared with the neat CNC film, the change range of 
the pitch of the composite film is not large, and the 
change trend is consistent with the wavelength of the 
selective reflection.

Figure  6h and i present the same position of the 
CNC/DES5 film, but the magnification is differ-
ent. Their layered structure is not obvious, and the 
arrangement is very messy and irregular, which can 
be seen more clearly from the higher magnifica-
tion in Fig. 6i (the corresponding scale bar is 1 μm). 
Figure  6j shows another position of the CNC/DES5 
film, showing the inconspicuous layered structure 
and the blocky and flat cross-section (the correspond-
ing scale bar is 1 μm). The pitch of the structure can 
provide evidence for the wavelength of the selective 

reflection. These results indicate that CNC and DES 
with 1‱ content have good hydrogen bond inter-
actions, and DES does not significantly affect the 
morphology and structure of CNC films produced 
by fracture. However, 10‱ DES will destroy the 
spiral structure of the CNC and cause it to lose its 
regular layered structure, resulting in a loss of optical 
performance.

Structural characterizations of the CNC and CNC/
DES films

The XRD patterns of the neat CNC and CNC/DES 
films are shown in Fig.  7a. These films present the 
same diffraction peaks, and they all belong to cel-
lulose I. The peaks are located at 14.9°, 16.5°and 
22.7°, which correspond to the crystal planes (1–10), 
(110) and (200), respectively (Lin et  al. 2012). The 
CrI of the pure CNC film is 87%, and the value of 
the composite films decreases slightly with the addi-
tion of DES. The CNC/DES2 and CNC/DES4 films 
CrI decreased to 84% (Calculation data about CrI can 
be found in the Table. S1). This demonstrated that no 
matter what the molar ratio of DES is added, it will 
not affect the crystal types of the CNC. However, 
DES will affect the crystalline region of cellulose and 
reduce its crystallinity.

Figure  7b illustrates the spectrograms of the neat 
CNC and CNC/DES films. The structural spectro-
grams of CNC/DES5 are not shown here because 
it has lost its optical activity. The absorption peak 

Fig. 7   a XRD of CNC and CNC/DES1-CNC/DES4 films, b FT-IR spectra of CNC/DES1-CNC/DES4 films
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at ~ 1022  cm−1 is the vibration of the C–O–C pyra-
nose ring skeleton of cellulose nanocrystals (Jahan 
et  al. 2011). The characteristic absorption peak in 
the green region at ~ 2900  cm−1 is the C–H stretch-
ing vibration (Lu et  al. 2014). The absorption peak 
at ~ 1640 cm−1 is attributed to the stretching vibration 
of adsorbed water molecules (Lojewska et al. 2005). 
Comparing the stretching vibration peak of the char-
acteristic -OH at ~ 3332 cm−1, it can be seen that the 
peak positions of the neat CNC and CNC/DES films 
are the same, but the shapes of the peaks are slightly 
different with increasing molar ratios of urea (CNC/
DES3 shows a relatively clear change). This may be 
due to the increase in the total number of hydrogen 
bonds formed between DES and CNC, and the added 

amount of DES is only 1‱, which makes the peak 
change of -OH at 3332 cm−1 not particularly obvious.

Mechanical properties of CNC/DES films

The mechanical properties of the resultant CNC/
DES films with 1‱ content were evaluated via ten-
sile testing at room temperature, and the stress–strain 
results are shown in Fig. 8a. The compared composite 
films of the stress–strain of urea/ChCl, urea, glycerol, 
sorbitol and ChCl are shown in Fig.  8b, and all of 
the composite films showed optical properties simi-
lar to those of DES/DES films (Fig. S2). Due to the 
severe cracking and brittleness of the neat CNC film, 
no measured value is obtained (Gray 2016). CNC/
DES5 and CNC-C-10‱ lost their optical properties, 

Fig. 8   Typical a stress–strain curves of CNC/DES films, b stress–strain curves of composite films, c Young modulus of CNC/DES 
films, and d Young modulus of composite films
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so they are not tested for their mechanical proper-
ties. The Young’s modulus of the CNC/DES film 
decreased with an increasing urea/ChCl molar ratio 
of DES, for which the lowest value of the CNC/DES4 
film is 5.54 GPa, and the value of the CNC/DES3 
film is also low (Fig.  8c). In addition, CNC/DES3 
shows the best mechanical properties compared with 
other kinds of plasticizer composite films (Fig.  8b). 
The stress–strain curve of CNC-UC is similar to 
that of CNC/DES3, but CNC/DES3 shows a lower 
tensile strength and higher elongation at break (Fig. 
S3). The CNC-C film has the highest Young’s modu-
lus, while the CNC/DES3 and CNC-UC films have 
lower Young’s modulus values of 9.03 GPa and 11.40 
GPa, respectively. CNC/DES films possess enhanced 
mechanical properties due to hydrogen bonding and 
the charge force interaction network between the 
DES and CNC with sulfonic acid groups. The best 
mechanical performance is obtained when the urea/
ChCl molar ratio in DES is 2:1 (CNC/DES3), and the 
tensile strength, elongation at break, and Young mod-
ulus are 3.39 MPa, 4.07%, and 9.03 GPa, respectively.

Mechanism of the CNC/DES films

Scheme 1 shows the interaction mechanism between 
CNC and DES. The DES consists of urea and choline 
chloride, in which choline chloride has positive and 

negative charges, and chlorine atoms will form hydro-
gen bonds with the hydrogen in urea. The red posi-
tive and negative charges in the scheme represent the 
composition of DES, and the green bars represent the 
cellulose nanocrystals. The green bars are arranged 
in the same direction on the plane, representing the 
layered structure of the CNC self-assembled spi-
ral. There is no chemical reaction between DES and 
CNC, and two kinds of forces will appear in the struc-
ture of the composite film. The first is the electric 
charge force, which is due to the attraction between 
the negatively charged sulfate half-ester groups on 
CNC and the positively charged choline chloride in 
DES. Hydrogen bonding is the second kind of force. 
The chlorine atoms and nitrogen atoms in DES will 
form hydrogen bonds with free hydroxyl groups on 
the surface of the CNC, which competitively replaces 
the hydrogen bonds formed between the CNCs them-
selves, thus increasing the number of hydrogen bonds 
and improving the hydrogen bond interaction force. 
The electric charge force and hydrogen bond force 
cross each other to form a network structure, which 
can greatly improve the flexibility of the CNC films 
with a small amount of DES. With the increase in 
the urea/ChCl molar ratio, that is, the increase in the 
molar amount of urea, the total number of hydrogen 
bonds increases, but at the same time, the decrease 
in choline chloride also reduces the charge force. 

Scheme 1   Schematic diagram of the DES modification mechanism
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Therefore, under the network of two forces, the force 
formed by CNC and the 2:1 molar ratio of urea/ChCl 
is the strongest, and its CNC/DES film shows the best 
optical and mechanical properties.

Conclusions

In summary, we have successfully used DES as a new 
type of plasticizer to obtain flexible CNC/DES films 
without significantly influencing their optical prop-
erties and structure. DES is prepared from urea and 
choline chloride in different molar ratios, and the opti-
cal properties and structure of the CNC/DES films 
remains stable, while the brittleness of the CNC/DES 
films is effectively improved by adding 1‱ DES. 
When the amount of DES in the CNC aqueous sus-
pension is 10‱, it will destroy the spiral structure 
of CNC, resulting in the loss of optical properties of 
the CNC/DES films. Different from common small 
molecule plasticizers, DES competitively replaces 
the hydrogen bonds of CNC itself and creates more 
hydrogen bonds; moreover, the positive charges in 
DES will attract the negative charges of sulfonic acid 
groups on the surface of CNC obtained by the sul-
furic acid method, which forms a network structure 
between DES and CNC in composite films. When 
the molar ratio of choline chloride/urea in DES is 
2:1 and the addition amount is 1‱, the CNC/DES3 
film shows good mechanical properties, with tensile 
strength, elongation at break and Young’s modulus as 
follows: 38.71 MPa, 4.67%, and 8.13 GPa. Therefore, 
this is a green and effective method to maintain the 
optical properties of the film with a trace amount of 
addition, and the mechanical properties of the film 
is improved at the same time. This method has great 
application and development value for the combina-
tion and interaction of multiple additives added into 
CNC films at the same time.
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