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TG-IR-MS measurements, which revealed how GDY 
accelerates the rupture of the –O–NO2 bond and the 
secondary self-catalytic reaction.
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Introduction

Lightweight carbon materials possess superior opti-
cal properties, thermal stability, radiation resistance, 
catalytic ability, electrical insulation, conductivity, 
surface activity. These beneficial characteristics are 
the motivation for the wide application of lightweight 
carbon materials to the fields of hydrogen storage 
(Samantaray et al. 2020; Shi et al. 2020a), electronic 
devices (Ashery et  al. 2020; Zhang et  al. 2017a) 
(including new electron probes, supercapacitors 
(Wong et al. 2020; Zhou et al. 2020; Hao et al. 2021), 
field-emission electron guns, and electrode materials 
(Liu et al. 2021a; Ma et al. 2021, 2020)), life sciences, 
biomedicine (Ahlawat et  al. 2020), astrophysics, 
water splitting (Koo et al. 2018), etc. In civil and mil-
itary fields, they can be used as thermal igniters (Kim 
et  al. 2017), photocatalyst or adsorbents for special 
pollutants (Yi et al. 2018), military protective cloth-
ing, electromagnetic absorption materials (Chen et al. 
2018, 2019a), catalytic materials (Wang et al. 2012a), 
energetic components (van der Heijden et  al. 2003), 
etc. Traditional  sp2 hybrid carbon materials such as 
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carbon nanotubes, fullerenes, graphene and its deriva-
tives, are able to modify the heat release of energetic 
materials (Zhao et  al. 2016a; Xu et  al. 2017a; Yuan 
et al. 2014; Chen et al. 2016; Zu et al. 2016; Zhang 
et al. 2014). Due to the unique structure and excellent 
properties of carbon materials, the development of 
their fundamental research and application technol-
ogy is highly valued by governments, academia, and 
industry all over the world. Furthermore, new types 
of carbon allotropes are constantly emerging, which 
is attracting considerable attention.

Graphdiyne (GDY), a new two-dimensional all-
carbon nanostructured material, possesses high 
π-conjunction system of sp/sp2 hybrid carbon atoms, 
a tunable bandgap, distinct nanotopological pores, 
and numerous active sites (Xue et  al. 2016), which 
could result in an excellent catalytic activity (Sun 
et al. 2021; Song et al. 2020), a remarkable electrical 
conductivity (He et al. 2017), a high chemical stabil-
ity, an effective mass transport, and good mechani-
cal properties. Since its first synthesis in 2010 (Li 
et  al. 2010), GDY has attracted increasing atten-
tion in numerous fields, such as water splitting (Liu 
et al. 2021b; Lv et al. 2020; Shi et al. 2020b), energy 
conversion and storage (Gao et  al. 2020a; Lin et  al. 
2020), catalysts (Yin et al. 2020; Wang et al. 2020), 
gas generation (Liu et al. 2020), gas separation (Mah-
dizadeh and Goharshadi 2020), and sensors (Cui 
et al. 2020). However, to the best of our knowledge, 
no studies have been conducted on the use of GDY-
based catalysts in the field of the cellulose-derived 
energetic polymers.

Investigations on cellulose-derived energetic 
polymers, such as nitrocellulose (NC), provide an 
important basis for the development of next-genera-
tion energetic formulations, such as propellants and 
explosives (Tarchoun et  al. 2020a, 2020b, 2020c, 
2021a, 2021b, 2022). Being a main energetic ingre-
dient of NC-based energetic materials, NC is widely 
employed in conjunction with fuels, adhesives, modi-
fiers or catalysts, plasticizers, curing agents, stabi-
lizers, and other additives in both civilian and mili-
tary fields. It has been widely studied to improve the 
energetic features of NC-based energetic materials 
and apply catalytic activity to thermal degradation 
by using catalysts in the recent years. In an effort to 
understand of the thermal behavior, reaction kinet-
ics, and thermocatalytic decomposition, various 
analytical techniques such as differential scanning 

calorimetry (DSC) technique or thermogravimetric 
analysis (TGA), as well as thermogravimetry (TG) 
coupled with either infrared spectroscopy (TG-IR) or 
mass spectroscopy (TG-MS) (Benhammada and Tra-
che 2020) have been employed.

Herein, GDY was used for the first time as the 
catalyst to improve the thermolysis process of NC 
and investigate its catalytic mechanisms. The thermal 
behavior and thermokinetic of the GDY/NC com-
plexes were evaluated based on the DSC data, where 
the kinetic triplets were determined though the KAS, 
FWO, and Friedman isoconversional analysis meth-
ods, whereas the reaction model was optimized and 
reconstructed using a modified theoretical function. 
Finally, the TG-IR-MS simultaneous technique was 
used to detect the produced gases or fragments and 
deduce the possible catalytic mechanism of GDY. 
The insights thus gained can be instructive for the 
development of novel extremely reliable and highly 
active GDY-based catalysts for use in the field of 
energetic materials.

Experimental materials and methods

Preparation of the GDY/NC mixture

GDY was prepared according to the reference (Li 
et al. 2010). GDY/NC complexes composed of GDY 
(as the catalyst) and NC (12.6 N%) with a mass ratio 
of 1:19 were obtained through a 20-min grinding 
treatment at ambient temperature. GDY/NC (1/1 w.%) 
mixtures with a 1:1 (w/w) ratio were prepared for 
compatibility investigations, respectively according 
to the NATO Standardization Agreement STANAG 
4147 (Chelouche et al. 2019a, 2019b) and the evalu-
ated standards reported in references (Beach and Can-
field 1971; Yan et al. 2008).

Characterization

Scanning electron microscopy (SEM, Zeiss SIGMA), 
transmission electron microscopy (TEM, FEI Tecnai 
G2 F20), energy dispersive X-ray spectroscopy (EDS, 
INCAIE350), X-ray diffraction (XRD, D/MAX-3C), 
X-ray photoelectric spectroscopy (XPS, Thermo 
Scientific K-Alpha) and Raman spectroscopy (Ren-
ishaw in Via Reflex) were used to study the morphol-
ogy, microstructure and composition of GDY. The 



4367Cellulose (2022) 29:4365–4379 

1 3
Vol.: (0123456789)

compatibility and thermal behavior were evaluated 
via DSC (Q2000 TA) from ambient temperature to 
300 ºC at the heating rates of 2.0 and 10.0 K⋅min–1 
in flowing nitrogen (50 mL⋅min–1). Furthermore, the 
kinetic triplet parameters, including the activation 
energy (Eα), pre-exponential factor (A), and reaction 
model (f(α)), were mathematically modeled based on 
the DSC data at six different heating rates. The gases 
produced from the whole thermolysis processes of 
the as-prepared materials were detected by TG (Met-
tler Toledo TGA/DSC 3 + (HT)), Fourier-transform 
IR spectroscopy, and quadrupole mass spectrometry 
(QMS 403 C Aëolos) (i. e., the TG-IR-MS technique) 
in purified argon at a heating rate of 10.0 K⋅min–1.

Isoconversional methods

The Kinetics Committee of the International Con-
federation for Thermal Analysis and Calorimetry 
(ICTAC) (Vyazovkin et  al. 2011; Vyazovkin 2018) 
recommends the use of the isoconversional kinetic 
analysis for obtaining reliable kinetic parameters 
without assuming any reaction model. The KAS 
(Kissinger 1957; Akahira and Sunose 1971), FWO 
(Flynn and Wall 1966; Ozawa 1965), and Fried-
man (Sánchez-Jiménez et  al. 2013; Xu et  al. 2017b; 
Friedman 1964) isoconversional methods, which 
are described by Eqs. (1)–(3) respectively, were 
employed to estimate the kinetic triplets of NC and 
the GDY/NC complexes.

In these equations, the subscript i is ith heating 
rate, Tα,i is the temperature at which the extent of con-
version α is reached under the ith temperature pro-
gram, G(α) is the integral form of the reaction model 
(Cai et al. 2018), and f(α) represents the reaction rate 
dependence on conversion rate (α). The f(α) kinetic 
functions listed in Table  S1 in the Supplementary 
Material are associated with different physical models 
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that describe the kinetic mechanisms of solid-state 
processes (Sánchez-Jiménez et al. 2010a).

Results and discussion

Structural analysis

The microstructure and composition of the GDY 
films were characterized by SEM, TEM, EDS, XRD, 
XPS and Raman spectroscopy. The SEM image pre-
sented in Fig.  1a shows that the as-prepared GDY 
films display multilayer structures with curly edges 
and a rough surface. Figure 1b displays that the GDY 
film is not a single-layer structure but rather a mul-
tilayer film. The HRTEM image of the GDY film is 
illustrated in Fig. 1c. It can be inferred that the layer-
to-layer distance was 0.365 nm. The HRTEM image 
(Fig.  1c), selected area electron diffraction (SAED, 
Fig.  1d) and XRD pattern (Fig.  1f) reveal that the 
GDY film has an amorphous structure. The two sharp 
peaks in the EDS pattern in Fig. 1e demonstrate that 
the GDY film was mainly composed of carbon and 
oxygen elements. The O element originates from the 
air adsorbed on the GDY film. Figure 1g presents that 
the GDY film is mainly composed of C, O, and N 
elements. The presence of oxygen and nitrogen ele-
ments might result from the absorption of air or the 
presence of inevitable defects. The high-resolution C 
1s XPS spectrum of GDY displayed in Fig. 1h can be 
deconvoluted into four subpeaks with binding ener-
gies of 284.5, 285.3, 286.9 and 288.5 eV, which are 
attributed to C–C  (sp2), C–C (sp), C–O, and C=O 
(Chen et al. 2019b), respectively. The area ratio of the 
sp-hybridized carbon to the  sp2-hybridized carbon is 
approximately 2.0 (Wang et al. 2012b), which reveals 
that the benzene rings in the GDY structures could 
be connected to each other via conjugated diyne link-
ers. In the typical Raman spectrum of GDY (Fig. S1), 
the characteristic peaks at 1356.6 and 1587.8   cm−1 
are assigned to the D and G bands, respectively, 
whereas the weak peaks at 1937.8 and 2185.8   cm−1 
are the vibrations of the acetylenic (–C≡C–) and 
diyne (–C≡C–C≡C–) linkage, respectively (Zuo et al. 
2017).
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Compatibility and thermal behavior

The DSC thermal analysis method is widely used to 
assess the compatibility between the explosive and 
various contacted ingredients due to its attractive 
features, such as less sample usage, low cost, and 
operation convenience. The peak temperature val-
ues of the pyrolysis processes of pure NC and GDY/
NC (1/1 w.%) mixtures were measured at the heat-
ing rates of 2.0 and 10.0 K·min−1 respectively, and 
the results were presented in Table  S2. According 
to the STANAG 4147 criteria (Li et  al. 2016), the 
exothermic decomposition temperature of GDY/NC 
(1/1 w.%) is 466.3 K, which is 1.2 K lower than that 
of pure NC. Therefore, GDY/NC (1/1 w.%) can be 
considered compatible because the maximum exo-
thermic peak temperature difference between NC 
and GDY/NC (1/1 w.%) is less than 4  K. Another 
evaluated standard of compatibility for explosive 
and contacted materials is performed at DSC heat-
ing rate β = 10.0  K·min−1 (Beach and Canfield 
1971; Yan et al. 2008). According to this criterion, 
the GDY/NC mixture can also be regarded as com-
patible and safe for use in the explosive design, 
because the value of ΔTp is lower than 2 K (shown 
in Table S2).

Typical DSC curves in Fig. 2 show that the thermal 
decompositions of the analyzed samples possess only 
one exothermic peak. The exothermic peak belonging 
to the pyrolysis phenomenon of NC-based composites 
was widely reported. Yet the values of the decompo-
sition temperatures exhibited some variations (shown 
in Table  S3) for NC-based composites because of 

Fig. 1  a SEM micrograph, b low-magnification TEM image, c HRTEM image, d SAED pattern, e EDS pattern, f XRD pattern, g 
XPS spectrum (survey) and h XPS C 1s spectrum of GDY

Fig. 2  DSC curves of the GDY/NC (1/1 w.%) mixtures and 
NC obtained at a heating rate of 10.0 K⋅min–1
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the differences in the composition of samples, the 
nitrogen content of NC, the additives, the analytical 
technique, and the measurement uncertainty. Ther-
mal properties, including the peak temperature and 
the heat release, were assessed by using the repeated 
DSC measurements in order to make the results 
(shown in Table S4) more accurate and credible. The 
GDY/NC (1/1 w.%) mixtures exhibit a 1.1  K-lower 
peak temperature than pure NC; yet, the heat release 
is increased by 460.6  J⋅g–1 (24.3%), which indicates 
that the GDY films can be used as catalyst and have 
an impact on the pyrolysis behavior of NC.

Kinetic analysis and model reconstruction

The kinetic triplets (Eα, A, and f(α)) of the GDY/NC 
complexes and NC are obtained based on the DSC 
data at six different heating rates (namely 5.0, 10.0, 
15.0, 20.0, 25.0, and 30.0 K⋅min–1). Figure 3 shows 
that the different heating rates have a pronounced 
influence on the thermolysis process of NC; indeed, 
it can be observed that the temperatures shifted 
toward higher values upon increasing the heating rate 
(Tarchoun et al. 2019; Chai et al. 2019).

Kinetic isoconversional methods are reliable 
approaches, which are recommended by the ICTAC 
Kinetics Committee. FWO, KAS, and Friedman equa-
tions are employed to obtain the activation energy. 
The results of the simultaneous analysis carried out 

using the FWO, KAS, and Friedman equations for the 
experimental data are shown in Fig. 3, and the obtain-
ing curves are shown in Fig. 4. It can be seen that the 
straight lines are approximately parallel; in particular, 
the trend of the FWO isoconversional curve is overall 
consistent with that of the KAS curve. The Friedman 
isoconversional curve displays slightly different trend 
due to the approximations (Xu et al. 2017b) adopted 
in the algorithms. Therefore, the Eα values calculated 
using the Friedman method are slightly higher than 
those calculated using the FWO and KAS methods, 
as can be seen in Fig. 5.

The Eα values as a function of α could be esti-
mated from the slopes (k) of the KAS, FWO, and 
Friedman curves. Figure  5 shows the obtained Eα 
values and confidence intervals (errors bars) as well 
as their variation with α. Figure 5a presents the vari-
ation of Eα for GDY/NC at each conversion rate α 
(from 0.025 to 0.975) calculated using the FWO, 
KAS, and Friedman isoconversional methods. The Eα 
values increase with increasing α from 148.6 ± 17.1 
to 212.5 ± 29.6  kJ·mol–1 and from 148.6 ± 18.0 to 
215.0 ± 31.2  kJ·mol–1 for the FWO and KAS meth-
ods, respectively. The Eα values of GDY/NC obtained 
using the Friedman method are relatively low due 
to the autocatalytic characteristics of NC and the 
catalytic properties of GDY at the beginning of the 
reaction within the α range of 0–0.025. The thermal 
decomposition starts slowly at the beginning, and 

Fig. 3  Experimental curves obtained for the thermal decomposition of GDY/NC (a) and NC (b) in  N2 atmosphere with the linear 
heating rate of 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 K⋅min–1



4370 Cellulose (2022) 29:4365–4379

1 3
Vol:. (1234567890)

the reaction rate increases rapidly with the accu-
mulation of the catalytic products. The Eα values 
obtained using the Friedman method decrease (with 
fluctuations) with increasing α in the α range of 

0.05–0.4, reaching the lowest value at α = 0.4, and 
then increasing increase slightly (with fluctuations). 
The Eα values are high at the beginning of the pyrol-
ysis process of GDY/NC, which is attributing to the 

Fig. 4  Global kinetic plots of GDY/NC (a–c) and NC (d–f) based on FWO, KAS and Friedman methods

Fig. 5  Activation energy (Eα) and the associated error evolution with respect to the conversion rate (α) obtained by the three 
employed isoconversional methods for GDY/NC (a) and NC (b)
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–O–NO2 bonds cleavage in NC and the formation 
of  NO2. For α > 0.05, Eα decreases from 185.4 ± 6.7 
to 171.8 ± 9.7 kJ·mol–1 until α ≈ 0.4 is reached; this 
decrease is possibly caused by the catalysis effect of 
GDY. Moreover, as the temperature increases, the 
production of gas products and small molecular frag-
ments will affect the thermal decomposition of GDY/
NC, resulting in an increase in the activation energy. 
For α = 0.05–0.925, all the values of the linear cor-
relation coefficient (R2) exceed 0.92, revealing that 
the obtained activation energies are quite accurate. 
However, a significant deviation presents at α values 
over 0.925, which is accompanied by large standard 
errors and a weak linear dependence. These varia-
tions can be explained in terms of several complex 
steps, including the pyrolysis of the residues and the 
effect of the escaped gaseous products.

The average values of the Arrhenius param-
eters alongside their standard deviations obtained 
by the three isoconversional equations are provided 
in Table  1. Compared with the Eα values calculated 
using the FWO, KAS, and Friedman isoconver-
sional approaches for NC, the Eα values of GDY/NC 
decreased by 28.1, 28.8, and 25.8  kJ·mol–1, respec-
tively, indicating that GDY/NC has a lower thermal 
stability than pure NC. This finding shows that the 
GDY specificity is different from that of other light-
weight carbon materials, such as carbon nanotube 
(Smeu et al. 2011) and graphene oxide (Zhang et al. 
2013); this results in improved thermal decomposi-
tion pathways and regulates the energy release from 
energetic materials. The development of efficient 
and new additives (e.g., nanometal oxides, nanother-
mites, nanocomposites, and eutectics) for improving 
the degradation of NC-based energetic materials has 
received significant attention. Table  S3 summarizes 
the kinetic parameters for the pyrolysis of NC and 
NC-based composites reported in recent works. Tra-
che et  al. reported CuO (Benhammada and Trache 

2022) and  Fe2O3 with various grain sizes (Benham-
mada et  al. 2020) and found that  Fe2O3-CMS com-
posites (Trache et  al. 2016) have a significant influ-
ence on the thermal decomposition of NC. In 
Particular, the Eα value of  Fe2O3-CMS-NC decreased 
by 12.9 kJ·mol–1, indicating the good catalytic activ-
ity of the  Fe2O3-CMS particles on the decomposi-
tion behavior of NC. In other studies, CuO (Zhao 
et al. 2021),  Fe2O3 (Zhao et al. 2016b),  Cr2O3 (Guo 
et  al. 2019), Al/CuO (Yao et  al. 2020), Al/Fe2O3 
(Zhang et  al. 2017b), ZIF-8 and CuO/ZIF-8 (Zhao 
et  al. 2022) were found to accelerate the pyrolysis 
process of NC by reducing the energy barrier. Actu-
ally, the differences in the obtained Eα values for pure 
NC and the NC-based composites are due to the dif-
ferent experimental conditions, the catalysts used, 
the analytical techniques, and the kinetic modeling 
approaches. According to the STANAG 4147 criteria, 
the activation energies of mixtures (explosive + addi-
tive) prepared in a ratio of 1:1 (w/w) should be calcu-
lated from the peak temperatures and heating rates by 
the Kissinger method. Calculated values are listed in 
Table S4, for the GDY/NC (1/1 wt.%) system, a small 
shift (1.5%) in activation energy to a little lower value 
compared to that found for pure NC indicating a com-
patibility between GDY and NC.

The different kinetic models presented in Table S1 
do not always accurately describe the thermal decom-
position in solid materials with or without porous 
structures (Gao et al. 2020b). Figure 6 shows a com-
parison of the normalized function curves of the theo-
retical kinetic models and experimental master curves 
for NC with and without GDY. It can be seen that the 
experimental master curves obtained at the six dif-
ferent heating rates are slightly similar to the theo-
retical curves corresponding to the random scission 
(L2) model (Sánchez-Jiménez et al. 2011) for α < 0.5 
and the three-dimensional diffusion (D3) model for 
α > 0.5. The L2 model is typically used to describe 

Table 1  Kinetic parameters 
for GDY/NC complexes and 
NC pyrolysis

Samples Methods Eα/(kJ⋅mol−1) lg(A/s−1) f(α)

GDY/NC FWO 173.3 ± 8.6 19.5 ± 0.9 9.138α0.838(1-α)2.343

KAS 175.0 ± 8.8 18.6 ± 0.9
Friedman 186.3 ± 9.5 20.6 ± 1.7

NC FWO 201.4 ± 4.6 21.2 ± 1.8 8.792α0.762(1-α)2.359

KAS 203.8 ± 4.8 21.1 ± 1.8
Friedman 212.1 ± 6.6 22.5 ± 1.5
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the polymer degradation reactions (Sánchez-Jiménez 
et al. 2010b). However, it should be pointed out that 
the pyrolysis processes of the real GDY/NC and NC 
systems deviate from such an ideal theoretical model, 
which is established by imposing restrictions on the 
homogeneity and geometry of the material as well as 
the force driving the reaction. The D3 model is based 
on the assumption of spherical solid particles (Kha-
wam and Flanagan 2006), which is not completely 
adequate for NC or NC-based composites. Therefore, 
even L2 and D3 models that provide the best fit are 
not entirely compatible with the experimental mas-
ter curves. This conclusion can also be inferred by 
investigating the kinetic compensation effect (KCE), 
which describes the linear relation between Eα and 
the pre-exponential factor. Figures  7a and b present 
a comparison of the kinetic compensation lines for 
the thermal decomposition processes of GDY/NC and 
NC. However, this linear correlation is not ideal; in 
particular, the  R2 value of the fitting curve for NC is 
only 0.89973. The KCE results, which are shown in 
Fig. 7, also demonstrate that the selected L2 and D3 
models are not fully adequate to describe the pyroly-
sis reactions of GDY/NC and NC.

In order to understand the mechanisms under-
pinning the effect of GDY on the NC thermoly-
sis, the physical models of GDY/NC are evaluated. 
When reconstructing the reaction model to obtain 
a good fit with the experimental data, the modified 
Šesták–Berggren empirical equation described in 

Eq. (4) was employed based on the combined kinetic 
analysis method.

By adjusting the parameters c, m and n and the 
possible deviations from the ideal conditions, Eq. (4) 
was found to be able to fit the common physical mod-
els (Ma et al. 2019). The results in Fig. 7 suggest that 
the experimental curves and the modified theoretical 
master curves are matching well with three constants 
c, m, and n to achieve the kinetic reaction models 
finally. The kinetic models of GDY/NC and NC can 
be described by quantitative equations (Table  1) as 
shown in Fig. 6. It can be found that the modified the-
oretical models are in highly accordance with the cor-
responding experimental data, as also demonstrated 
by Figs. 7c and d. As Figs. 7c and d show, the slopes 
and intercepts of the two straight lines are different, 
indicating that GDY has a catalytic influence on the 
pyrolysis of NC. Based on the model reconstruc-
tion, the thermolysis processes of GDY/NC and NC 
are predominantly controlled by the modified n-order 
kinetic models.

TG-IR-MS analysis

The whole thermal decomposition process and gas-
eous products were investigated using the TG-IR-
MS technique. From the TG/DTG curves in Fig. 8a, 

(4)f (�) = c�m(1 − �)
n

Fig. 6  Comparison between normalized curves of obtained kinetic models for GDY/NC (a) and NC (b) and theoretical master 
curves constructed from the ideal kinetic models in Table S1
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it can be observed that the GDY/NC complex exhib-
its only one thermogravimetric stage, which takes 
place in the temperature range of 449.8–520.4  K, 
with a maximum degradation rate at 477.8 K and a 
weight loss of 75.6 wt%. For GDY/NC, it is a mix-
ture of 5.0 wt% GDY and 95.0 wt% NC. Addition-
ally, the total mass loss of pure GDY is only around 
1.2% at 477.8 K (Zeng et  al. 2021). This indicates 
that the total weightlessness quantity of GDY/NC 
can be mainly attributed to the thermal decompo-
sition of NC. By comparing the results shown in 
Fig. 8 with those reported in our previous work on 
NC thermal degradation (Zhao et al. 2016c), it can 
be found that the temperatures corresponding to 

the initial decomposition (Ti), extrapolated onset of 
degradation (To), maximum degradation rate (Tp), 
extrapolated end of degradation (Te), and end of 
the reaction (Tf) for the GDY/NC composites are 
shifted toward lower values, indicating that the ther-
mal degradation of the GDY/NC films is superior to 
that of pure NC.

The thermolysis process of NC was regarded 
to start from the breaking of the –O–NO2 chemi-
cal bonds; the released  NO2 products remain in the 
polymer framework, then react with the free radicals 
or small molecule fragments (Benhammada et  al. 
2020; Katoh et al. 2010). In order to detect the func-
tional groups and gaseous species of the GDY/NC 

Fig. 7  Kinetic compensation effect for pyrolysis of GDY/NC and NC calculated by isoconversional method (a,b) and the combined 
kinetic analysis method (c,d) within conversion range from 0.025 to 0.975
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composites, the TG-IR-MS technique was adopted, 
and the corresponding results are shown in Fig. 9 and 
Fig. S2.

Figure  9a displays the IR spectra of the evolved 
gases at six typical temperatures points, namely Ti, 
To, Tp, Te, Tf, and a specific temperature (Tx) below 

Fig. 8  TG/DTG curves of GDY/NC (a) and NC (b)

Fig. 9  IR (a) and MS (b) spectra of the gases evolved from the degradation of GDY/NC
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the starting degradation temperature. When the GDY/
NC composites were heated to 438.6 K (Tx), the IR 
absorption peaks of  H2O and  CO2 were detected at 
3556 –3732  cm−1, and 2311–2356  cm−1 respectively. 
Combining with the MS spectra shown in Fig. 9b, the 
signals corresponding to m/z = 18 and m/z = 44 are 
not observed, indicating that both  H2O and  CO2 origi-
nate from the environment and are not gaseous prod-
ucts resulting from the GDY/NC pyrolysis. The sig-
nals at 3564–3732  cm−1 in the IR spectrum at 449.8 K 
(Ti) are attributed to the O–H stretching vibration fre-
quencies of free water. The peaks at 2312–2360  cm−1 
and 666   cm−1 correspond to the stretching vibration 
and bending vibration modes of  CO2, respectively. 
Based on the MS analysis presented in Fig. 9b, it can 
also be confirmed that free water and carbon dioxide 
are not the decomposition products of GDY/NC at the 
initial stage. It must be pointed out that the IR char-
acteristic absorption peak of  NO2 (1582–1637  cm−1) 
is very weak and can thus be neglected. The GDY/
NC composites exhibit a slight ionic current varia-
tion for the m/z = 46  (NO2) fragment at 449.8 K. This 
phenomenon may be caused by the three-dimensional 
porous carbon networks composed of high π -conju-
gated acetylenic linkages, which may exhibit strong 
adsorption to  NO2.

Being a strong oxidizing agent, the  NO2 gas could 
further react with the free radicals to generate other 
products. Distinct spectral changes can be demon-
strated at 470.5  K (To), the major gaseous prod-
ucts of GDY/NC include  H2O (3565–3730   cm−1; 
m/z = 18),  CO2 (2311–2380, 673   cm−1; m/z = 44), 
 NO2 (1570–1637   cm−1; m/z = 46) (Li et  al. 2012; 
Wang et  al. 2016),  N2O (2247   cm−1; m/z = 44), 
NO (1854–1910   cm−1; m/z = 30), CO (2191   cm−1; 
m/z = 28), HCN (2247  cm−1; m/z = 27), and HCHO 
(2695–2962   cm−1; m/z = 30) (Gratien et  al. 2007). 
As shown in Fig.  9a, the peak intensities of all 
detected gases are very weak in the IR spectrum 
heated to this temperature. For the IR spectrum of 
GDY/NC at the peak temperature (477.8  K, Tp), 
the main released gas products during the GDY/
NC pyrolysis are  H2O,  CO2,  NO2, NO,  N2O, CO, 
HCHO, HCOOH (1109  cm−1) and HCN. The bands 
at 2695–2962   cm−1 are attributed to the stretch-
ing vibration modes of the C-H bonds and C=O 
bonds of the HCHO molecules, respectively, due to 
the rupture of the –CH2ONO2 groups (Zhao et  al. 
2021). The HCOOH molecules originate from the 

secondary autocatalytic reactions of NC (Shehata 
et al. 2003). The HCN (2247  cm−1) molecules may 
be produced by the reaction between the ·CHO 
fragment with NO. At 489.5 K (Te), the character-
istic bands located at 1110  cm−1, 1562–1635  cm−1, 
1772–1935   cm−1, 2143–2198   cm−1, 
2241–2265   cm−1, 2243   cm−1, 2295–2385   cm−1, 
2726–2921   cm−1, and 3509–3735   cm−1 are attrib-
uted to HCOOH,  NO2, NO, CO, HCN,  N2O, 
 CO2, HCHO and  H2O, respectively. In particular, 
Fig.  9(a, Tp) shows that the intensities of the NO 
and HCOOH signals increase trend with the pyrol-
ysis temperature, which indicates that the reac-
tion between  NO2 and HCHO can be accelerated 
through the addition of GDY. When the GDY/NC 
thermolysis proceeded to the ending stage (Fig. 9(a, 
Tf)),  NO2,  CO2, HCOOH,  H2O, and HCN are still 
detected. These IR spectroscopy results are in good 
agreement with the MS data presented in Fig. 9b.

According to the TG-IR-MS analysis reported 
above, the possible thermolysis process of GDY/NC 
is briefly presented in Fig. 10. With the temperature 
increasing, GDY is effective in promoting the cleav-
ages of the –O–NO2 bonds and the glucopyranosyl 
rings to produce  NO2,  H2O, and  CO2 gases. These 
components especially  NO2 could further react 
with the condensed phase, free radicals or other 
fragments generated during NC degradation. The 
gases detected during the entire pyrolysis process 
of GDY/NC mainly contain  H2O,  CO2, HCN,  N2O, 
CO,  NO2, NO, HCHO, and HCOOH.

Fig. 10  Schematic illustration for the proposed thermal 
decomposition process of GDY/NC
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Conclusion

In this work, the possibility of using a new type 
of intrinsic semiconducting carbon material with 
a bandgap (namely GDY) in the field of cellulose-
derived energetic polymers is investigated for the 
first time. GDY was confirmed to possess an effec-
tive thermal catalytic activity and present the good 
compatibility with NC. Based on the DSC data 
obtained at six different heating rates, three general 
isoconversional approaches including FWO, KAS, 
and Friedman equations were employed to obtain 
the kinetic triplets. However, the poor linearity of 
the KCE revealed that the L2 and D3 models are not 
suitable to accurately describe the pyrolysis reac-
tions of GDY/NC and NC. Furthermore, the n-th 
order modified models were adopted to describe the 
multistep pyrolysis reactions of GDY/NC and NC in 
order to obtain a good fit of the experimental data. 
It was demonstrated that, as a promising all-carbon 
catalyst, GDY can help NC to overcome the energy 
barrier, drive both the –O–NO2 bond breaking dur-
ing the initial process of the NC thermolysis and the 
condensed-phase decomposition, and increase the 
heat release. The TG-IR-MS analysis confirmed that 
the pyrolysis process of the GDY/NC complexes is 
different from that of pristine NC, which may be 
attributed to the microstructure and chemical bonds 
of GDY. In summary, this work reports the catalytic 
effect of GDY on the NC thermolysis, and provides 
insights into a potential GDY-based catalyst for use 
in the field of energetic materials.
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