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Abstract In this work, graphdiyne (GDY) is used
for the first time as the catalyst for the pyrolysis pro-
cess of nitrocellulose (NC). By DSC and TG-IR-MS
results, the compatibility and the possible catalytic
mechanism of GDY on NC are investigated. The
kinetic triplet parameters of the GDY/NC complexes
were determined based on the isoconversional analy-
sis (using the KAS, FWO, and Friedman methods),
whereas the experimental reaction model of the
GDY/NC pyrolysis was optimized and re-established
by introducing a newly modified function with result
of fla)=9.138a"338(1-a)*3*}. Compared with pristine
NC, the GDY/NC complexes exhibit a lower peak
temperature, an increased heat release, and a lower
energy barrier, owing to the good catalytic charac-
teristics of GDY. This was also demonstrated via the
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TG-IR-MS measurements, which revealed how GDY
accelerates the rupture of the -O-NO, bond and the
secondary self-catalytic reaction.
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Introduction

Lightweight carbon materials possess superior opti-
cal properties, thermal stability, radiation resistance,
catalytic ability, electrical insulation, conductivity,
surface activity. These beneficial characteristics are
the motivation for the wide application of lightweight
carbon materials to the fields of hydrogen storage
(Samantaray et al. 2020; Shi et al. 2020a), electronic
devices (Ashery et al. 2020; Zhang et al. 2017a)
(including new electron probes, supercapacitors
(Wong et al. 2020; Zhou et al. 2020; Hao et al. 2021),
field-emission electron guns, and electrode materials
(Liu et al. 2021a; Ma et al. 2021, 2020)), life sciences,
biomedicine (Ahlawat et al. 2020), astrophysics,
water splitting (Koo et al. 2018), etc. In civil and mil-
itary fields, they can be used as thermal igniters (Kim
et al. 2017), photocatalyst or adsorbents for special
pollutants (Yi et al. 2018), military protective cloth-
ing, electromagnetic absorption materials (Chen et al.
2018, 2019a), catalytic materials (Wang et al. 2012a),
energetic components (van der Heijden et al. 2003),
etc. Traditional sp® hybrid carbon materials such as
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carbon nanotubes, fullerenes, graphene and its deriva-
tives, are able to modify the heat release of energetic
materials (Zhao et al. 2016a; Xu et al. 2017a; Yuan
et al. 2014; Chen et al. 2016; Zu et al. 2016; Zhang
et al. 2014). Due to the unique structure and excellent
properties of carbon materials, the development of
their fundamental research and application technol-
ogy is highly valued by governments, academia, and
industry all over the world. Furthermore, new types
of carbon allotropes are constantly emerging, which
is attracting considerable attention.

Graphdiyne (GDY), a new two-dimensional all-
carbon nanostructured material, possesses high
n-conjunction system of sp/sp? hybrid carbon atoms,
a tunable bandgap, distinct nanotopological pores,
and numerous active sites (Xue et al. 2016), which
could result in an excellent catalytic activity (Sun
et al. 2021; Song et al. 2020), a remarkable electrical
conductivity (He et al. 2017), a high chemical stabil-
ity, an effective mass transport, and good mechani-
cal properties. Since its first synthesis in 2010 (Li
et al. 2010), GDY has attracted increasing atten-
tion in numerous fields, such as water splitting (Liu
et al. 2021b; Lv et al. 2020; Shi et al. 2020b), energy
conversion and storage (Gao et al. 2020a; Lin et al.
2020), catalysts (Yin et al. 2020; Wang et al. 2020),
gas generation (Liu et al. 2020), gas separation (Mah-
dizadeh and Goharshadi 2020), and sensors (Cui
et al. 2020). However, to the best of our knowledge,
no studies have been conducted on the use of GDY-
based catalysts in the field of the cellulose-derived
energetic polymers.

Investigations on cellulose-derived energetic
polymers, such as nitrocellulose (NC), provide an
important basis for the development of next-genera-
tion energetic formulations, such as propellants and
explosives (Tarchoun et al. 2020a, 2020b, 2020c,
2021a, 2021b, 2022). Being a main energetic ingre-
dient of NC-based energetic materials, NC is widely
employed in conjunction with fuels, adhesives, modi-
fiers or catalysts, plasticizers, curing agents, stabi-
lizers, and other additives in both civilian and mili-
tary fields. It has been widely studied to improve the
energetic features of NC-based energetic materials
and apply catalytic activity to thermal degradation
by using catalysts in the recent years. In an effort to
understand of the thermal behavior, reaction kinet-
ics, and thermocatalytic decomposition, various
analytical techniques such as differential scanning
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calorimetry (DSC) technique or thermogravimetric
analysis (TGA), as well as thermogravimetry (TG)
coupled with either infrared spectroscopy (TG-IR) or
mass spectroscopy (TG-MS) (Benhammada and Tra-
che 2020) have been employed.

Herein, GDY was used for the first time as the
catalyst to improve the thermolysis process of NC
and investigate its catalytic mechanisms. The thermal
behavior and thermokinetic of the GDY/NC com-
plexes were evaluated based on the DSC data, where
the kinetic triplets were determined though the KAS,
FWO, and Friedman isoconversional analysis meth-
ods, whereas the reaction model was optimized and
reconstructed using a modified theoretical function.
Finally, the TG-IR-MS simultaneous technique was
used to detect the produced gases or fragments and
deduce the possible catalytic mechanism of GDY.
The insights thus gained can be instructive for the
development of novel extremely reliable and highly
active GDY-based catalysts for use in the field of
energetic materials.

Experimental materials and methods
Preparation of the GDY/NC mixture

GDY was prepared according to the reference (Li
et al. 2010). GDY/NC complexes composed of GDY
(as the catalyst) and NC (12.6 N%) with a mass ratio
of 1:19 were obtained through a 20-min grinding
treatment at ambient temperature. GDY/NC (1/1 w.%)
mixtures with a 1:1 (w/w) ratio were prepared for
compatibility investigations, respectively according
to the NATO Standardization Agreement STANAG
4147 (Chelouche et al. 2019a, 2019b) and the evalu-
ated standards reported in references (Beach and Can-
field 1971; Yan et al. 2008).

Characterization

Scanning electron microscopy (SEM, Zeiss SIGMA),
transmission electron microscopy (TEM, FEI Tecnai
G2 F20), energy dispersive X-ray spectroscopy (EDS,
INCAIE350), X-ray diffraction (XRD, D/MAX-3C),
X-ray photoelectric spectroscopy (XPS, Thermo
Scientific K-Alpha) and Raman spectroscopy (Ren-
ishaw in Via Reflex) were used to study the morphol-
ogy, microstructure and composition of GDY. The
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compatibility and thermal behavior were evaluated
via DSC (Q2000 TA) from ambient temperature to
300 °C at the heating rates of 2.0 and 10.0 K-min™!
in flowing nitrogen (50 mL-min™"). Furthermore, the
kinetic triplet parameters, including the activation
energy (E,), pre-exponential factor (A), and reaction
model (f(a)), were mathematically modeled based on
the DSC data at six different heating rates. The gases
produced from the whole thermolysis processes of
the as-prepared materials were detected by TG (Met-
tler Toledo TGA/DSC 3+ (HT)), Fourier-transform
IR spectroscopy, and quadrupole mass spectrometry
(QMS 403 C Aéolos) (i. e., the TG-IR-MS technique)
in purified argon at a heating rate of 10.0 K-min™'.

Isoconversional methods

The Kinetics Committee of the International Con-
federation for Thermal Analysis and Calorimetry
(ICTAC) (Vyazovkin et al. 2011; Vyazovkin 2018)
recommends the use of the isoconversional kinetic
analysis for obtaining reliable kinetic parameters
without assuming any reaction model. The KAS
(Kissinger 1957; Akahira and Sunose 1971), FWO
(Flynn and Wall 1966; Ozawa 1965), and Fried-
man (Sanchez-Jiménez et al. 2013; Xu et al. 2017b;
Friedman 1964) isoconversional methods, which
are described by Eqgs. (1)-(3) respectively, were
employed to estimate the kinetic triplets of NC and
the GDY/NC complexes.
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In these equations, the subscript i is ith heating
rate, T, ; is the temperature at which the extent of con-
version « is reached under the ith temperature pro-
gram, G(a) is the integral form of the reaction model
(Cai et al. 2018), and fla) represents the reaction rate
dependence on conversion rate (). The fla) kinetic
functions listed in Table S1 in the Supplementary
Material are associated with different physical models

that describe the kinetic mechanisms of solid-state
processes (Sanchez-Jiménez et al. 2010a).

Results and discussion
Structural analysis

The microstructure and composition of the GDY
films were characterized by SEM, TEM, EDS, XRD,
XPS and Raman spectroscopy. The SEM image pre-
sented in Fig. la shows that the as-prepared GDY
films display multilayer structures with curly edges
and a rough surface. Figure 1b displays that the GDY
film is not a single-layer structure but rather a mul-
tilayer film. The HRTEM image of the GDY film is
illustrated in Fig. lc. It can be inferred that the layer-
to-layer distance was 0.365 nm. The HRTEM image
(Fig. 1c), selected area electron diffraction (SAED,
Fig. 1d) and XRD pattern (Fig. 1f) reveal that the
GDY film has an amorphous structure. The two sharp
peaks in the EDS pattern in Fig. le demonstrate that
the GDY film was mainly composed of carbon and
oxygen elements. The O element originates from the
air adsorbed on the GDY film. Figure 1g presents that
the GDY film is mainly composed of C, O, and N
elements. The presence of oxygen and nitrogen ele-
ments might result from the absorption of air or the
presence of inevitable defects. The high-resolution C
1s XPS spectrum of GDY displayed in Fig. 1h can be
deconvoluted into four subpeaks with binding ener-
gies of 284.5, 285.3, 286.9 and 288.5 eV, which are
attributed to C-C (spz), C-C (sp), C-O, and C=0
(Chen et al. 2019b), respectively. The area ratio of the
sp-hybridized carbon to the sp>-hybridized carbon is
approximately 2.0 (Wang et al. 2012b), which reveals
that the benzene rings in the GDY structures could
be connected to each other via conjugated diyne link-
ers. In the typical Raman spectrum of GDY (Fig. S1),
the characteristic peaks at 1356.6 and 1587.8 cm™
are assigned to the D and G bands, respectively,
whereas the weak peaks at 1937.8 and 2185.8 cm™!
are the vibrations of the acetylenic (-C=C-) and
diyne (-C=C—C=C-) linkage, respectively (Zuo et al.
2017).

@ Springer



4368

Cellulose (2022) 29:4365-4379

ym BT 520W SguAzhlan  Om BN
Wo= £3mm Mege 55X Tova 21741

8
2

Intensity (a.u.)
©
g

25E+054

20E4054 —— C1s-fitted

s/ s

I 156405 Ots

Count

1.0E+05 4

S5.0E40¢ 4

0.0E+00

) )
2Theta(degree)

(9) — (h)

3544 C=C{sp’),284.5 eV

)

88.5 eV
—— Background

Intensity (a. u
b

- OEHX T T T T
M 0 29 290 288 28 28 %2 280
Binding Energy (eV)

w0 ) 60 4
Binding Energy (eV)

Fig. 1 a SEM micrograph, b low-magnification TEM image, ¢ HRTEM image, d SAED pattern, e EDS pattern, f XRD pattern, g

XPS spectrum (survey) and h XPS C 1s spectrum of GDY

Compatibility and thermal behavior

The DSC thermal analysis method is widely used to
assess the compatibility between the explosive and
various contacted ingredients due to its attractive
features, such as less sample usage, low cost, and
operation convenience. The peak temperature val-
ues of the pyrolysis processes of pure NC and GDY/
NC (1/1 w.%) mixtures were measured at the heat-
ing rates of 2.0 and 10.0 K-min™' respectively, and
the results were presented in Table S2. According
to the STANAG 4147 criteria (Li et al. 2016), the
exothermic decomposition temperature of GDY/NC
(1/1 w.%) is 466.3 K, which is 1.2 K lower than that
of pure NC. Therefore, GDY/NC (1/1 w.%) can be
considered compatible because the maximum exo-
thermic peak temperature difference between NC
and GDY/NC (1/1 w.%) is less than 4 K. Another
evaluated standard of compatibility for explosive
and contacted materials is performed at DSC heat-
ing rate $=10.0 K-min~' (Beach and Canfield
1971; Yan et al. 2008). According to this criterion,
the GDY/NC mixture can also be regarded as com-
patible and safe for use in the explosive design,
because the value of AT is lower than 2 K (shown
in Table S2).
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Typical DSC curves in Fig. 2 show that the thermal
decompositions of the analyzed samples possess only
one exothermic peak. The exothermic peak belonging
to the pyrolysis phenomenon of NC-based composites
was widely reported. Yet the values of the decompo-
sition temperatures exhibited some variations (shown
in Table S3) for NC-based composites because of

Heat Flow/(W-g™)

GDY/NC(1/1 w.%)

y T . T v T v T T T T
400 425 450 475 500 525 550
TIK

Fig. 2 DSC curves of the GDY/NC (1/1 w.%) mixtures and
NC obtained at a heating rate of 10.0 K-min™
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the differences in the composition of samples, the
nitrogen content of NC, the additives, the analytical
technique, and the measurement uncertainty. Ther-
mal properties, including the peak temperature and
the heat release, were assessed by using the repeated
DSC measurements in order to make the results
(shown in Table S4) more accurate and credible. The
GDY/NC (1/1 w.%) mixtures exhibit a 1.1 K-lower
peak temperature than pure NC; yet, the heat release
is increased by 460.6 J -g‘1 (24.3%), which indicates
that the GDY films can be used as catalyst and have
an impact on the pyrolysis behavior of NC.

Kinetic analysis and model reconstruction

The kinetic triplets (E,, A, and f(a)) of the GDY/NC
complexes and NC are obtained based on the DSC
data at six different heating rates (namely 5.0, 10.0,
15.0, 20.0, 25.0, and 30.0 K:min™). Figure 3 shows
that the different heating rates have a pronounced
influence on the thermolysis process of NC; indeed,
it can be observed that the temperatures shifted
toward higher values upon increasing the heating rate
(Tarchoun et al. 2019; Chai et al. 2019).

Kinetic isoconversional methods are reliable
approaches, which are recommended by the ICTAC
Kinetics Committee. FWO, KAS, and Friedman equa-
tions are employed to obtain the activation energy.
The results of the simultaneous analysis carried out
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using the FWO, KAS, and Friedman equations for the
experimental data are shown in Fig. 3, and the obtain-
ing curves are shown in Fig. 4. It can be seen that the
straight lines are approximately parallel; in particular,
the trend of the FWO isoconversional curve is overall
consistent with that of the KAS curve. The Friedman
isoconversional curve displays slightly different trend
due to the approximations (Xu et al. 2017b) adopted
in the algorithms. Therefore, the E, values calculated
using the Friedman method are slightly higher than
those calculated using the FWO and KAS methods,
as can be seen in Fig. 5.

The E, values as a function of o could be esti-
mated from the slopes (k) of the KAS, FWO, and
Friedman curves. Figure 5 shows the obtained E,
values and confidence intervals (errors bars) as well
as their variation with a. Figure 5a presents the vari-
ation of E, for GDY/NC at each conversion rate a
(from 0.025 to 0.975) calculated using the FWO,
KAS, and Friedman isoconversional methods. The E,,
values increase with increasing a from 148.6+17.1
to 212.5+29.6 kI-mol™' and from 148.6+18.0 to
215.0+31.2 kJ-mol™" for the FWO and KAS meth-
ods, respectively. The E, values of GDY/NC obtained
using the Friedman method are relatively low due
to the autocatalytic characteristics of NC and the
catalytic properties of GDY at the beginning of the
reaction within the a range of 0-0.025. The thermal
decomposition starts slowly at the beginning, and

1.0
(b)
0.8 -
0.6
0.4 4 —=— 5.0 K/min
—eo— 10.0 K/min
0.2 —_—
—— 25.0 K/min
—<¢—30.0 K/min
0.0 - 3 T T T T T T T
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Fig. 3 Experimental curves obtained for the thermal decomposition of GDY/NC (a) and NC (b) in N, atmosphere with the linear

heating rate of 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 K-min™
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Fig. 4 Global kinetic plots of GDY/NC (a—¢) and NC (d—f) based on FWO, KAS and Friedman methods
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Fig. 5 Activation energy (E,) and the associated error evolution with respect to the conversion rate (a) obtained by the three
employed isoconversional methods for GDY/NC (a) and NC (b)

the reaction rate increases rapidly with the accu-
mulation of the catalytic products. The E, values
obtained using the Friedman method decrease (with
fluctuations) with increasing a in the a range of

@ Springer

0.05-0.4, reaching the lowest value at a=0.4, and
then increasing increase slightly (with fluctuations).
The E, values are high at the beginning of the pyrol-
ysis process of GDY/NC, which is attributing to the
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—O-NO, bonds cleavage in NC and the formation
of NO,. For a>0.05, E, decreases from 185.4+6.7
to 171.8+9.7 kI-mol™" until @ ~ 0.4 is reached; this
decrease is possibly caused by the catalysis effect of
GDY. Moreover, as the temperature increases, the
production of gas products and small molecular frag-
ments will affect the thermal decomposition of GDY/
NC, resulting in an increase in the activation energy.
For a=0.05-0.925, all the values of the linear cor-
relation coefficient (R2) exceed 0.92, revealing that
the obtained activation energies are quite accurate.
However, a significant deviation presents at o values
over 0.925, which is accompanied by large standard
errors and a weak linear dependence. These varia-
tions can be explained in terms of several complex
steps, including the pyrolysis of the residues and the
effect of the escaped gaseous products.

The average values of the Arrhenius param-
eters alongside their standard deviations obtained
by the three isoconversional equations are provided
in Table 1. Compared with the E, values calculated
using the FWO, KAS, and Friedman isoconver-
sional approaches for NC, the E, values of GDY/NC
decreased by 28.1, 28.8, and 25.8 kJ-mol ™!, respec-
tively, indicating that GDY/NC has a lower thermal
stability than pure NC. This finding shows that the
GDY specificity is different from that of other light-
weight carbon materials, such as carbon nanotube
(Smeu et al. 2011) and graphene oxide (Zhang et al.
2013); this results in improved thermal decomposi-
tion pathways and regulates the energy release from
energetic materials. The development of efficient
and new additives (e.g., nanometal oxides, nanother-
mites, nanocomposites, and eutectics) for improving
the degradation of NC-based energetic materials has
received significant attention. Table S3 summarizes
the kinetic parameters for the pyrolysis of NC and
NC-based composites reported in recent works. Tra-
che et al. reported CuO (Benhammada and Trache

2022) and Fe,O; with various grain sizes (Benham-
mada et al. 2020) and found that Fe,0;-CMS com-
posites (Trache et al. 2016) have a significant influ-
ence on the thermal decomposition of NC. In
Particular, the E_ value of Fe,0;-CMS-NC decreased
by 12.9 kJ-mol!, indicating the good catalytic activ-
ity of the Fe,0;-CMS particles on the decomposi-
tion behavior of NC. In other studies, CuO (Zhao
et al. 2021), Fe,05 (Zhao et al. 2016b), Cr,0; (Guo
et al. 2019), A/CuO (Yao et al. 2020), Al/Fe,0O,
(Zhang et al. 2017b), ZIF-8 and CuO/ZIF-8 (Zhao
et al. 2022) were found to accelerate the pyrolysis
process of NC by reducing the energy barrier. Actu-
ally, the differences in the obtained E, values for pure
NC and the NC-based composites are due to the dif-
ferent experimental conditions, the catalysts used,
the analytical techniques, and the kinetic modeling
approaches. According to the STANAG 4147 criteria,
the activation energies of mixtures (explosive 4 addi-
tive) prepared in a ratio of 1:1 (w/w) should be calcu-
lated from the peak temperatures and heating rates by
the Kissinger method. Calculated values are listed in
Table S4, for the GDY/NC (1/1 wt.%) system, a small
shift (1.5%) in activation energy to a little lower value
compared to that found for pure NC indicating a com-
patibility between GDY and NC.

The different kinetic models presented in Table S1
do not always accurately describe the thermal decom-
position in solid materials with or without porous
structures (Gao et al. 2020b). Figure 6 shows a com-
parison of the normalized function curves of the theo-
retical kinetic models and experimental master curves
for NC with and without GDY. It can be seen that the
experimental master curves obtained at the six dif-
ferent heating rates are slightly similar to the theo-
retical curves corresponding to the random scission
(L2) model (Sanchez-Jiménez et al. 2011) for a<0.5
and the three-dimensional diffusion (D3) model for
a>0.5. The L2 model is typically used to describe

Table 1 Kinetic parameters

for GDY/NC complexes and Samples Methods E,/(kJ-mol™!) lg(A/s™h fl)
NC pyrolysis GDY/NC FWO 173.3+8.6 19.5+0.9 9.1380%838(1 )24
KAS 175.0+8.8 18.6+0.9
Friedman 186.3+9.5 20.6+1.7
NC FWO 201.4+4.6 212+1.8 8.792a°76%(1-a)*3>°
KAS 203.8+4.8 21.1+18
Friedman 212.1+£6.6 225+1.5
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Fig. 6 Comparison between normalized curves of obtained kinetic models for GDY/NC (a) and NC (b) and theoretical master

curves constructed from the ideal kinetic models in Table S1

the polymer degradation reactions (Sanchez-Jiménez
et al. 2010b). However, it should be pointed out that
the pyrolysis processes of the real GDY/NC and NC
systems deviate from such an ideal theoretical model,
which is established by imposing restrictions on the
homogeneity and geometry of the material as well as
the force driving the reaction. The D3 model is based
on the assumption of spherical solid particles (Kha-
wam and Flanagan 2006), which is not completely
adequate for NC or NC-based composites. Therefore,
even L2 and D3 models that provide the best fit are
not entirely compatible with the experimental mas-
ter curves. This conclusion can also be inferred by
investigating the kinetic compensation effect (KCE),
which describes the linear relation between E, and
the pre-exponential factor. Figures 7a and b present
a comparison of the kinetic compensation lines for
the thermal decomposition processes of GDY/NC and
NC. However, this linear correlation is not ideal; in
particular, the R? value of the fitting curve for NC is
only 0.89973. The KCE results, which are shown in
Fig. 7, also demonstrate that the selected L2 and D3
models are not fully adequate to describe the pyroly-
sis reactions of GDY/NC and NC.

In order to understand the mechanisms under-
pinning the effect of GDY on the NC thermoly-
sis, the physical models of GDY/NC are evaluated.
When reconstructing the reaction model to obtain
a good fit with the experimental data, the modified
§esték—Berggren empirical equation described in
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Eq. (4) was employed based on the combined kinetic
analysis method.

fla) =ca™(1 - )" “

By adjusting the parameters ¢, m and n and the
possible deviations from the ideal conditions, Eq. (4)
was found to be able to fit the common physical mod-
els (Ma et al. 2019). The results in Fig. 7 suggest that
the experimental curves and the modified theoretical
master curves are matching well with three constants
¢, m, and n to achieve the kinetic reaction models
finally. The kinetic models of GDY/NC and NC can
be described by quantitative equations (Table 1) as
shown in Fig. 6. It can be found that the modified the-
oretical models are in highly accordance with the cor-
responding experimental data, as also demonstrated
by Figs. 7c and d. As Figs. 7c and d show, the slopes
and intercepts of the two straight lines are different,
indicating that GDY has a catalytic influence on the
pyrolysis of NC. Based on the model reconstruc-
tion, the thermolysis processes of GDY/NC and NC
are predominantly controlled by the modified n-order
kinetic models.

TG-IR-MS analysis

The whole thermal decomposition process and gas-
eous products were investigated using the TG-IR-
MS technique. From the TG/DTG curves in Fig. 8a,
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Fig. 7 Kinetic compensation effect for pyrolysis of GDY/NC and NC calculated by isoconversional method (a,b) and the combined
kinetic analysis method (c,d) within conversion range from 0.025 to 0.975

it can be observed that the GDY/NC complex exhib-
its only one thermogravimetric stage, which takes
place in the temperature range of 449.8-520.4 K,
with a maximum degradation rate at 477.8 K and a
weight loss of 75.6 wt%. For GDY/NC, it is a mix-
ture of 5.0 wt% GDY and 95.0 wt% NC. Addition-
ally, the total mass loss of pure GDY is only around
1.2% at 477.8 K (Zeng et al. 2021). This indicates
that the total weightlessness quantity of GDY/NC
can be mainly attributed to the thermal decompo-
sition of NC. By comparing the results shown in
Fig. 8 with those reported in our previous work on
NC thermal degradation (Zhao et al. 2016c¢), it can
be found that the temperatures corresponding to

the initial decomposition (7;), extrapolated onset of
degradation (7,), maximum degradation rate (Tp),
extrapolated end of degradation (7,), and end of
the reaction (7}) for the GDY/NC composites are
shifted toward lower values, indicating that the ther-
mal degradation of the GDY/NC films is superior to
that of pure NC.

The thermolysis process of NC was regarded
to start from the breaking of the -O-NO, chemi-
cal bonds; the released NO, products remain in the
polymer framework, then react with the free radicals
or small molecule fragments (Benhammada et al.
2020; Katoh et al. 2010). In order to detect the func-
tional groups and gaseous species of the GDY/NC
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composites, the TG-IR-MS technique was adopted, Figure 9a displays the IR spectra of the evolved
and the corresponding results are shown in Fig. 9 and gases at six typical temperatures points, namely 7,
Fig. S2. T,, T,, T,, T, and a specific temperature (Ty) below
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Fig. 9 IR (a) and MS (b) spectra of the gases evolved from the degradation of GDY/NC

@ Springer



Cellulose (2022) 29:4365-4379

4375

the starting degradation temperature. When the GDY/
NC composites were heated to 438.6 K (7,), the IR
absorption peaks of H,O and CO, were detected at
3556-3732 cm™!, and 2311-2356 cm™! respectively.
Combining with the MS spectra shown in Fig. 9b, the
signals corresponding to m/z=18 and m/z=44 are
not observed, indicating that both H,0O and CO, origi-
nate from the environment and are not gaseous prod-
ucts resulting from the GDY/NC pyrolysis. The sig-
nals at 3564—3732 cm ™! in the IR spectrum at 449.8 K
(T)) are attributed to the O—H stretching vibration fre-
quencies of free water. The peaks at 2312-2360 cm™!
and 666 cm™! correspond to the stretching vibration
and bending vibration modes of CO,, respectively.
Based on the MS analysis presented in Fig. 9b, it can
also be confirmed that free water and carbon dioxide
are not the decomposition products of GDY/NC at the
initial stage. It must be pointed out that the IR char-
acteristic absorption peak of NO, (1582-1637 cm™h)
is very weak and can thus be neglected. The GDY/
NC composites exhibit a slight ionic current varia-
tion for the m/z=46 (NO,) fragment at 449.8 K. This
phenomenon may be caused by the three-dimensional
porous carbon networks composed of high & -conju-
gated acetylenic linkages, which may exhibit strong
adsorption to NO,.

Being a strong oxidizing agent, the NO, gas could
further react with the free radicals to generate other
products. Distinct spectral changes can be demon-
strated at 470.5 K (7,), the major gaseous prod-
ucts of GDY/NC include H,O (3565-3730 cm ™l
m/z=18), CO, (2311-2380, 673 cm™!; m/z=44),
NO, (15701637 cm™; m/z=46) (Li et al. 2012;
Wang et al. 2016), N,O (2247 cm™'; m/z=44),
NO (1854-1910 cm™"; m/z=30), CO (2191 cm™;
m/z=28), HCN (2247 cm™!; m/z=27), and HCHO
(2695-2962 cm™'; m/z=30) (Gratien et al. 2007).
As shown in Fig. 9a, the peak intensities of all
detected gases are very weak in the IR spectrum
heated to this temperature. For the IR spectrum of
GDY/NC at the peak temperature (477.8 K, T,),
the main released gas products during the GDY/
NC pyrolysis are H,0, CO,, NO,, NO, N,0, CO,
HCHO, HCOOH (1109 cm™!) and HCN. The bands
at 2695-2962 cm™! are attributed to the stretch-
ing vibration modes of the C-H bonds and C=0
bonds of the HCHO molecules, respectively, due to
the rupture of the -CH,ONO, groups (Zhao et al.
2021). The HCOOH molecules originate from the

secondary autocatalytic reactions of NC (Shehata
et al. 2003). The HCN (2247 cm™!) molecules may
be produced by the reaction between the -CHO
fragment with NO. At 489.5 K (7T,), the character-
istic bands located at 1110 cm™!, 1562-1635 cm ™!,
1772-1935 cm™, 2143-2198 cm™!,
2241-2265 cm™', 2243 cm™', 2295-2385 cm™',
2726-2921 cm™', and 3509-3735 cm™' are attrib-
uted to HCOOH, NO,, NO, CO, HCN, N,O,
CO,, HCHO and H,O, respectively. In particular,
Fig. 9(a, T,)) shows that the intensities of the NO
and HCOOH signals increase trend with the pyrol-
ysis temperature, which indicates that the reac-
tion between NO, and HCHO can be accelerated
through the addition of GDY. When the GDY/NC
thermolysis proceeded to the ending stage (Fig. 9(a,
Ty), NO,, CO,, HCOOH, H,0, and HCN are still
detected. These IR spectroscopy results are in good
agreement with the MS data presented in Fig. 9b.

According to the TG-IR-MS analysis reported
above, the possible thermolysis process of GDY/NC
is briefly presented in Fig. 10. With the temperature
increasing, GDY is effective in promoting the cleav-
ages of the -O-NO, bonds and the glucopyranosyl
rings to produce NO,, H,O, and CO, gases. These
components especially NO, could further react
with the condensed phase, free radicals or other
fragments generated during NC degradation. The
gases detected during the entire pyrolysis process
of GDY/NC mainly contain H,O, CO,, HCN, N,0,
CO, NO,, NO, HCHO, and HCOOH.

Gas Products

e [

® oW
cupﬁ

4705k @cC
@0

H
449.8K @N

Fig. 10 Schematic illustration for the proposed thermal
decomposition process of GDY/NC
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Conclusion

In this work, the possibility of using a new type
of intrinsic semiconducting carbon material with
a bandgap (namely GDY) in the field of cellulose-
derived energetic polymers is investigated for the
first time. GDY was confirmed to possess an effec-
tive thermal catalytic activity and present the good
compatibility with NC. Based on the DSC data
obtained at six different heating rates, three general
isoconversional approaches including FWO, KAS,
and Friedman equations were employed to obtain
the kinetic triplets. However, the poor linearity of
the KCE revealed that the L2 and D3 models are not
suitable to accurately describe the pyrolysis reac-
tions of GDY/NC and NC. Furthermore, the n-th
order modified models were adopted to describe the
multistep pyrolysis reactions of GDY/NC and NC in
order to obtain a good fit of the experimental data.
It was demonstrated that, as a promising all-carbon
catalyst, GDY can help NC to overcome the energy
barrier, drive both the -O-NO, bond breaking dur-
ing the initial process of the NC thermolysis and the
condensed-phase decomposition, and increase the
heat release. The TG-IR-MS analysis confirmed that
the pyrolysis process of the GDY/NC complexes is
different from that of pristine NC, which may be
attributed to the microstructure and chemical bonds
of GDY. In summary, this work reports the catalytic
effect of GDY on the NC thermolysis, and provides
insights into a potential GDY-based catalyst for use
in the field of energetic materials.
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