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SEM characterization showed that the films were of 
compact, dense and uniform cross morphologies, 
as well as obvious voids. The films also exhibited 
desired swelling ratio and water vapor permeabil-
ity. The enhanced tensile strength was obtained with 
a maximum value of 77.02 ± 3.26  MPa, while the 
stretch-ability slightly decreased. The thermal sta-
bility of the films decreased after cross-linking with 
HEC. The antibacterial ability of the films was gen-
erally improved with the increase of HEC and ECH 
contents.

Abstract This study introduces an effective 
route to fabricate chitosan (CS)-based film. The 
films were prepared through cross-linking reac-
tion between CS and hydroxyethyl cellulose (HEC) 
using epichlorohydrin (ECH) as the cross-linker 
and simultaneously in-situ loading with CuO nano-
particles. FT-IR and loading efficiency results indi-
cated the occurrence of inter- and intra-molecular 
cross-linking reaction between CS and HEC. XRD 
and EDS analyses showed that the CuO nanopar-
ticles were evenly deposited onto CS film matrixes. 
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Graphical abstract Preparation and properties of epichlorohydrin-cross-linked chitosan/hydroxyethyl cellulose 
based CuO nanocomposite films
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Introduction

Microorganism contamination is still a major threat to 
food safety that may cause enormous socio-economic 
and health problems. Normally, plastic films combin-
ing with chemical antibiotics are the primary preserv-
ative methods to guarantee food qualities. However, 
packaging films produced from conventional syn-
thetic petroleum based polymers are non-biodegrad-
able. And the overuse of chemical antibiotics will 
result in the emergence of drug-resistant pathogens 
(Guo et al. 2015; Joubert et al. 2015). This makes a 
way for the application of biodegradable polymers 
in packaging area (Ebrahimi et  al. 2019; Xie et  al. 
2020). An ideal packaging film should be of high effi-
ciency, good antibacterial ability, low cost, and easy 
synthesis. Therefore, renewable resources such as cel-
lulose (Wang et  al. 2019), chitosan (CS) (Min et  al. 
2020; Zhang et al. 2019a), hemicelluloses (Arellano-
Sandoval et al. 2020; Yousefi et al. 2020) and starch 
(Wang et  al. 2021; Yuan et  al. 2020) have attracted 
great attention.

CS is obtained from chitin, a biopolymer which 
can be extracted from crustacea, fungi and insects 
(Kumar et al. 2019). Because of the good film-form-
ing ability and natural antibacterial activity, CS has 
been extensively applied in food, pharmacy, medi-
cal treatment, and packaging areas (Siripatrawan 

and Kaewklin 2018; Yu et  al. 2018). However, pure 
CS film is not satisfactory for packaging because of 
its limited antibacterial ability and flexibility (Verlee 
et  al. 2017). In terms of these, blending with other 
polymers, using cross-linkers, and incorporation of 
micro or nanofiller into CS matrixes are some of the 
effective ways that have been used to improve the 
properties of CS films. Among these methods, devel-
oping nanocomposites with good antibacterial activ-
ity have been studied extensively.

CS contains primary amino and primary alcohol 
on the d-glucosamine unit. The different reactivities 
of these functional groups make CS can be easily 
self-cross-linked or cross-linked with other polymers, 
therefore improving the transparency, mechanical 
strength, and homogenous surfaces of CS film. Tan-
nic acid, glutaraldehyde, and epichlorohydrin (ECH) 
are frequently used as chemical cross-linkers for film 
fabrication. ECH is a cross-linking agent of polymers 
by forming a glycidylether linkage through the reac-
tions between hydroxyl groups on polysaccharide. 
The films based on ECH cross-linked CS showed 
promising mechanical properties. For example, Guan 
et  al. (Guan et  al. 2016) prepared drug-loading film 
by the cross-linking reaction of quaternized hemicel-
luloses and CS using ECH as the cross-linker, and the 
resulting film exhibited an excellent mechanical per-
formance with tensile strength up to 37  MPa; Yeng 
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et al. (Yeng et al. 2015) developed CS and corn cob 
bio-composite films by cross-linking with ECH, and 
the highest tensile strength and elongation at break 
of the film were 46.9 ± 0.9  MPa and 8.2 ± 0.4%, 
respectively; Cao et  al. (Cao et  al. 2018) fabricated 
ECH cross-linked CS films, and found a significant 
increase in mechanical properties compared with 
non-cross-linked CS films (Cao et  al. 2012). From 
this point, it would be of great interest for further 
improving the mechanical properties of CS films by 
cross-linking method.

Also, in this study, antibacterial ability of CS film 
is the other target property that needs to be developed. 
Metal oxide nanostructures exhibited great potential 
in the area of developing new functional materials 
and nanomaterials due to their unique chemical and 
physical properties (Ebrahimi et al. 2019; Raghaven-
dra et  al. 2017; Xie et  al. 2020; Zhang et  al. 2020). 
Recently, copper oxide nanoparticles (CuO) have 
received great attention, mainly considering its spe-
cial electrical, optical as well as antimicrobial prop-
erties, which show broad applications in gas sensors, 
lithium battery, heterogeneous catalysts, and antimi-
crobial materials (Čech Barabaszová et al. 2020). The 
formation of antimicrobial properties of copper nano-
particles is due to its ability to capture electrons, so 
it possesses great catalytic activity for oxidation and 
reduction reactions (Ebrahimi et  al. 2019). CuO can 
interference with nucleic acids, and the active site of 
enzymes and cell wall components, causing the death 
of microbial cells (Ebrahimi et al. 2019; Peighambar-
doust et  al. 2016). Nevertheless, direct mechanical 
mixing of CuO in polymer film can obtain micro-
scale interaction between CuO and matrix, leading 
to poor mechanical properties and dispersibility (Fu 
et  al. 2015). Using chemical methods, like precipi-
tation and sol–gel approaches, to synthesize CuO 
nanoparticles have shown some distinct advantages 
over mechanical mixing and physical methods, 
including feasible size control of CuO nanoparticles 
and inexpensive equipment required (Almasi et  al. 
2019; Booshehri et  al. 2015). These processes were 
normally conducted in an alkaline or alcohol solu-
tion, and copper salts like  CuCl2, Cu(CH3COO)2, 
 CuSO4, and Cu(NO3)2 were used as the precursors 
(Almasi et  al. 2019; Booshehri et  al. 2015). Tradi-
tionally, CS was used as a growth medium of CuO 
due to its restricted solubility in acidic solution. In 

one instance, Raghavendra et al. (Raghavendra et al. 
2017) reported CuO nanoparticles with flower-like 
morphology, which were synthesized using CS as a 
growth medium in an ammonia solution. However, 
only a few studies have been reported concerning the 
fabrication of CS-based antibacterial films with in-
situ grown CuO nanoparticles.

The objective of this study was to prepare a new 
antibacterial CS nanocomposite film with good 
mechanical properties. In terms of this, we devel-
oped an effective method of simultaneous cross-link-
ing and in-situ loading. Specifically, ECH mediated 
cross-linking reaction between CS and HEC was car-
ried out in NaOH solvent, and in-situ loading of CuO 
onto CS matrix was occurred at the same time. The 
morphology, structure, and physicochemical proper-
ties of the films were comprehensively investigated.

Experimental

Materials

CS (medium viscosity, 200–400  mPa.s), HEC 
(1500–2500 mPa.s), ECH (99.5%, GC), Cu(NO3)2·3H2O 
(99.99% metals basis) were purchased from Shanghai 
Macklin Biochemical Co., Ltd. (Shanghai, China). All 
other reagents were of analytical grade and commer-
cially available.

Preparation of the cross-linked CS nanocomposite 
films

CS (1 g) was dissolved in 20 mL 0.1 M glacial acetic 
acid and dried to obtain the films. Then the CS films 
were soaked in 0.25 M NaOH aqueous solution with 
HEC of 0.2:1, 0.4:1, 0.6:1, 0.8:1 and 1:1 (relative to 
CS, w/w) and ECH of 5%, 10%, 15%, 20% and 25% 
(relative to CS, v/w), and cross-linked at 50  °C for 
4 h. After that, the cross-linked films were soaked in 
0.5 M Cu(NO3)2·3H2O solution at room temperature 
overnight before washed with deionized water till 
neutral and dried. The obtained films were designated 
as CSxHyE, where x and y denoted the contents of 
HEC and ECH, respectively. HEC loading efficiency 
(L) of the films was studied by gravimetric method 
according to the following equation. Each experiment 
was repeated for three times.
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where Wi and Wl are the weights of the films before 
and after cross-linking with HEC, respectively.

Pure CS film reinforced with CuO nanoparticles 
was prepared without cross-linking with HEC. To 
synthesize CuO nanoparticles, a reported method 
was used (Booshehri et  al. 2015). Briefly, 20  mL 
of 0.25  M NaOH aqueous solution was poured into 
5 mL 0.5 M Cu(NO3)2·3H2O solution, and the mix-
ture was continuously stirred overnight at room 
temperature. The obtained solids were washed with 
deionized water till neutral and dried at 60 °C.

Characterization

Fourier transform infrared spectroscopy (FT-IR) was 
carried out on Vetex 70 spectrometer (Bruker, Ger-
many) using attenuated total reflectance accessory 
over a range of 4000–500   cm−1 at a resolution of 
4  cm−1.

Scanning electron microscopy (SEM) was con-
ducted on a LEO 1530 VP equipment (Germany) at 
10 kV.

Transmission electron microscopy (TEM) of CuO 
nanoparticles was characterized by FEI Tecnai G2 
f20 s-twin at 200 kv with point resolution of 0.24 nm. 
Before measurements, CuO nanoparticles were 
evenly dispersed in ethanol.

Elemental mapping and energy dispersive X-ray 
spectroscopy (EDS) data were collected using Zeiss 
Sigma 300.

Thermal stability (TGA/DTG) was carried out on 
TGA500 simultaneous thermal analyzer (TA, USA). 
The measurement was performed at a heating rate of 
15  °C/min over a temperature range of 30–700  °C. 
Nitrogen gas was applied as the purge gas at a flow 
rate of 25 mL/min.

X-ray diffraction (XRD) was conducted on a D/
max-III X-ray diffractometer (Japan) equipped with 
nickel filtered Cu Kα radiation in the diffraction angle 
ranges of 5–80°.

Equilibrium-swelling ratio (SR, %) of the films 
was determined according to the previously reported 
method (Yao et  al. 2019). Dry film with the ini-
tial weight (Wd) was immersed in distilled water 
until it reached a swelling-equilibrium state at room 

(1)L(%) =
Wl −Wi

Wi

× 100%
temperature, followed by wiping off the surface water 
with filter paper to determine its wet weight (Ws). The 
measurement was repeated for three times. The SR 
was calculated according to the following equation:

where Ws and Wd were the swollen and initial dry 
weight of the films, respectively.

Film thickness was measured using a microm-
eter (Lorentzen & Wettre, accuracy of 0.001  mm). 
The average value of five thickness measurements 
at different position per type of film was used in all 
calculations.

Tensile testing was performed on an Intron Uni-
versal Testing Machine 5566 based on the “ASTM 
D882-12” standard method. The films were cut into 
10  mm × 70  mm rectangular strips and tested with 
five repetitions for each film. The grips length was 
set at 30 mm, and the strain rate with 4 mm/min was 
used. The measurement was repeated for five times.

Water vapor permeability (WVP) of the films was 
characterized according to Kurek et al. (Kurek et al. 
2018) with little modification. The films were sealed 
on a test vessel with a diameter of 28.0 cm containing 
40 g dried silica gel. Then the bottles were placed in 
a desiccator containing water at 20 °C, and weighted 
periodically at intervals of 24 h for 7 days. WVP (g 
 s−1  m−1  Pa−1) was calculated from the change in the 
bottle weight versus time at the steady state using the 
following equation:

where w is the weight gained (g); t is the elapsed time 
(s); A is the film area exposed to the moisture transfer 
 (m2); L is the film thickness (m); Δp is water vapor 
pressure difference between the two sides of the film 
(Pa). Three replicates for each film type were done.

Antibacterial activity of the films against E. coli 
and S. aureus was investigated using disc diffusion 
method (Zhang et al. 2019b). The films were cut into 
15  mm pieces, and placed on E. coli and S. aureus 
cultured agar plates, and then incubated at 37 °C for 
24 h. The antibacterial inhibition zone (Winh) was cal-
culated using the following equation:

(2)SR(%) =
Ws −Wd

Wd

× 100%

(3)WVP =
w × L

t × A × Δp
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where d1 is the total diameter of the inhibition 
zone and the film, and d2 is the diameter of the film 
(15  mm). Three replicates for each film type were 
carried out.

The one-way analysis of variance (ANOVA) was 
used for multiple comparisons by SPSS 20.0 software 
package. Data were expressed as mean ± standard 
deviation. The level of p ≤ 0.05 is used to evaluate the 
significant differences between two samples.

Results and discussion

Structure of synthesized CuO nanoparticles

Previous works have well studied the structural 
properties of CuO by the precipitation of copper 
ion precursor under aqueous alkaline environment 
(Booshehri et al. 2015; Cudennec and Lecerf 2003). 
Briefly, Cu(OH)2 was firstly formed and then trans-
formed to stable CuO through Cu(OH)4

2− intermedi-
ate species. In the XRD spectra of CuO nanoparticles 
(Fig. 1A), all observable peaks can be attributed to the 

(4)Winh =
d
1
− d

2

2

diffraction of CuO with a monoclinic structure (DPF 
01–080–1916). From TEM images (Fig.  1B–D), the 
CuO nanoparticles consist of self-assembled nano-
rods with diameters of around 50–100 nm.

Synthesis and structural characterization of the 
cross-linked CS nanocomposite films

The cross-linked CS nanocomposite films with ver-
satile structural properties were effectively prepared 
by simultaneous cross-linking and in-situ loading (as 
shown in Scheme  1a). Specifically, ECH was cho-
sen as the cross-linker, and CuO nanoparticles were 
in-situ loaded onto CS film matrix. The contents of 
HEC and ECH were controlled to tune the functional 
properties of the films to better match the application 
requirements. According to previous studies (Kurek 
et al. 2018; Zhao et al. 2016), the complex cross-link-
ing reactions occurred between CS and HEC, and the 
schematic depiction of putative cross-linking reac-
tions is shown in Scheme  1. The –NH groups from 
CS molecules can react with the –OH groups in HEC 
molecules to form cross-linked structure (as shown 
in Scheme  1b); the –NH and –OH groups on the 
CS molecules can form intermolecular cross-linked 

Fig. 1  XRD (A) spectrum 
and TEM (B, C, D) images 
of CuO nanoparticles
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structure with other CS molecules (as shown in 
Scheme  1c); the –OH groups from HEC molecules 
can form intermolecular cross-linked structure with 
other HEC molecules (as shown in Scheme1d). 
Therefore, there is competition among the three 
potential reactions, making it complex to confirm the 

cross-linking degree. In order to prove the success of 
cross-linking reaction, the HEC loading efficiency (L) 
of the films was investigated. From Fig. 2A, increas-
ing the HEC content from 0.2:1 to 1:1, the L of the 
films developed from 4.37 ± 0.35% to 32.26 ± 4.01%, 
indicating successful and intensified cross-linking 

Scheme 1  Process for the fabrication of CS-based antibacte-
rial nanocomposite films by simultaneous cross-linking with 
HEC and in-situ loading with CuO nanoparticles a; Putative 

cross-linking reactions of CS and HEC with ECH: reactions 
between CS and HEC b, CS and CS c, and HEC and HEC d, 
respectively

Fig. 2  HEC loading 
efficiency (L) of the cross-
linked CS nanocomposite 
films
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reaction occurred between CS and HEC. From 
Fig.  2B, comparatively, as ECH content increased 
from 5 to 10%, the L of the films developed, also indi-
cating increased cross-linking reaction between CS 
and HEC. With further increase of ECH content to 
15%, 20%, and 25%, the L of the films dramatically 
decreased firstly, and then increased to an optimum 
value before another decrease. This is probably due to 
the complex and competitive side-self-cross-linking 
between CS-CS and HEC-HEC.

To investigate the chemical reaction among 
each component of the composite film, FT-IR was 
applied to obtain the functional groups information 
of the films. As shown in Fig.  3A, the broad bands 
at 3200–3500   cm−1 are attributed to the O–H vibra-
tions due to the hydroxyl groups of polysaccharide. 
For HEC, the symmetrical and asymmetrical C–H 
stretching is located at 2850–2980   cm−1, and peaks 
at 1645 and 1038   cm−1 are ascribed to the absorbed 
water and C–O–C stretching vibration, respectively. 
For pure CS, two peaks at 1654 and 1559  cm−1 indi-
cated the presence of amide I (C=O stretching) and 
amide II (N–H bending). In case of the cross-linked 
CS nanocomposite films, the –OH and –NH bands 
shifted to a lower area, indicating the cross-linking 
effect. Comparatively, with the increased HEC and 
ECH contents, this shifting of these bands became 
increasingly obvious, indicating intensified cross-
linking reactions. In addition, the –NH bands of CS 
were apparently weakened, indicating that most of the 
–NH groups of CS have reacted with epoxy groups 
on the ECH and thus cross-linked with the –OH of 
HEC. Moreover, after the incorporation of HEC, the 

representative intense peak assigned to C–O stretch-
ing (ether bond C–O–C) was separated into two bands 
around 1056 and 1022  cm−1.

Figure  3B shows the XRD patterns of the pre-
pared samples. For the pure CS, two crystal forms 
existed: form I and form II depicted the major crys-
talline peaks at 10.9° and 20.1°, respectively. These 
two main peaks shifted to 12.4° and 23.2°, respec-
tively, in the spectra of CS film loading with CuO, 
indicating that the incorporation of CuO particles 
disrupted the regular order of polymer chains. Simi-
lar results could be observed in CS/Ag/ZnO com-
posite films (Li et  al. 2010). After cross-linking 
with HEC, no palpable change in the main crystal-
line structure of CS was observed, probably due to 
the relative low content of HEC in the films. Fur-
thermore, the characteristic peaks appear at around 
35–40° after deposition process suggest the occur-
rence of CuO particles.

Morphology analyses

Physical appearance is the most intuitive property of 
the film materials. All the CuO loaded nanocompos-
ite films showed aquamarine color (Fig.  4A). Com-
paratively, pure CS film showed relative higher trans-
parency and brighter surface. After cross-linking with 
HEC, the transparency of the films reduced. Notably, 
the edges of pure CS film showed obvious folds and 
crimps, while the cross-linked CS nanocomposite 
films had relative smooth morphologies. This is prob-
ably due to the cross-linking reaction which could 
consume the –NH and –OH of CS, that is, decrease 

Fig. 3  FT-IR spectra (A) 
and XRD curves (B) of pure 
CS, HEC, and the cross-
linked CS nanocomposite 
films
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the hydrogen bonding interactions with water upon 
drying process.

SEM was used to characterize the cross-section 
morphology of the cross-linked CS nanocomposite 
films, as shown in Fig. 4B. The cross-section images 

of the samples displayed inconspicuous differences. 
Basically, the films were compact, dense, and uniform 
at cross-section, and no obvious voids were observed. 
This is probably due to the good compatibility among 
the cross-linked components, which may not affect 

Fig. 4  Physical appearances (A), SEM images (B, cross section) and EDS spectra (C) of the cross-linked CS nanocomposite films
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the crystalline structure of CS matrix. This result is in 
accordance with the XRD analysis.

To analyze the elemental composition and deter-
mine the deposition of CuO onto CS film matrix, ele-
mental mapping and EDS spectra were investigated. 
From Fig. 4C, Cu element was observed on the films, 
indicating the successful loading of CuO by in-situ 
depositing method. Besides, as compared with pure 
CS film, the relative weight contents of C and O ele-
ments increased with the increase amount of HEC, 
further indicating the increased cross-linking reaction 
between CS and HEC.

Swelling ratio and water vapor permeability

The SR values of both pure CS film and the cross-
linked CS nanocomposite films were investigated, as 
shown in Fig. 5A. The pure CS film showed a relative 
high SR value, probably due to its interactions with 
water by the presence of free hydroxyl and amine 

groups. After adding 0.2:1 of HEC, the SR value of 
the films increased to 62.27 ± 4.38%, probably due 
to the inherent hydrophilicity of HEC. However, fur-
ther increase of HEC content to 0.8:1 reduced the SR 
value to 42.05 ± 5.79%, probably due to the intensi-
fied cross-linking reaction between HEC and CS 
matrix. But excessive amount of HEC (1:1) resulted 
in an increase of SR value (51.58 ± 6.18%). From 
Fig. 5B, the results showed that the cross-linking of 
the films led to a decreased SR value. This is probably 
due to the consumption of CS hydrophilic hydroxyl 
and amine groups as they covalently bonded with 
cross-linking ECH and not available for interacting 
with water molecules, which resulted in a decrease 
of SR value (Priyadarshi et al. 2018). Similar results 
could also be observed in the other cross-linked CS 
films (Hafsa et al. 2016; Priyadarshi et al. 2018).

The water barrier ability of films is important for 
food packaging. In the case of dry food packaging, 
the moisture barrier ability is required to protect the 

Fig. 5  Swelling ratio (A, 
B) and water vapor perme-
ability (C, D) of the cross-
linked CS nanocomposite 
films
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food from deterioration due to the moisture. On the 
other hand, the fresh product need to retain the mois-
ture and avoid dehydration (Priyadarshi et al. 2018). 
The WVP of the cross-linked CS nanocomposite 
films is shown in Fig.  5C, D. The CuO nanoparti-
cles reinforced pure CS film achieved 1.40 ± 0.31 ×  1
0–10  g   s−1   m−1   Pa−1 in WVP, which was lower than 
the value obtained in previous literatures (Bourbon 
et  al. 2011; Costa et  al. 2015). This is probably due 
that the resistibility of film against vapor permeation 
is closely related to the micro paths in the micro-
structure network. The WVP of the films generally 
increased with the increase of HEC content, which 
can be explained by the higher hydrophilicity and 
permeability of the films introduced by HEC. Based 
on the “adsorption-diffusion-desorption” mechanism 
(Yao et  al. 2019), the incorporation of hydrophilic 
HEC improved the opportunity of adsorbing water 
molecules and thus increasing its WVP. The WVP 
decreased as the increase of ECH content. It can be 
explained based on the model of tortuosity (Vaezi 
et  al. 2019). From FT-IR results, the cross-linking 
reaction between CS and HEC developed with higher 

content of ECH, which was beneficial for the forma-
tion of network structure, creating a tortuous pathway 
for water vapor molecules to permeate the film.

Mechanical properties

Mechanical properties of packaging films are essen-
tial to resist the stress appearing during the transport 
and storage processes. For pure CS film, there is a 
broad range of reported mechanical properties data 
in the literatures, mainly due to the various structures 
of CS (deacetylation degree and molecular weight) 
and preparation method (solvent, storage time and 
measurement conditions) (Cazón and Vázquez 2019). 
The CS-based nanocomposite films with ECH as the 
cross-linker have shown decent mechanical proper-
ties. In the present study, as shown in Fig. 6, the ten-
sile strength of pure CS film was 55.95 ± 2.06 MPa. 
The tensile strength of the cross-linked CS nanocom-
posite films significantly increased (p ≤ 0.05) with 
increasing the HEC content and reached a maximum 
value of 77.02 ± 3.26 MPa with HEC of 1:1. The ten-
sile strength did not strongly correlated with the ECH 

Fig. 6  Tensile strength (A, 
B) and elongation at break 
(C, D) of the cross-linked 
CS nanocomposite films 
obtained under different 
conditions
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content, and a maximum value of 72.31 ± 1.65 MPa 
was achieved with 10% of ECH (Fig. 6B). As reported 
in previous literatures (Yao et  al. 2019; Zhao et  al. 
2016), the complex cross-linking reactions occurred 
between CS and HEC using ECH as a cross-linker. 
The irregular tensile strength variation of the films 
with the increased ECH concentration is probably due 
to the complicated and competitive side-self-cross-
linking between CS-CS and HEC-HEC.

From Fig.  6C, D, the elongation at break of the 
cross-linked CS nanocomposite films showed differ-
ent trend. The elongation at break values significantly 
decreased (p ≤ 0.05) with the increased HEC and 

ECH contents, indicating that the increased cross-
linking reaction lowered the stretch-ability of the 
films.

Thermogravimetric analyses

TGA/DTG (Fig.  7) was applied to investigate the 
thermal stability of the films. The films exhibited two 
major stages of weight loss. From the TGA curves, 
the initial weight loss (about 15%) at around 100 °C 
is attributed to the evaporation of water. The second 
stage is corresponded to the organic matter loss and 
thermal degradation of CS (Lozano-Navarro et  al. 

Fig. 7  TGA/DTG curves of 
CS and the cross-linked CS 
nanocomposite films

Fig. 8  Antimicrobial 
activities against E.coli (A, 
B) and S.aureus (C, D) of 
the cross-linked CS nano-
composite films obtained 
under different conditions
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2018; Zhang et  al. 2019b). The largest mass loss of 
CS mainly occurs between 180 and 320  °C, with a 
peak decomposition temperature at about 198  °C. 
Comparatively, the decomposition peak for the films 
is observed at about 185 °C, indicating the decreased 
thermal stability. This is probably due to the role of 
methylene groups in HEC molecules (Sen and Kah-
raman 2018), or the disruption of hydrogen bond-
ings of CS after cross-linking reaction. From DTG 
curves, the cross-linked CS nanocomposite films and 
pure CS film showed the maximum decomposition 
peaks at about 183 °C and 198 °C, respectively, fur-
ther indicating the decreased thermal stability of CS 
after cross-linking reaction. Additionally, the degra-
dation peak at around 320 °C was probably attributed 
to the decomposition of the polysaccharide structure 
(Pereira et al. 2019). Similar results were reported by 
Santana et al. (Santana et al. 2017).

Antibacterial properties

Antibacterial activities of the cross-linked CS nano-
composite films against E.coli and S.aureus were 
evaluated by measuring the antibacterial inhibition 
zone, as shown in Fig. 8. In this study, the pure CS 
film showed better antibacterial ability against E.coli 
than S.aureus (not listed in Fig. 8). According to the 
previous study, the antibacterial mechanism of CS 
was attributed to the interaction between CS and cell 
membrane (Cazón et  al. 2017). Therefore, different 
membranes, cell wall structure, cell physiology and 
metabolism of bacteria could result in different anti-
bacterial activity of CS (Zhu et al. 2018).

Comparatively, the cross-linked CS nanocom-
posite films showed better antibacterial activities 
than pristine CS film. As shown in Fig.  8A–C, the 
antibacterial ability of the films against E.coli and 
S.aureus was slightly enhanced with the ECH content 
increased from 5% to 20%. While further increase of 
ECH content to 25% did not improve the antibacte-
rial ability. This is probably due to the competitive 
side-self-cross-linking reaction. From Fig. 8B–D, the 
antibacterial ability of the films increased with higher 
HEC content, probably due to the developed cross-
linking reaction with CS.

Conclusions

In this paper, the cross-linking of CS and HEC medi-
ated by ECH and the in-situ loading of CuO nano-
particles were carried out in NaOH and Cu(NO3)2 
solutions to prepare functional packaging films. The 
cross-linking reaction intensified with increased 
amount of HEC and ECH. Through consecutive in-
situ coagulation, CuO nanoparticles were success-
fully deposited onto the film matrixes. The films 
exhibited compact, dense and uniform cross-section 
morphologies. Moreover, the novelty of our research 
showed that the cross-linked CS nanocomposite films 
exhibited decent mechanical properties and antibac-
terial ability, broadening its potential applications in 
active packaging area.
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