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dual-bonding filler for use in poly (lactic acid) (PLA) 
composites. CS promotes improved interfacial inter-
action within the polymer matrix by forming strong 
hydrogen bonds with the CNF and potential cova-
lent bonds with the PLA. The results confirmed that 
the addition of a small amount of CS significantly 
improved the mechanical properties compared to 
PLA + CNF composites and neat PLA. The detailed 
study of the PLA + CNF/CS composites reveals the 
synergetic effect of the hydrogen and covalent bond-
ing mechanism for PLA reinforcement.

Abstract  Cellulose nanofibrils (CNFs) have been 
widely used as a nanofiller for polymer composite 
reinforcement due to their excellent mechanical prop-
erties. However, CNF is produced in water and needs 
to be dried prior to use in composite materials. The 
presence of hydroxyl groups on the surface of CNF 
creates strong hydrogen bonding that makes it diffi-
cult and costly to dry. Additionally, the hydrophilicity 
at the fiber surface results in agglomeration of CNFs 
within many polymer matrices. In this study, chitosan 
(CS) was co-precipitated with CNF to produce a 
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Introduction

Nanocellulose has gained traction in the research 
community due to its use across a range of scientific 
fields (Abitbol et al. 2016; Isogai 2020; Lamm et al. 
2021; Li et al. 2021a). One specific type of nanocel-
lulose, cellulose nanofibrils (CNFs), are being used 
as reinforcement fillers in a range of composite mate-
rials due to their high specific strength and stiffness 
(Jawaid et al. 2017; Li et al. 2021b; Meng et al. 2018; 
Tekinalp et al. 2019; Wang et al. 2020, 2018b). CNFs 
can be derived from various plants, algae, and other 
biological materials, which makes them a green, 
sustainable alternative to the glass and carbon fibers 
derived from non-renewable materials that are tradi-
tionally used in composites (Abdul Khalil et al. 2012) 
CNFs are comprised of both individuals and bundles 
of nanoscale fibrils of polymeric repeating β-(1–4 
linked), D-glucose linkages, held together tightly 
through hydrogen-bonding of the surface hydroxyl 
groups. Most CNF is produced using water-based 
fibrillation methods, which serves to mechanically 
pull apart larger bundles into this nanoscale material 
(Nechyporchuk et  al. 2016). Unfortunately, strong 
hydrogen-bonding between water and CNF, and 
among CNFs lead to a tightly bounded CNF structure 
during the water removal process (drying). During 

the drying process, hydroxyl groups on the surface 
of the CNF form strong hydrogen-bonds through a 
process called hornification (Beaumont et  al. 2017). 
This results in irreversible agglomeration, producing 
a CNF material incapable of dispersion within a poly-
mer matrix. Hornification is common during oven 
and air-drying techniques.

In order to incorporate CNFs into composites 
through industrially viable processes, e.g., extru-
sion, water needs to be removed to prevent degrada-
tion of the polymer matrix, especially when used in 
biopolymers, and formation of porosity. A few strat-
egies exist to dry CNF without the occurrence of 
hornification, but many, including freeze-drying and 
supercritical CO2 drying, remain costly and difficult 
to use industrially (Peng et al. 2012; Sinquefield et al. 
2020; Zimmermann et al. 2016). Additionally, CNFs, 
which are hydrophilic in nature, tend to aggregate 
when introduced into polymer matrices, as most are 
hydrophobic (Zhou et  al. 2016). In order to achieve 
good mechanical properties in a composite mate-
rial, the filler must remain homogeneously dispersed 
throughout the matrix. Many researchers have turned 
to surface modification to reduce CNF agglomeration 
and aid in the drying process, as these modifications 
can decrease the surface energy, disturb hydrogen-
bonding, and prevent hornification (Habibi 2014; 
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Kalia et  al. 2013; Missoum et  al. 2013; Rol et  al. 
2019). CNF surface modifications can be classified 
under three major strategies: adsorption, molecular 
grafting, and polymer grafting. Strategies that involve 
the formation of covalent bonds, including molecu-
lar and polymer grafting, are stronger, more stable, 
and tend to support greater mechanical enhancement 
than adsorption. Wang et  al. used maleic anhydride 
as a coupling agent to form a reinforced interface in 
polypropylene/CNF composites (Wang et al. 2018a). 
The mechanical properties improved due to the pres-
ence of covalent bonds at the interface which served 
to adequately disperse stress. Surface modifications, 
such as adsorption, relying solely on molecular inter-
actions among filler or between filler and matrix, 
like hydrogen bonding, must be tailored in order to 
prevent formation of a weak phase or matrix plasti-
cization in thermoplastic composites (Bréchet et  al. 
2001). However, research has shown that proper 
exploitation of molecular interactions can pro-
duce strong interfaces through interfacial engineer-
ing. For example, an extensive research has found 
that poly(vinyl alcohol) (PVOH)/CNF composites 
form extremely strong hydrogen bonds between the 
hydroxyl groups on both the PVOH side chains and 
CNFs, resulting in mechanically robust composites 
(Liu et al. 2013; Peng et al. 2014; Peresin et al. 2010). 
Other researchers have also successfully exploited 
these interactions to produce a range of materials fea-
turing strong, reversible crosslinking through hydro-
gen bonds, which have seen use in a host of applica-
tions including self-healing materials (An et al. 2019; 
Hu et al. 2015; Lamm et al. 2019).

Chitosan (CS) is a biopolymer that can be isolated 
from crustaceans. It is comprised of β-linked D-glu-
cosamine and N-acetyl-D-glucosamine units and fea-
tures primary amine and hydroxyl groups which can 
form interactions with other molecules.(Bakshi et al. 
2020) Traditionally, CS is used in composites spe-
cifically for biomedical and packaging applications, 
as such, their tensile mechanical properties are often 
not fully characterized.(Rinaudo, 2006) CS is a poor 
reinforcing agent by itself in composites for high per-
formance applications due to its inferior mechanical 
properties, but it can be combined with other bio-
based fillers such as CNF to achieve superior perfor-
mance (Abdul Khalil et  al. 2016) A few researchers 
have exploited this strategy for applications such as 
reinforced composites for packaging and antibacterial 

textiles (Ali Raza et al. 2019; Niu et al. 2018). Rizal 
et. al. utilized a high loading of CS as a comatrix for 
CNF filled biodegradable PLA composites (Rizal 
et  al. 2021). The fibrous morphology of the CNF, 
obtained using supercritical CO2 drying, produced 
good reinforcement.

In this study, a dual-bonding strategy is intro-
duced using a CS coating on the surface of CNF to 
strengthen the interface between PLA/CNF com-
posites. PLA is a mechanically robust, bio-based 
polymer that can serve as a competitive replacement 
for petroleum-based polymers, such as acryloni-
trile–butadiene–styrene (ABS), in composite materi-
als. Li et  al. has shown that CS can be exploited in 
a dual-bonding strategy to form a strong interface in 
CNF films (Li et al. 2019). Additionally, Zhao et al. 
and Lu et  al. demonstrated that the incorporation of 
pendant amine groups (–NH2) can result in amide 
formation after compounding with polylactic acid 
(PLA), which contains carboxylic acid (–COOH) pol-
ymer chain ends (Lu et  al. 2015; Zhao et  al. 2020). 
Similarly, Shah et  al. used CS to improve the inter-
face between a wood flour/PLA composite (Shah 
et  al. 2008). The addition of CS was suspected to 
form an amide bond with PLA, however the low load-
ing levels of CS used and presence of residual amides 
on the CS made it difficult to confirm. It is hypoth-
esized that the CS surface modification on CNF can 
facilitate synergistic effects between a combination of 
hydrogen bonding and theoretical covalent bonding in 
PLA composites. This can be accomplished through 
two bonds; covalent amide bonds between pendant 
amide groups on CS and the acid chain ends of PLA, 
and extensive hydrogen bonding formed between the 
hydroxyls chain ends of PLA and pendant hydroxyl 
groups on both CNF and CS. Spray dried CNF was 
chosen for modification as it is a commercially avail-
able CNF source but struggles to maintain mechani-
cal properties at higher loadings (> 10 wt%) due to its 
low aspect ratio. Exploiting this commercial material 
to produce a range of high-performance composites 
can thrust the use of CNF composites into large-scale 
markets such as manufacturing. First, the level of CS 
functionalization was tailored to produce an adequate 
interface, determined to be 2.5 wt% CS on the CNF 
surface (CNF/2.5CS). The CNF/2.5CS were then dis-
persed in a PLA matrix to obtain composites. Com-
pared with literature, our modified spray dried CNFs 
maintain tensile strength and display an increase 
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in Young’s modulus with increasing fiber content, 
which is currently unseen in the literature for spray 
dried materials. Extensive characterization, including 
thermal and morphological analyses, showed that this 
potential dual-bonding strategy was successfully uti-
lized to achieve well-dispersed nanocomposites with 
significantly enhanced mechanical properties.

Experimental

Materials

Spray dried bleached cellulose nanofibril (90% 
fine) was obtained from the University of Maine. 
Poly(L-lactide) Ingeo 4043D (referred to as PLA 
or PLA4043D in this work) with 94% L-lactic acid 
content, a number average molecular weight (Mn) of 
67  kDa and dispersity (Đ) of 2.2 (measured by gel 
permeation chromatography (GPC)) was purchased 
from NatureWorks LLC (Minnetonka, Minnesota). 
Chitosan (CS, 75–85% degree of deacetylation, 
medium molecular weight), and sodium hydroxide 
(NaOH) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA).

CNF/CS preparation

CNF/CSs were prepared using a co-precipitation 
method. Briefly, 5  g of  spray dried CNF was redis-
persed in DI water under vigorous stirring. Desired 
amount of the CS solution (5 mg/mL in 2 v/v % acetic 
acid) was added to CNF suspension. Then, the mix-
ture was neutralized with NaOH (1 M). The resultant 
suspension was filtered and dried at 80 °C in an oven 
till constant weight. CNF/CS with CS content of 2.5, 
5, 7.5, 10, and 20 wt% were prepared (Table 1). 

Composite sample preparation

All materials were dried at 80 °C in a convection oven 
for 4  h before compounding to remove any mois-
ture in the sample. PLA + CNF/2.5CS composites 
were prepared in a melt mixer (Intelli-Torque Plasti- 
Corder half-size mixer, C. W. Brabender, Instru-
ments Inc.) by initially melting PLA at 175  °C for 
3 min at 60 rpm and then adding the desired amount 
of CNF/2.5CS slowly into the PLA melt and shear 
mixing for another 5  min. Neat PLA, PLA + CNF, 
and PLA + CS composites were prepared using the 
same procedure. The content of CNF/2.5CS and CNF 
ranged from 5 to 30 wt%. Additional samples were 
compounded using PLA and 5 wt% fiber content of 
higher CS loaded CNF (CNF/5CS and CNF/7.5CS). 
After compounding, the mixtures were hot pressed 
into 1 mm films at 180 °C. The thin films were then 
cut into slices and then compression molded into uni-
form bars at 180 °C following ASTM standard D4703 
and further cut into dog-bone specimens (ASTM 
D638 type-V).

Methods

Characterizations

Tensile Testing:  Tensile properties was measured 
by stretching the dog-bone specimens at room tem-
perature via a servo-hydraulic testing machine with a 
2000 N loading cell at a speed of 1.5 mm/min. Four 
specimens for each sample were tested and the average 
was reported.

Scanning electron microscopy (SEM)  The cross sec-
tion of films was sputtered with iridium and imaged 
with a Zeiss Merlin VP SEM/scanning transmission 
electron microscope system at a low voltage of 1 kV.

Attenuated total reflectance infrared spectroscopy 
(ATR‑IR)  ATR-IR absorption spectra of the films 
were measured with a Thermo Nicolet Nexus 670 
Fourier transform infrared spectrometer with a dia-
mond ATR attachment with a spectral resolution of 
2 cm−1 in the range of 4000–600 cm−1.

X‑ray photoelectron spectroscopy (XPS)  XPS was 
performed with a Thermo Scientific Model K-Alpha 

Table 1   CNF/CS samples prepared with varying CS content

Sample Name CS 
Content 
(wt%)

CNF/2.5CS 2.5
CNF/5CS 5
CNF/7.5CS 7.5
CNF/10CS 10
CNF/20CS 20
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XPS instrument, which was equipped with micro-
focused, monochromatic Al Kα x-rays (1486.6  eV) 
that were focused to a range of spot sizes from 30 
to 400 microns. Wide energy range survey spec-
tra (0–1350  eV) were acquired for qualitative and 
quantitative analysis (pass energy = 200  eV; step 
size = 1.0  eV). Assessment of chemical bonding of 
the identified elements was accomplished by collect-
ing core-level spectra over a narrow energy range 
(pass energy = 50 eV; step size = 0.1 eV). Data were 
collected and processed using the Thermo Scientific 
Avantage XPS software package (v. 4.61). When nec-
essary, spectra were charge corrected using the C 1 s 
core-level peak set to 284.6 eV.

Solid state NMR (CP MAS 13C SS‑NMR) spectros‑
copy  Solid-state NMR experiments were performed 
on a Bruker Avance-III 400-MHz (9.4 Tesla) spec-
trometer (Bruker Biospin Corporation, Bellerica, MA, 
USA) operating at Larmor frequencies of 100.63 MHz 
for 13C nucleus using a 4-mm double-resonance magic 
angle spinning (MAS) probe head. The samples were 
packed into a 4-mm cylindrical zirconia dioxide MAS 
rotor. The experiments were conducted at room tem-
perature (296 k) at MAS frequencies of 8 kHz. 1H-13C 
cross-polarization (CP) with ramped (70–100%) 1H rf 
amplitude and 1.5 ms contact pulse was used to obtain 
the initial transverse magnetization for CP/MAS 
experiments. The radiofrequency field strength was 
55.5 kHz for 1H and 13C in the CP pulse. High power 
proton decoupling (SPINAL-64) was applied during 
acquisition at a 1H nutation frequency of 70 kHz. A 
4 s recycle delay and 1500 – 2048 scans were used. 
The 13C chemical shifts were calibrated by externally 
referencing to methylene signal of adamantane at 
38.48 ppm on the tetramethylsilane scale. The cellu-
lose crystallinity index (CrI) was determined from the 
integration areas of the crystalline and amorphous C-4 
signals of CP/MAS 13C NMR spectra using Eq. 1:

where A86-92  ppm and A79-86  ppm are the areas of the 
crystalline and amorphous C4 carbon signals of cel-
lulose, respectively.

Thermogravimetric Analysis (TGA):  The degrada-
tion temperatures were determined by thermogravi-

(1)CrI =
A86−92ppm

A79−86ppm + A86−92ppm

× 100

metric analysis (TGA) using a TA Instruments Q500 
apparatus. The samples were heated from room tem-
perature at 10 °C/min to 600 °C.

Inverse gas chromatography (iGC)  The dispersion 
component of surface energy and acid–base character-
istics of samples were measured and calculated based 
on a SMS-iGC device (Surface Measurement Systems, 
London, UK). Detailed mechanism and description of 
this methodology can be found in previous work (Peng 
et al. 2013). A pre-silanized glass tube, 30 cm in length 
and 4 mm in inner diameter was used. CNF powders 
were introduced into the tube by a hopper and an elec-
tric vibrator to fill 2/3 of the total tube volume. After 
the sample was added into the tube, the other end of 
the glass tube was plugged with silanized glass wool. 
Once the glass tube was in place, helium was used as 
the carrier gas and methane was used as a reference 
gas. Conditions for running the test were 0% of RH 
and 10 standard cubic centimeters per minute (sccm) 
of carrier gas flow rate. Before running a test, columns 
were conditioned in situ for 4 h at 30 °C. The detec-
tion method of retention times of the probe gases was 
determined using a flame ionization detector. Analysis 
was completed using the Cirrus SEA control software. 
The peak maximum method was used to determine the 
retention time of all probe gases (Conder and Young 
1979). The dispersion component of surface energy 
and acid–base characteristics were calculated (Fowkes 
1964; Gutmann 1978; Schultz et al. 1987).

Dynamic mechanical analysis (DMA)  DMA of the 
composite was carried out using the TA Instruments 
DMA Q800 in multi-frequency—strain mode with a 
dual cantilever clamp. The measurements were per-
formed at a constant frequency of 1 Hz with a tem-
perature range from room temperature to 120  °C at 
a heating rate of 3 °C/min. The test specimen dimen-
sions were about 3  mm × 10  mm × 63  mm (thick-
ness × width × length).

Differential scanning calorimetry (DSC)  DSC was 
performed on a TA Instruments Q2000 apparatus 
using heat/cool/heat mode. The scanning conditions 
were set as follows: each sample was equilibrated at 
25 °C and then heated to 200 °C at 10 °C min−1. The 
sample was then cooled at 10 °C min−1 to 25 °C. Dur-
ing the second heating cycle the sample was heated 
to 200 °C at 10 °C min−1. The degree of crystalliza-
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tion (χc) was derived from Eq. 2 using first-heat curve, 
where ΔHm and ΔHc are the melting and crystalliza-
tion enthalpies of the nanocomposite. ΔH100 and w are 
the melting enthalpy for 100% crystalline PLA and 
weight fraction of PLA in the composite. The ΔH100 
value used for the calculation was 93  J/g (Fujisawa 
et al. 2013).

Results and discussion

CNF/CS synthesis and characterization

CS-coated CNF (CNF/CS) was produced using a 
coprecipitation strategy (Scheme  1) and contained 
an overall content of CS varying from 2.5 to 7.5 wt% 
with respect to the CNF. To produce the materials, 
CS was dissolved in a dilute acetic acid solution (2 
v/v %) and combined with a spray dried CNF disper-
sion in water. Sodium hydroxide (NaOH) was then 
added dropwise to precipitate the CS and entwine it 
around the surface of the CNF. Due to its high molec-
ular weight and pH-responsive amine groups, CS 
becomes water-insoluble at pH > 5–6. This behavior 
has been exploited by researchers to produce encap-
sulated or coated materials, and one common applica-
tion uses CS coprecipitated with Fe3O4 for magnetic 
absorbents (Cai et al. 2018; Pu et al. 2018).

Extensive characterization was performed to con-
firm the presence of CS on the surface of CNF and 
success of our coprecipitation methodology. X-ray 
photon spectroscopy (XPS) was used to analyze the 
surface of the functionalized CNF (Fig. 1a). Most of 
the spectra appeared similar to the neat CNF, with 
C 1 s peaks between 284–290 eV and an O 1 s peak 
around 533  eV. There was one peak unique to CS 
around 339.7  eV, consistent with the N 1  s level of 
CS. Likewise, Fourier-transform infrared spectros-
copy (FTIR) indicated presence of CS on the CNF 
surface, confirmed via the presence of a peak at 
1565  cm−1, consistent with N–H bending (Fig.  1b). 
The peak in the Fig. 1b is weak; however, when the 
CS loading is increased to 10 wt% or above, a clear 
peak of N–H bending is visible as shown in Fig. S4A. 

(2)�
c
=

ΔH
m
− ΔH

c

w × ΔH100

Thermal degradation was measured using thermal 
gravimetric analysis (TGA, Fig. 1c). The presence of 
CS on the surface of CNF affected the degradation 
behavior, increasing the initial degradation tempera-
ture slightly (294–303  °C) and causing a significant 
decrease in char yield (~ 20 to < 5%).

The morphology of the functionalized CNF 
was examined using scanning electron microscopy 
(SEM), which confirmed that the particle shape 
and size did not change after CS functionalization 
(Fig.  1d–g and S1). However, the CNF/CS particles 
became smoother compared to the CNFs before func-
tionalization, suggesting the presence of the CS. The 
overall surface chemistry was analyzed using inverse 
gas chromatography (iGC) (Table  S1). CNF/2.5CS 
was found to have a higher surface energy, 62.8 mJ/
m2, than neat CNF, 53.4  mJ/m2. These results indi-
cate that the surface of the CS-modified sample is 
more heterogenous, especially in relation to the acid-
based (polar) component, likely due to the presence 
of amine groups on the CS surface. The crystallin-
ity of the CNF, measured using solid state nuclear 
magnetic resonance spectroscopy (ssNMR), also 
increased slightly after functionalization, increas-
ing from 46.5% in CNF to 47.2% in the CNF/2.5CS 
sample. This slight difference in crystallinity could 
indicate a minor change in the sample composition 
but is too close to draw any significant conclusion. 
These combined characterization results confirmed 
that spray dried CNF was successfully functionalized 
with CS.

After confirming the CS functionalization of CNF, 
initial studies were performed to determine the opti-
mal loading of CS in a PLA composite. Different 
fiber compositions (CNF, CNF/2.5CS, CNF/5CS, and 
CNF/7.5CS) were melt compounded with PLA at a 5 
wt% total fiber content. During melt compounding, 
the shear forces and heat can theoretically lead to a 
reaction between the CS amine groups and PLA acid 
chain-ends to produce amide bonds. However, due to 
the low overall CS loading in these composites, the 
formation of an amide bond cannot be confirmed and 
is therefore only speculative. This supposed cova-
lent bonding combines with strong hydrogen bond-
ing among the PLA, CS, and CNF to produce a dual 
bond-strengthened interfacial phase between the 
filler and the matrix (Fig.  3). Composites featuring 
CNF/2.5CS marginally displayed the best mechani-
cal properties, which is a similar optimal loading to 
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Scheme 1   Synthesis of CS functionalized CNF (CNF/CS) using a co-precipitation strategy

Fig. 1   Characterization of synthesized CS-CNF. (a) XPS Spectra, (b) FTIR spectra, c) thermal degradation measured using TGA, 
and morphological characterization using SEM of (d/e) CNF, and (f/g) CNF/2.5CS
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others in literature (Fig. S2) (Shah et al. 2008). Addi-
tionally, higher loadings of CS resulted in debond-
ing between the filler and the matrix, which could 
be observed on SEM images where direct delami-
nation between the CS and PLA is present in the 
PLA + 5%CNF/7.5CS sample (Fig. S3). In the higher 
CS content samples, a CS majority phase develops at 
the interface, delaminates, and cannot properly dis-
sipate mechanical stress, resulting in premature fail-
ure. This has been observed in literature, where an 
increasing the CS loading from 2 to 10 wt% produced 
morphology issues and resulted in a drastic loss in 
tensile strength (Kamaludin et al. 2021).

PLA + CNF/CS composites

After the level of CS coated on the CNF surface 
was optimized at 2.5 wt%, the overall fiber content 
in composites was explored. A range of PLA + CNF 
and PLA + CNF/2.5CS composites featuring 5–30 
wt.% modified and unmodified CNF fiber content 
was prepared using melt compounding. The tensile 
testing results of these compositions are given in 
Fig. 2, with complete details in Table S2. The func-
tionalized CNF/2.5CS composite properties were 
compared to those of the unmodified CNF compos-
ites. All PLA + CNF/2.5CS composites displayed an 
almost equivalent tensile strength, around 58  MPa, 

Fig. 2   Tensile properties of 
PLA + CNF/CS composites 
featuring CNF/2.5CS at 
varying overall fiber con-
tents including, (a) Tensile 
strength and (b) Young’s 
modulus

Fig. 3   SEM images and schematic drawing explaining the interface and dispersion differences between CNF fibers and PLA matrix 
for (a) unmodified CNF and (b) functionalized CNF/CS, red indicating the potential amide bond formation
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regardless of filler content, which is similar to 
unfilled neat PLA. The unmodified samples showed 
a sharp decrease to about 51  MPa at filler content 
of 20 wt% and above. The Young’s modulus varied 
greatly with filler. Both types of PLA composites dis-
played an increase in Young’s modulus with increas-
ing filler content. However, the PLA + CNF/2.5CS 
composite samples had a much higher increase in 
modulus than their unmodified counterparts, ranging 
from 3335 to 4166  MPa for CS-containing samples 
versus 3053–3770  MPa for unmodified CNF sam-
ples. A similar increase in modulus with increasing 
filler content was observed when measuring the stor-
age modulus through dynamic mechanical analy-
sis as well (DMA, Fig. 4b and Table S3). Neat PLA 
displayed the lowest storage modulus, 2148  MPa, 
at room temperature (25  °C), while the value of 
PLA + 30%CNF/2.5CS composite was much higher 
at 2909  MPa. As this sample contains the highest 
fiber loading, the reinforcement provided by the fibers 
produced stiffness that was superior to other samples, 
as confirmed by both storage modulus and Young’s 
modulus. The strength and modulus are also equal 
or superior to other modified CNF/PLA composites 

dried using similarly industrially relevant technology 
in the literature (Table S4).

These mechanical property results indicated 
that the interface between filler and matrix is much 
improved in the modified CNF samples, likely due 
to the presence of CS and its reinforcing effect. In 
unmodified CNF composites, despite hydrogen-
bonding between the filler and matrix, the differ-
ence in hydrophobicity of the matrix and hydro-
philicity of the filler creates an unstable interface 
that debonds with stress and abruptly fails (Figs. 3a 
and S3D). Meanwhile, the interface in the modified 
samples is stronger since it theoretically features a 
dual-bonded interface supported by a stronger cova-
lent amide bond, allowing it to properly dissipate 
stress (Fig.  3b). The morphology of the modified 
composites was examined using SEM of the frac-
ture surface and confirmed a strengthened interface 
(Figure S5). The samples appear homogenous and 
display an entangled CNF network. Additionally, 
the fracture surfaces display both PLA and broken 
CNF fibers. The broken CNF indicates stress was 
dissipated during testing, supporting the overall 
proposed mechanism.

Table 2   Thermal properties of the PLA + CNF/2.5CS composites measured using DSC and TGA​

T5%: thermal degradation temperature at 5% mass loss. Tc: cold crystallization temperature. Tm: melting temperature. ∆Hc: enthalpy 
of crystallization. ∆Hm: enthalpy of melting. χ: degree of crystallization

Sample T5% (oC) Tg (oC) Tc (oC) Tm (oC) ∆Hc (J/g) ∆Hm (J/g) χ (%)

PLA 325.5 56.5 105.4 145.2, 153.1 26.9 27.7 0.86
PLA + 5%CNF/2.5CS 327.1 55.2 100.7 147.1 20.8 25.2 4.93
PLA + 10%CNF/2.5CS 328.3 54.5 100.8 145.6 20.9 23.2 2.71
PLA + 20%CNF/2.5CS 323.0 54.3 102.6 145.3 20.1 22.9 3.79
PLA + 30%CNF/2.5CS 319.4 54.8 103.1 146.0 14.9 18.8 6.10

Fig. 4   Characterization of 
PLA + CNF/2.5CS com-
posites including (a) DSC 
analysis and (b) storage 
modulus
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Thermal properties of the composites were meas-
ured using differential scanning calorimetry (DSC) 
and TGA (Fig. 4a and S6, Table 2). Overall, the onset 
of thermal degradation of the composites decreased 
slightly compared to neat PLA (325–318 °C). This is 
unsurprising given that CNF has lower thermal sta-
bility than PLA. While initial addition of filler does 
increase thermal stability, further increase in the 
CNF content lowers this degradation temperature. 
The change in thermal transitions was a bit more 
complex with variation in filler content. When meas-
ured on DSC, the glass transition temperature (Tg) 
stayed fairly constant around 54–56  °C. However, 
there was a difference when Tg was measured using 
DMA (Table S3). Using the onset of a drop in storage 
modulus as an indicator of glass transition, Tg was 
observed to increase with increasing filler content 
(59–69  °C at neat PLA and PLA + 30%CNF/2.5CS, 
respectively). Likewise, a similar trend with Tg was 
observed when measured using the peak of tan delta 
(65–73 °C, at neat PLA and PLA + 30%CNF/2.5CS, 
respectively). This indicates that the filler impedes 
molecular movement, which is common in compos-
ites as the filler physically blocks polymer chains.

The PLA composites underwent cold crystalli-
zation during the heating cycle. In neat PLA, the Tc 
occurred at a slightly higher temperature (105  °C) 
than the composites (100–103  °C). Crystallization 
was followed by a melting peak, which displayed a 
Tm at the same temperature as neat PLA, 145–147 °C. 
Neat PLA does, however, display two connecting 
melting points on DSC, which is consistent with our 
previous studies (Li et  al. 2021b). The dual melting 
peak occurs due to the melting of the different crys-
tal forms/phases present in PLA. The α’ form melts 
at a lower temperature, while the α form melts at the 
higher one (Pan et  al. 2007, 2008). The addition of 
filler acts as a nucleation site and speeds up the crys-
tallization rate and prevents formation of the α form.

Conclusions

Surface modification is a proven strategy to alter the 
hydrophilicity of CNF and aid in its drying and dis-
persion into polymer matrices. The coprecipitation 
strategy used in this work successfully produced 
CS-modified CNFs from commercial spray dried 
CNF. Initial testing indicated that a CS loading of 

2.5 wt% produced the most promising mechani-
cal properties without causing debonding with the 
PLA matrix. PLA + CNF/2.5CS composites featur-
ing fiber loadings from 5 to 30 wt% were produced 
using the CNF/2.5CS filler and displayed superior 
tensile strength and Young’s modulus compared to 
the unmodified spray dried CNF analogues. It is 
suspected that CS forms a covalent bond with PLA 
during melt compounding process, complimenting 
the extensive hydrogen bonding network already 
present. The results indicated that the dual-bonding 
system created by the CS modification successfully 
produces an improved interface between the spray 
dried CNF fibers and polymer matrix, which could 
be used as a promising strategy to thrust CNF com-
posites into large-scale, high performance polymer 
applications.
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