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Abstract We report here a simple and effective

method applying a combination of chitosan (Cs) and

Cu(II) ion to fabricate antibacterial cotton fabric with

a remarkable durability against laundering. The

antibacterial fabric was prepared by grafting Cs onto

cotton fibers through a succinic acid linkage, follow-

ing with loading Cu(II) ions by the coordination effect.

The modified fabric achieved 100% bacterial reduc-

tion (BR) rates against both S. aureus and E. coli, and

remarkable laundering durability was confirmed even

after 100 washing cycles. Moreover, longer Cs chains

grafted on fibers shown enhanced chelating capability

with Cu(II) ions. When compared to copper nanopar-

ticles, our strategy has advantages in terms of low

dosage of Cu(II), reasonable cost, simple process,

reduced environmental hazards, and improved

antibacterial durability. This work is believed to be a

practical strategy for developing environment-friendly

and cost-effective long-acting antibacterial cotton

textiles.

Keywords Cotton fabric � Chitosan � Cu(II) ion �
Coordination � Antibacterial durability

Introduction

Public health issues driven by emerging infectious

diseases constitute the forefront of global safety

concerns (Metcalf and Lessler 2017), the demand

and requirements for medical protective textiles are

also increasing. Wearing comfort and high-effective

antibacterial activity are the two key characteristics of

a medical protective textiles. Cotton fabric has been

widely used in medical protective textiles (Gao et al.

2021) due to its availability and low cost. However, its

susceptibility for bacterial growth severely limits the

service life of cotton textiles and even increases

infection risk of the users (Hajipour et al. 2012; Rojas-

Andrade et al. 2017). Therefore, various strategies

have been developed to endow cotton fabric with

antibacterial function (Emam 2019; Roman et al.

2020).

The mostly commonly reported technique is

embedding of metal nanoparticles onto cotton fabric

(Ali et al. 2018; Awais et al. 2021; Emam 2019; Zhang

et al. 2016), and silver nanoparticles (AgNPs) have
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attracted the most attention (Chernousova and Epple

2013; Mohamed et al. 2017). For example, Sadanand

et al. prepared antibacterial cotton fabrics through

in situ syntheses of AgNPs, and realized a broad

spectrum of antibacterial activities and low toxicity

(Sadanand et al. 2017). Another representative class of

metal nanoparticles is copper-based nanoparticles,

which has been accepted in the field of antimicrobial

textiles due to its low cost and outstanding antibac-

terial activity (Gouda and Hebeish 2009; Roman et al.

2020). Actually, elementary substance and oxide

forms of Cu have been widely used as antibacterial

reagents (Markovic et al. 2018; Nabila and Kannabi-

ran 2018; Radetić and Marković 2019; Vasantharaj

et al. 2019; Xu et al. 2018a, b). Despite of the high

antibacterial activity, application of these inorganic

nanoparticles in the textile industries still are limited

by complicated preparation process, large dosage and

poor durability (El-Nahhal et al. 2018; Roman et al.

2020). Generally, metal ions releasing from the metal

nanoparticles play a primordial role for the antibac-

terial effect (Applerot et al. 2012; Godoy-Gallardo

et al. 2021; Meghana et al. 2015). Therefore, immo-

bilization of active metal ions onto fabrics may be a

reasonable way to achieve an antibacterial function

using mini-doses and simple treatment process. Espe-

cially, Cu(II) ion can be a candidate because it has high

antibacterial activity, acceptable biocompatibility and

low toxicity (Godoy-Gallardo et al. 2021). However,

this expectation faces a challenge in achieving bioci-

dal activity and durability simultaneously, which is a

basic feature of the ideal antibacterial textile (An-

dreeva and Shchukin 2008; Si et al. 2018). Most Cu

salts are water-soluble, which are hardly to stabilized

on cotton fabrics to realize a satisfying durability

against laundering (El-Ajaily et al. 2007; Qin et al.

2010). Therefore, it is still the biggest challenge to find

an effective way to immobilize Cu(II) ion onto cotton

fibers to overcome the durability challenging.

Chitosan is one of the most sustainable and

abundant polysaccharides that has been studied for

its antimicrobial properties for many years (Badawy

et al. 2016; Dutta et al. 2012; Li et al. 2020; Ma et al.

2017; Shukla et al. 2013; Verma et al. 2021). Numbers

studies have demonstrated that chitosan can be used as

a good binder for immobilizing antibacterial reagents

(An et al. 2014; El.Shafei and Abou-Okeil 2011;

Haldorai and Shim 2013; Murali et al. 2019). More-

over, chitosan is able to chelate with a broad spectrum

of metal ions, in particular transition elements (Khan

et al. 2013; Qin 1993). The chelating ability of

chitosan with Cu(II) ion has been well-documented

and extensively studied (Gritsch et al. 2018). Interest-

ingly, the chelation ability of chitosan with Cu(II) ions

has been applied to form coordination complexes to

act as therapeutic metal ions (Mourino et al. 2012),

which play a positive role in promoting tissue

regeneration and inhibiting the growth of prokaryotes.

However, to our knowledge, no previous study has

addressed the application of the chitosan with Cu(II)

ion complex for fabricating antibacterial cotton fabrics

that combined both the biocompatibility and antimi-

crobial activity.

Aiming at a highly durable antibacterial cotton

fabric with a mini-dose loading of Cu(II) ions, we

investigate the combination effect of Cu(II) ion and

chitosan grafted on cotton fibers. A very simple

treatment process is employed to preparing the

chitosan-Cu(II) based antibacterial cotton fabric. Cot-

ton fabric is first pretreated with succinic acid (SA),

and then, the chitosan is linked onto cotton fibers by

using SA as the bridging agent. Finally, Cu(II) ions are

immobilized on the modified fiber surfaces through

the coordination effect of the amine groups of

chitosan. According to the previous literatures, the

coordination models for Cu(II) and NH2 group could

be a bridge model (Schlick 1989), a pendant model

(Ogawa et al. 1993), or the coexisting model (Rhazi

et al. 2002). Therefore, the grafted Cs chains should be

able to provide long enough free segments to allow the

amino groups movable for the ordered arrangement.

We suggest that Cs chain length might be an important

factor to affect the movable Cs segments. To test this

hypothesis, the chain length effect of the grafted

chitosan on chelating capability with Cu(II) ion is

further studied. The structure and morphology of the

grafted chitosan as well chitosan-Cu(II) complexes

layer were characterized utilizing Fourier transform

infrared (FTIR) spectroscopy, X-ray diffraction

(XRD), X-ray photoelectron spectroscopy (XPS),

and Field emission scanning electron microscopy

(FE-SEM). The release behavior of Cu(II) ions was

also evaluated by Atomic absorption spectroscopy

(AAS). Experimental data show that longer chitosan

chains are beneficial for immobilization of Cu(II) ions,

and the modification gives outstanding antibacterial

durability to cotton fabric without sacrificing of the

desired cotton properties. We believe that this work
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will stimulate further research interests in developing

antibacterial cotton textiles having a low toxicity but

more efficient, flexible and economical.

Experimental

Materials

Cotton fabric (100 g/m2) was obtained from Suzhou

Ke Chuan Textile Co., Ltd (China). Before modifica-

tion, the cotton fabric was cleaned with an aqueous

solution of sodium dodecyl sulfate (1 wt%, 1 h) and

ethanol (99.5 wt%, 30 min) at 60 �C to remove

impurities, rinsed with distilled water (100 mL 9 3

times), and dried at 80 �C for 1 h. Chitosan samples

(extracted and purified from crab shell) were pur-

chased from Zhejiang Golden-shell Pharmaceutical

Co. Ltd (China); their viscosity average molar mass

(Mv) and degree of deacetylation (DD) were deter-

mined by the viscometry and potentiometric titration,

as shown in Supporting Information. The Mv values

determined for chitosan samples amounted to 5 kDa,

40 kDa, 160 kDa and 320 kDa, and the corresponding

DD were 81%, 82%, 81% and 91%. Sodium dodecyl

sulfate (98%), succinic acid (99.50%), glacial acetic

acid (99.50%), sodium chloride (99.50%), ethanol

(99.50%), and cupric sulfate anhydrous (99%) were

purchased from Shanghai Aladdin Co. Ltd (China),

and used as received without further purification.

Other reagents are described in the Supporting Infor-

mation (SI).

Preparation of Co–S fabrics

The antibacterial cotton fabrics were prepared by a

pad-dry-cure process shown in Scheme 1. Firstly, the

pre-cleaned cotton fabrics (5 cm 9 5 cm, 10 pieces)

were immersed in an aqueous solution of succinic acid

(100.00 mL, 0.03 mol/L) at ambient temperature for

10 min, pad-rolled to 190 ± 10 wt% in wet weight,

heated at 160 �C for 20 min, washed using distilled

water (100 mL 9 3 times) and dried in an oven at

80 �C for 1 h to obtain the Co–S fabric.

Preparation of Co–Cs fabrics

Chitosan (Cs) powder (1.00 g) was dissolved in an

aqueous solution of acetic acid (99.00 mL, 1 wt%) at

ambient temperature with stirring. The Co–S fabrics

(5 cm 9 5 cm, 2 pieces) were soaked in the Cs

solution for 5 min, pad-rolled to 190 ± 10 wt% in

wet weight, heated at 120 �C for 20 min, washed

using distilled water (100 mL 9 3 times), and dried at

80�C for 1 h to obtain the Co–Cs samples, they are

named as Co–Cs1, Co–Cs2, Co–Cs3 and Co–Cs4

according to the Cs Mv values, i.e., 5 kDa, 40 kDa,

160 kDa and 320 kDa, respectively.

Preparation of Co–Cs–Cu fabrics

The aforementioned Co–Cs fabrics were further

soaked into an aqueous solution of CuSO4

(20.00 mL, 12.5 mmol/L) for 10 min at ambient

temperature, pad-rolled to 190 ± 10 wt%, heated at

120 �C for 20 min, washed using distilled water

(100 mL 9 3 times), and dried at 80 �C for 1 h to

obtain the Co–Cs–Cu fabrics, i.e., Co–Cs1–Cu, Co–

Cs2–Cu, Co–Cs3–Cu and Co–Cs4–Cu samples

(Scheme 1), respectively. Meanwhile, the original

cotton fabric was also treated with the CuSO4 solution

using similar process as a control sample, named as

Co–Cu.

Characterizations

Surface morphology of the modified cotton fabrics

was observed using FE-SEM, and the energy disper-

sive X-ray spectrometer (EDS) was used to measure

element distribution and content. Other instruments,

such as FTIR-ATR, XRD and XPS were used to

characterize the structural changes of modified cotton

fabrics, atomic absorption spectrophotometer (AAS)

is employed to measure the releasing of Cu ion.

Additionally, the antibacterial, laundering durability,

thermo-oxidative aging and wearing properties were

also evaluated, specific method are described in the

Supporting Information.

Results and discussion

The present work aims at developing an effectively

antibacterial cotton textile via the incorporation of

natural biomaterial and metal ions onto the fabric

surface. The preparation route we tried was shown in

Scheme 1. Cs was linked on the surface of the cotton

fabric through SA linkages, the grafted Cs chains offer
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NH2 groups to act as the ligands for coordinate with

Cu(II) ions, which exert an antibacterial effect. To

demonstrate the feasibility and effectiveness of the

functional finishing strategy, the surface coating

structure, antibacterial effect, and fabric properties

were investigated.

Coating structure and surface morphology

ATR-FTIR spectra of the modified and untreated

cotton fabrics are compared in Fig. 1. After the

treatment using SA, the resulting Co–S fabric shows

a new peak corresponding to the C=O stretching

vibration at 1723 cm-1, confirming that a consider-

able number of SA molecules have been linked onto

the cotton fabric. Further treatment using Cs allows

the Co-Cs fabric showed new peaks at 1540 cm-1,

1650 cm-1 and 1523 cm-1, which are attributed to the

NH2 group, the amide I (C=O) and amide II (C–N)

bonds, respectively (Khalilzadeh et al. 2020; Liu et al.

2016). Besides, the overlapped peaks at 3334 cm-1

corresponding to the stretching vibrations of O–H and

N–H groups (Li et al. 2019; Pires et al. 2021; Xue et al.

2019b) changed to broader when the Co-S fabric was

converted to Co–Cs fabric. Finally, the loading of

Cu(II) ions onto the Co-Cs fabric led to the two peaks

at 1545 cm-1 and 3340 cm-1 (all for N–H stretching

vibration of the NH2 group) shifted (Fig. S1), which

due to the coordination effect of the Cu(II) ions with

the NH2 groups of Cs (Qu et al. 2011). We also

investigated the effect of polymer chain length of the

grafted Cs by preparing a variety of Co–Cs fabrics

modified using different Cs samples with the Mv

values ranged from 5 to 320 kDa. As shown in Fig. 1b,

the peak depth at 1540 cm-1 increases in the order,

suggesting that the Cs Mv has a positive effect on the

quantity of Cs grafted on the cotton fibers.

Figure 2 presents representative SEM images of

Co-Cs4 and Co–Cs4–Cu fabrics to compare to pristine

cotton fabric (Co). The low-magnification SEM

images show insignificant differences between the

modified fabrics and the untreated fabric. Especially, it

Scheme 1 Preparation of the antibacterial cotton fabrics
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is clear that the interspaces between the yarns are not

occupied by the Cs polymer. This is beneficial to the

comfort fabric properties, such as water vapor trans-

mission, water absorption and softness. In the high-

magnification SEM images, however, the smooth fiber

surfaces of the untreated fibers (Fig. 2b) significantly

changed to rough after the modifications to Co–Cs4

(Fig. 2d). In addition, the Co–Cs1, Co–Cs2 and Co–

Cs3 fabrics all exhibit the similar surface morpholog-

ical changes of their fibers (Fig. S3a2–c2). Subse-

quently, the element mappings images reveal that

carbon (C) and oxygen (O) elements are homoge-

nously distributed on the fiber surfaces of all the

fabrics, whereas, nitrogen (N) element only exits in the

Co-Cs fabric (Figs. S2b3 and S3a3, b3, and c3).

Moreover, as the Mv of Cs increases, the coverage

density of N element in the surface Co–Cs fibers

increases. In summary, SEM and mapping images

suggest that Cs molecules are immobilized on the fiber

surfaces but not in the interspaces between yarns.

The grafted Cs chains provide a lot of NH2 groups

acting as ligand to form coordination bonds with

Cu(II) ions. We further compared the fiber surface

morphology of Co–Cs fabrics before and after coor-

dinating Cu(II) ions, the low-magnification SEM

images indicate that the fiber surfaces changed

insignificantly (Fig. 2c and e). However, the high-

magnification SEM images (Fig. 2d and f) reveal that

the surfaces of the Co–Cs4–Cu fibers are rougher than

those of Co–Cs4 fabrics, suggesting that adsorption of

Fig. 1 ATR-FTIR speactra of Co, Co–S and Co–Cs fabrics, a the full-range FTIR spectra and b their enlargements in a wavenumer

range from 1000 to 1800 cm-1

Fig. 2 SEM images of Co (a, b), Co–Cs4 (c, d), and Co–Cs4–Cu (e, f) fabric samples. Mapping images (g–j) and the EDS spectrum

(k) of Co-Cs4-Cu fabric
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the Cu(II) ions caused grafted the Cs coating changed.

The similar fiber morphological changes can also be

found in Co–Cs1–Cu, Co–Cs2–Cu and Co–Cs3–Cu

fabrics (Fig. S4a2–c2). Moreover, the mapping images

(Figs. 2j and S4a3–c3) suggest that Cu ions are

distributed on the Co–Cs–Cu fabrics uniformly, and

the EDS spectrum of Co–Cs4–Cu fabric means the

existence of C, O, N, and Cu elements on the surfaces

of fibers (Fig. 2k). As shown in Table 1, the content of

Cu element before and after washing at Co–Cu sample

are 0.54% and 0.13%, respectively. However, the

content of Cu element increases with the Mv value of

Cs increase, and reached the maximum of 1.19% at

Co-Cs4-Cu sample, it is still reminding 1.15% even

after 100 washing times. In summary, Cu(II) ions are

immobilized onto the cotton fabrics by forming

coordination bonds with the NH2 groups of Cs, the

higher the Mv value of Cs, the stronger the chelating

ability of Cu ions. Whereas the surface morphology of

the fibers changed insignificantly.

XPS is a widely used technique to investigate

chemical structure of the material surfaces. Here, we

collected the XPS spectra of the treated fabrics to

analyses their chemical compositions of the surfaces

to a depth of tens of nanometers. As shown in Fig. 3a,

all of the fabrics (Co, Co–Cs4 and Co–Cs4–Cu

samples) show C 1 s and O 1 s signals in their full

XPS survey spectra, whereas, the Co-Cs4 fabric

exhibits a new N1s signal, and the Co–Cs4–Cu fabric

new Cu 2p and N 1 s signals. Peak deconvolution of

the elemental signals was further performed to reveal

the chemical environments corresponding to the

elements. The high-resolution spectrum of the C 1 s

peak of Co fabric can be deconvoluted into three peaks

at 284.6 eV (C–C), 286.3 eV (C–OH), and 287.6 eV

(C–O–C) (Fig. 3b) (Jiang et al. 2019; Xue et al.

2019a). In contrast, the Co–Cs4 (Fig. 3c) and Co–

Cs4–Cu (Fig. 3d) fabrics, showed two new deconvo-

lution peaks at 285.3 eV and 287.8 eV, which are

ascribed to C-N and C=O/C–O–C bonds, respectively.

As shown in Fig. 3e, the deconvolution of N 1 s peak

showed two peaks corresponding to N–H and N–C

bonds. It is worth noting that the deconvolution peak

corresponding to N–H bond positive shifted by 0.4 eV

by loading Cu(II) ions, suggesting again that the

coordination effect causes an electron transfer at the N

atoms (Artyushkova et al. 2013; Metson 1999). As

shown in Fig. 3f, the high-resolution spectrum of the

Cu 2p peak has two signals at 953.09 eV and

933.05 eV, which are corresponding to Cu 2p 1/2

and Cu 2p 3/2, respectively (Komeily-Nia et al. 2013;

Xu et al. 2019). It provides credible evidence for the

presence of the Cu(II) valence state. These XPS

spectra demonstrated the existence of Cs and Cu(II)

ions on the fiber surfaces, and the coordination bonds

between the Cu(II) ions and the NH2 groups of the

grafted Cs.

It is well known that most properties of cotton

fabric are related to their crystalline structure of the

cotton fibers. Hence, X-ray diffraction performed on

the original and modified fabrics to confirm their

crystalline structure. As shown in Fig. 4, the typical

peaks for the cellulose I crystalline form, for instance,

2h = 14.7�, 16.5�, 22.6�, and 34.5� (Nam et al. 2016),

were observed in the XRD curves of all fabrics.

Clearly, the crystalline structure of cotton fibers has

not been significantly damaged after the heating

process for the grafting chitosan and coordination

complexation Cu(II) ions, which is in good agreement

with our preview studies (Duan et al. 2020; Xu et al.

2019; Zhou et al. 2019).

Table 1 EDS elemental analyses of Co–Cu and Co–Cs–Cu fabrics before and after washing

Sample Weight/% (unwashed) Weight/% (washing 100 cycles) Retention rate of Cu(II)/%

C O Cu C O Cu

Co–Cu 47.61 51.85 0.54 47.13 52.74 0.13 24.07

Co–Cs1–Cu 47.38 52.02 0.59 49.37 50.39 0.24 40.68

Co–Cs2–Cu 47.59 51.59 0.82 48.05 51.45 0.50 60.98

Co–Cs3–Cu 47.89 51.27 0.85 47.43 51.87 0.70 82.35

Co–Cs4-Cu 46.55 52.26 1.19 48.80 50.05 1.15 96.64
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Antibacterial effect and durability

In the present work, Cs chains were covalently linked

onto cotton fibers via amidation reactions (Scheme 1).

However, the antimicrobial activities of the resulting

Co–Cs fabrics were so poor, that the BR values against

S. aureus and E. coli were lower than 46.00% and

38.25%, respectively (Figs. 5a and S5). Therefore, we

tried to immobilize Cu(II) ions by forming

coordination bonds with the NH2 groups of the grafted

Cs chains. As a result, a high-efficiency and durable

antibacterial effect was achieved on the modified

fabrics. Figures 5b, c and S6a show that the BR values

of Co–Cu and Co–Cs–Cu fabrics against S. aureus and

E. coli can reach to 100%, suggesting that the Cu(II)

ions immobilized on the cotton fiber surfaces not only

inhibit bacterial reproduction but also can kill the

bacteria. However, in the repeating washing tests, the

fabrics show significant difference in the term of

durability against laundering. The Co–Cu fabric,

which was prepared by a simple loading treatment of

Cu(II) ions on the original cotton fabric, showed a

rapid decrease in BR values. In contrast, the Co–Cs–

Cu fabrics exhibit an improved durability against

washing. Particularly, the BR rate of Co–Cs4–Cu

fabrics against E. coli and S. aureus were kept higher

than 98.48% even after 100 washing cycles.

This enhanced durability is in good agreement with

the Cu ion releasing results shown in Fig. 5d. When

the modified fabrics were soaked in water for 24 h, the

Co–Cu fabric leads the concentration of Cu(II) ion to

be almost constant at approximately 0.58 ppm,

Fig. 3 XPS characterization of the cotton fabrics: XPS survey spectra (a); C ls high-resolution spectra of Co (b), Co–Cs4 (c) and Co–
Cs4–Cu (d); N 1 s (e) and Cu 2p (f) high-resolution spectra

Fig. 4 XRD patterns of the Co and Co–Cs–Cu fabrics
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whereas the Co–Cs–Cu fabrics with except of Co–

Cs1–Cu fabric released Cu(II) ions to a concentration

more than 4.5 ppm. Interestingly, the laundering

durability of the Co–Cs–Cu fabrics semes influenced

by the Mv of the Cs used. After soaking for 24 h, the

leaching Cu(II) concentration of the Co–Cs2–Cu, Co–

Cs3–Cu and Co–Cs4–Cu fabrics are 5.95, 6.54 and

5.44 ppm, respectively. Especially, the Co–Cs4–Cu

fabric shows the greatest affinity for Cu(II) ions, as it

loaded the maximum quantity of Cu(II) ions, and keep

more than 96.70% of Cu(II) ions even after 100

washing cycles (Table 1). We speculated that the

enhanced affinity is due to the Cs grafted on the fiber

surfaces. The effect of polymer chain length of Cs

grafted on the cotton fibers on antibacterial durability

is explained by a coordination mechanism shown in

Scheme 2. In general, one Cu(II) ion maybe need four

or six NH2 ligands to form a spatially stable complex.

It is indisputable that longer Cs polymer leads to

longer segments movable, offering more NH2 groups

for the assembly with Cu(II) ions. Therefore, the

longer Cs chains would be able to form more

coordination bonds with Cu(II) ions. From another

perspective that one Cu(II) ion moving from deep in

the grafted Cs coating to outside, the Cu(II) ion will

experience numerous cycles of the formation/defor-

mation of the coordination complex with NH2 groups,

thus longer Cs chains provide more NH2 groups to

chelate with the Cu(II) ion, causing lower releasing

rate of Cu(II) form the grafted Cs layer. This

suggestion is in good agreement with the experimental

results that longer Cs chains show better antibacterial

durability against laundering.

On the other hand, textiles often be exposed to the

sun light or dried at a high temperature after washing,

which make copper nanoparticles easily oxidized to

copper oxides. It is necessary to use an inert

atmosphere of nitrogen or argon, and organic coatings

to prevent the oxidation (Kanninen et al. 2008) when

Cu NPs were used as the antibacterial reagent. This is

the main reason for the limited applications of Cu NPs

in the textile industry. In this regard, thermal oxygen

aging tests of the antibacterial fabrics that modified by

Cu(II) ions are very important. In the present work,

Co–Cs4–Cu fabric was selected to the tests because its

excellent laundering durability. As a result, after the

Fig. 5 Antibacterial effect of the Co–Cs fabrics (a), laundering durability against E. coli (b) and S. aureus (c), and sustained releasing
behavior of the modified fabrics (d)
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thermal oxygen aging test at 90 �C for 72 h, Co–Cs4–

Cu fabric still has strong antibacterial capability

(Figs. 6a and S7), as the BR values against E. coli

and S. aureus are 100% and 99.25%, respectively.

Moreover, as shown in Fig. 6b, the XRD spectrum of

Co–Cs4–Cu fabric after the thermal oxygen aging test

shows insignificant changes when compared to Fig. 4,

and the characteristic peaks assignable to copper

oxides are not found. These results imply that the Cs

polymer chains offer a protective effect to stabilize the

coordinated Cu(II) ions to be hardly oxidized. The

wide range XPS spectrum and Cu 2p spectrum of Co-

Cs4-Cu fabric shown in Figs. 6c and d also suggest

Scheme 2 The coordination mechanism for the stabilization effect of Cs chain length

Fig. 6 The thermal oxygen aging results of Co–Cs4–Cu fabric: antibacterial activity (a), XRD spectrum (b), full-range XPS spectrum

(c), and Cu 2p XPS spectrum (d)
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that the coordinated Cu(II) ions did not change after

the thermal oxygen aging at 90 �C for 72 h.

Another merit for the present work is the low

dosage of Cu(II) ions. As show in Table S2, the

antibacterial cotton fabrics based on Cu-based NPs

generally require high copper precursor dosages that

ranged from 0.25 to 2.5 g/gcotton. In contrast, the

present work achieved a durable antibacterial effect

by only using 0.18 g/gcotton. In summary, the grafted

Cs with highMv value (320 kDa) offer a suitable num-

ber of NH2 groups for coordinating Cu(II) ions,

imparting durably antibacterial effect to the cotton

fabric. The low dosage of Cu(II) ions in the present

work has advantages in the terms of low mass

production cost and alleviated environmental con-

cerns (Tamayo et al. 2016), which is in line with the

development requirements of eco-friendly and green

environmental protection.

Wearing performance analysis

Cotton fabric is the most commonly used material in

the textile industry. Thus, it is necessary to evaluate

the change of wearing properties before and after

modification. By comparing to the breaking strength

of Co fabric (31.33 MPa), the tensile strength

(Fig. 7a) of Co–Cs4 (27.62 MPa) and Co–Cs4–Cu

fabric (25.56 MPa) shown a slight decreased due to

the small amount of acetic acid (1%) used in the

modification process. On the other hand, decent

softness and air permeability are the typical comfort

properties of cotton fabric (Xu et al. 2018c). In this

work, no significant changes occurred in the crease

recovery angle (110.9�), water absorption (81.8%),

and water vapor transmission (21.6 g/h/m2) of the Co–

Cs4-Cu fabrics (Fig. 7b, c, and d). These results

indicated that the modification process did not damage

the wearing comfort properties of pristine cotton

fabric.

Conclusion

In summary, durably antibacterial cotton fabrics with

high antibacterial efficiency were obtained basing on

coordination effect between Cu(II) ions and the Cs

Fig. 7 Wearing performance of Co, Co–Cs4 and Co–Cs4–Cu fabrics. Tensile strength (a), crease recovery angle (b), water absorption
(c) and water vapor transmission (d)
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chains grafted on cotton fiber surfaces. The antibac-

terial fabrics can be prepared by a very simple

treatment process. Cs was grafted onto the cotton

fabric using SA as the bridging agent, following with

immersion treatment in a Cu(II) solution to immobi-

lize Cu(II) ions by the coordination effect. Longer Cs

chains grafted on fiber surfaces showed positive effect

on antibacterial durability against laundering. The

fabrics modified by the combination of Cu(II) ion and

grafted Cs can achieve 100% BR rates against S.

aureus and E. coli. Excellent laundering durability

was proofed by the BR value against E. coli and S.

aureus after 100 washing cycles, which are kept at

98.48% and 99.20%, respectively. The Cu(II) ions

immobilized by this way are stable at 90 �C for

oxidation conditions. The wearing properties of the

modified fabrics, including water vapor transmission,

water absorption, and softness, were almost undam-

aged during the modification process. The combina-

tion of Cu(II) ion and Cs grafted on cotton fibers shows

remarkable advantages in terms of low cost, simple

process, reduced environmental hazards, and

improved antibacterial durability, thus is believed to

be instructive in developing antibacterial cotton

textiles.
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