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Abstract The textile bleaching process that involves

hot hydrogen peroxide (H2O2) solution is commonly

practised in cotton fabric manufacture. The purpose of

the bleaching process is to remove color from the

cotton, achieving a permanent white before proceed-

ing to dyeing or shape matching. Normally, the visual

ratings of whiteness on the cotton are measured based

on whiteness index (WI). However, it is found that

there is little research on chemical predictive mod-

elling of the cotton fabric’s WI compared to experi-

mental study. Analytics using predictive modelling

can forecast the outcomes, leading to better-informed

cotton quality assurance and control decisions. Up to

date, there is limited study applying least square

support vector regression (LSSVR) model in the

textile domain. Hence, the present study aims to

develop a multi-output LSSVR (MLSSVR) model

using bleaching process variables and results obtained

from two different case studies to predict the WI of

cotton. The predictive accuracy of the MLSSVR

model was measured by root mean square error

(RMSE), mean absolute error (MAE), and the coef-

ficient of determination (R2). The obtained results

were compared with other regression models includ-

ing partial least square regression, predictive fuzzy

model, locally weighted partial least square regres-

sion, and locally weighted kernel partial least square

regression. Our findings indicate that the proposed

MLSSVR model performed better than other models

in predicting the WI as it showed significantly lower

values of RMSE and MAE. Furthermore, it provided

the highest R2 values which are up to 0.9999.
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Abbreviations

A A matrix consisting Lagrange

multipliers

b A threshold value

bk Kernel parameter for locally weighted

kernel partial least square

CIE Commission on Illumination

CPU Central processing unit (CPU)

H, P, Q, K,

X, 0,S

A definite matrix

H2O2 Hydroxide peroxide
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LSSVR Least squares support vector

regression

LOO Leave-one-out

LW-KPLSR Locally weighted Kernel partial least

square regression

LW-PLSR Locally weighted partial least square

regression

LV Latent variable

MAE Mean absolute error

p A positive hyperparameter of radial

basis function kernel function

PE Prediction error

PLSR Partial least square regression

MLSSVR Multi-output least square support

vector regression

NT Total number of data sets

N1 Number of training data sets

N2 Number of testing data sets

R2 R-squared or the coefficient of

determination

RBF Radial basis function

RMSE Root mean square error

SVM Support vector machine

T Temperature of bleaching process

t Time of bleaching process

V ,vi A vector in multi-output least square

support vector regression

WI Whiteness index

W Weighed value vector

xi, x Input vector

xc and yc Chromaticity coordinates of the

bleached cotton fabric samples

xn and yn Chromaticity coordinates of the

illuminant

yi,y, Y Output vector

YL Lightness

Z A mapping to some high or even

unlimited/infinite dimensional Hilbert

space or feature space via the

nonlinear mapping function / with nh
dimensions

c,k Two positive real regularised

parameters in the multi-output least

square support vector regression

/ðxÞ A nonlinear mapping function

n A vector containing slack variables

N A matrix consisting of slack variables

with an order of l� m

a A vector consisting of Lagrange

multipliers

‘ The Lagrangian function

Introduction

Cotton is widely used to make fabrics such as

garments, bedding, curtains, and carpets (Wang et al.

2018). Hence, it is an important fiber in the textile

industry. About 25 million tons of cotton are produced

annually around the world and most of them (* 50%)

are used to make the clothes (Ahmad et al. 2021).

Cotton fabric is popular because it has advantages

including softness, biodegradability, comfort, hypoal-

lergenic, breathability, and environmentally friendly

(being a natural fiber) (Xie et al. 2013). However,

similar to other natural fibers, cotton fiber contains

natural pigments that cause it to appear in yellowish-

brown in natural (Oliveira et al. 2018). It must be noted

that environmental factors such as soil, dust, smoke, -

dirt, and insects could also possibly affect the color of

cotton fiber. In general, the yellowish-brown of cotton

is visually associated with soiling or the lack of

cleanliness and it is an attribute that must be removed.

Industrially, cotton fabric bleaching is a chemical

oxidation process used to remove the yellowish-brown

coloration from cotton by damaging the colorant

(Oliveira et al. 2018). In other words, the bleaching

process is responsible for eliminating the coloring

materials from the cotton fiber to have a pure white

appearance. A white fabric is highly desirable as it

gives the impression of clean and pure (Jung and Sato

2013). Hence, the whiteness degree of cotton fabric is

the main requirement of bleaching. Besides, the

bleaching process that uses strong reducing or oxidiz-

ing agents is able to get rid of potentially hazardous

contaminants such as bacteria, molds, and fungi

(Gültekin 2016).

Hydrogen peroxide (H2O2) is one of the commonly

used bleaching agents and is highly effective to

oxidize the coloring matters (Oliveira et al. 2018). It

is more preferable compared to chlorine bleach

because it is gentler and less toxic (Bajpai 2007).

Additionally, optical brighteners can be added to the

bleaching process to increase whiteness levels (Oli-

veira et al. 2018). After the bleaching process, the

whiteness index (WI) that indicates the whiteness
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degree of the cotton is measured. Whiteness is defined

in colorimetric terms as a color with the highest

luminosity, no hue, and no saturation. The WI is

calculated from the data computed by colorimetric

instruments such as colorimeter and spectrophotome-

ter. The higher the WI, the greater the whiteness

degree of the measured cotton and vice versa

(Topalovic et al. 2007). If the preferred white fabric

has a high reflectance, then the ideal reflectance for

textile materials should approach 100 (Ferdush et al.

2019).

The WI of the bleached cotton fabric is perpendic-

ular to the time duration of the bleaching process and

the amount of H2O2 (Haque and Islam 2015).

Contrastingly, the bursting strength of the cotton

fabric decreases at prolonged duration of the bleaching

process and the increase in the H2O2 concentration. On

the other hand, the higher temperature can improve the

rate of bleaching and shorten the processing time

(Abdul and Narendra 2013). Therefore, a colorimetric

analysis is usually conducted to assess and investigate

the bleaching procedure on the cotton samples.

Artificial neural networks and adaptive neuro-infer-

ence systems have been used as prediction models in

the textile domain. However, these models require

large amount of data for model parameters optimisa-

tion and are quite time consuming. To address this

issue, a fuzzy predictive model had been developed by

Haque et al. (2018) using a fuzzy logic designer app in

MATLAB to predict the WI of cotton using the

bleaching process parameters that are nonlinear.

Nevertheless, this fuzzy model is unable to predict

the WI for the bleaching process parameters that are

not within the ranges of the input data. It does not have

the capability of machine learning models such as

least square support vector regression (LSSVR).

Machine learning models including LSSVR mod-

els can learn information directly from data and

understand their performance across a wide range of

inputs (Wexler et al. 2019). LSSVR model exhibits

good predictability to forecast the desired output

variable, especially for nonlinear data. Hence, it

received more attention and interest from researchers

in many different areas over the years (Moosavi et al.

2021; Xu et al. 2013; Zhang and Wang 2021). But it

was found that minimal research is conducted using

the LSSVR model on color relevant studies including

WI prediction.

Thus, in this study, an effective LSSVR model,

namely multi-output LSSVR (MLSSVR) is developed

using the bleaching process variables and results

obtained from two different case studies to estimate

the WI of bleached cotton. Then, the accuracy of

LSSVR is evaluated by calculating the coefficient of

determination (R2), root mean square error (RMSE),

and absolute mean error (MAE). Additionally, the

obtained results are compared with partial least square

regression (PLSR), predictive fuzzy model, locally

weighted partial least square regression (LW-PLSR),

and locally weighted kernel partial least square

regression (LW-KPLSR) models.

Materials and methods

This section explains the bleaching process, post-

treatment of cotton fabric, and WI measurement. It is

followed by the MLSSVR model development,

regression models parameters setting, and accuracy

of the predictive performance measurement. Lastly,

computer hardware and software configuration spec-

ifications are illustrated.

Bleaching process of cotton fabric and whiteness

index

Case study 1

In this case study, the experimental data was taken

from Haque et al. (2018). A single jersey cotton

knitted fabric of 130 g/cm2 was used as the fabric

samples and a 12.5 g of fabric sample with a 1:10

material liquor ratio was treated in each bleaching

time. The chemicals used in the bleaching process are

H2O2 as bleaching agent (with its concentration set at

1.8 g/L, 2 g/L, and 2.2 g/L), 2 g/L of sodium hydrox-

ide as caustic soda, and 1 g/L of kappazon H53

peroxide stabilizer. For each H2O2 concentration, the

bleaching process was operated at six individual

temperatures (T) (i.e., 78, 83, 88, 93, 98, 103 and

108 �C) and four different times (t) (i.e., 20, 30, 40,

and 50 min).

Case study 2

Similar study was also conducted by Haque and Islam

(2015) using a single jersey cotton fabric but with
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lower weight (110 g/cm2). H2O2 was also used as the

bleaching agent with three different concentrations

(1.8 g/L, 2 g/L, and 2.2 g/L). However, the bleaching

solution was formulated differently. It contained 1 g/L

of sodium hydroxide and 1 g/L of sodium silicate

stabilizer (instead of kappazon H53 peroxide stabi-

lizer). In terms of operation, the authors studied the

effects of temperature (78, 88, 98, and 108 �C) and

time (20, 30, 40 and 50 min) at four different intervals.

After bleaching process, both case studies subjected

the bleached fabric samples to hot washing at 70 �C
followed by cold washing at 27 �C. It was then

squeezed by hand and dried at 70 �C for 30 min.

Lastly, the WI for each bleached fabric sample was

measured using a reflectance spectrophotometer (Data

color 650). For case study 2, all the bleached fabric

samples were further analysed using a bursting

strength testing instrument (Autoburst, SDL Atlas)

and by the ISO 13038–1 method. Figure 1 is the

process flow involving bleaching operations, post-

treatment of fabric samples, color, and bursting

strength measurements.

Commission on Illumination (CIE) WI is one of the

widely used color measurement methods for comput-

ing a WI to measure the degree of whiteness of

bleached cotton fabric (Xu et al. 2015). This CIE WI

generally refers to measurements made under D65

illumination, which is a standard representation of

outdoor daylight. The CIE WI under CIE 1964 10�
standard observer can be represented by Eq. 1 (Haque

et al. 2018; Jafari and Amirshahi 2008).

WI ¼ YL þ 800ðxn � xcÞ þ 1700ðyn � ycÞ ð1Þ

where YL is the lightness, xc and yc are chromaticity

coordinates of the bleached cotton fabric samples, and

xn and yn are chromaticity coordinates of the illumi-

nant. However, the CIE WI has a constraint as shown

in Eq. 2 (Jafari and Amirshahi 2008).

40\WI\ð5YL � 280Þ ð2Þ

Multi-output least square support vector regression

model development

In this study, LSSVR model is developed from the

bleaching process parameters to predict the WI of

cotton fabrics. LSSVR model is a nonlinear prediction

model that derives the support vector machine (SVM)

theory (Liu and Yoo 2016). Different from the SVM,

LSSVR gives a better solution for the reduction of the

computational burden where a set of linear equations

in a dual space is utilized. In this study, a MLSSVR

model was adopted. Due to the multi-output setting in

this MLSSVR, it becomes a more efficient training

model. The examples of the results of the MLSSVR

can be found in the work Xu et al. (2013) in which the

Fig. 1 Flowchart explaining the bleaching operations, post-treatment of fabric samples, color, and bursting strength measurements
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MLSSVR were tested using synthetic, corn, polymer,

and broomcorn data sets. However, this MLSSVR

model has yet been used to examine cotton fabric data

set.

The idea of MLSSVR comes from the multi-output

case done by An et al. (2009). It is letting Y ¼ ½yi;j� 2
<l�m where yi;j is the (i,j)-th of an output,< is the set of

real numbers, and l� m is the order of a matrix. With a

given total number of data sets, NT, i.e., ðxi; yiÞf gli¼1

where xi 2 <d and yi 2 <m are the input vector and

output vector, respectively. And the multi-output

regression has an objective to estimate an output

vector y 2 <m from a given input vector x 2 <d where

this regression problem can be built as learning a

mapping from <d to <m. Multi-output regression

solves the problem by searching the weighed value

vector, W ¼ ðw1;w2; :::;wmÞ 2 <nh�m and a threshold

value, b ¼ ðb1; b2; :::; bmÞT 2 <m that minimises the

following objective function with constraints (Eqs. 3

and 4). According to the structural risk minimization

principle, the actual risk bound by the empirical risk is

minimized by the objective function (Eq. 3) with its

constraint (Eq. 4). The real signification on these

equations is to minimize the frequency of error in the

training data set used to develop the MLSSVR model.

Hence, the probability of error on the testing data set is

expected to be small. For more details about the

structural risk minimization principle, one is referred

to the work of Vapnik (1992).

min

W 2 <m�nh ; b 2 <m =ðW ;NÞ

¼ 1

2
traceðWTWÞ þ c

1

2
traceðNTNÞ; ð3Þ

s:t: Y ¼ ZTW þ repmat(bT,l,1) þ N; ð4Þ

where c is a positive real regularised parameter, n ¼
ðn1; n2; :::; nlÞT 2 <l is a vector containing slack

variables, Z ¼ ð/ðx1Þ;/ðx2Þ; :::;/ðxlÞÞ 2 <nh�l;/ :

<d ! <nh is a mapping to some high or even

unlimited/ infinite dimensional Hilbert space or fea-

ture space via the nonlinear mapping function / with

nh dimensions, and N ¼ ðn1; n2; :::; nmÞ 2 <l�m
þ is a

l� m matrix consisting of slack variables with <þ the

subset of positive ones. The slack variables are used to

improve not only the generalization model perfor-

mance but also to yield more compact and lower

complexity model (Tang et al. 2015). These slack

variables are non-negative and can tolerate misclassi-

fication in the training data that is used to develop the

MLSSVR model.

It can be said that the solution to the regression

problem shown in Eqs. 3 and 4 disconnects between

the different output variables and only need to use

Cholesky decomposition, conjugate gradient, or single

value decomposition, etc. to compute a single inverse

matrix once that is shared by all the vectors

wið8i 2 NmÞ. Unlike the single-output case, its solu-

tion to the regression problem needs to be solved

multiple times. Hence, the multi-output regression is

much more efficient than the single-output regression.

According to Xu et al. (2013), to formulate the

intuition of Hierarchical Bayes, all wi 2 <nhði 2 NmÞ
is assumed to be written as wi ¼ w0 þ vi, where the

vectors vi 2 <nhði 2 NmÞ are small when the different

outputs are same to each other, otherwise the mean

vector w0 2 <nh are small. It can be said that w0 takes

the information of the commonality and viði 2 NmÞ
brings the information of the specialty. w0 2 <nh ,

V ¼ ðv1; v2; :::; vmÞ 2 <nh�m, and b ¼ ðb1; b2; :::;

bmÞT 2 <m are solved spontaneously to minimise the

following objective function with constraints (Eqs. 5

and 6):

min

w0 2 <nh ;V 2 <nh ; b 2 <m =ðw0;V ;NÞ

¼ 1

2
wT

0w0 þ
1

2

k
m
traceðVTVÞ þ c

1

2
traceðNTNÞ;

ð5Þ

s:t: Y ¼ ZTW þ repmatðbT ; l; 1Þ þ N; ð6Þ

where N ¼ ðn1; n2; :::; nmÞ 2 <l�m, W ¼ ðw0 þ v1;w0

þv2; :::;w0 þ vmÞ 2 <nh�m, k; c 2 <þ are two positive

real regularised parameters, and Z ¼ ð/ðx1Þ; /ðx2Þ;
:::;/ðxlÞÞ 2 <nh�l.

The Lagrangian function for the problem shown in

Eqs. 5 and 6 is defined as (Eq. 7):

‘ðw0;V ; b;N;AÞ ¼ =ðw0;V;NÞ � traceðATðZTW

þ repmatðbT ; l; 1Þ þ N� YÞÞ;
ð7Þ

where A ¼ ða1; a2; :::; amÞ 2 <l�m is a matrix contain-

ing of Lagrange multipliers. The Karush-Kuhn-

Tucker conditions for optimality result in the linear

equations as follows (Eq. 8):
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o‘

ow0

¼0 ) w0 ¼
Xm

i¼1

Zai;

o‘

oV
¼0 ) V ¼ m

k
ZA;

o‘

ob
¼0 ) AT1l ¼ 0l;

o‘

oN
¼0 ) A ¼ cN;

o‘

oA
¼0 ) ZTW þ repmatðbT ; l; 1Þ þ N� Y ¼ 0l�m

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð8Þ

From Eq. 8, the mean vector, w0 is a linear

combination of v1; v2; :::; vm. As mentioned earlier

since 8i 2 Nm, so wi is assumed to be wi ¼ w0 þ vi in

which wi is also a linear combination of v1; v2; :::; vm.

Hence, the following objective function (Eqs. 9 and

10) can obtain an equivalent optimisation problem

with constraints including only the V and b.

min

V 2 <nh ; b 2 <m =ðV;NÞ ¼ 1

2

k2

m2
V1m1T

mV
T

þ 1

2

k
m
traceðVTVÞ

þ c
1

2
traceðNTNÞ; ð9Þ

s:t: Y ¼ ZTV þ repmat(
k
m

ZTV1m,1,m)

þ repmat(bT,l,1) þ N ð10Þ

From Eq. 9, MLSSVR figures out a trade-off

between small size vectors for every out-

put,traceðVTVÞ and nearness of all vectors to the

mean vector, V1m1T
mV

T . Like the standard LSSVR, W

and N are discharged to get the linear system as

expressed in Eq. 11.

0ml�m PT

P H

� �
b
a

� �
¼ 0m

y

� �
ð11Þ

where P ¼ blockdiag ð1l; 1l; :::; 1lÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{m

2 <ml�m, H ¼
Xþ c�1Iml þ m

k

� �
Q 2 <ml�ml, X ¼ repmatðK;m;mÞ

2 <ml�ml, Q ¼ blockdiag ðK;K; :::KÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{m

2 <ml�ml, and

K ¼ ZTZ 2 <l�l are definite matrices while a ¼
ðaT1 ; aT2 ; :::; aTmÞ

T 2 <ml and y ¼ ðyT1 ; yT2 ; :::; yTmÞ 2 <ml

are vectors. Hence, the linear system shown in the

Eq. 11 has ðlþ 1Þ � m equations.

Then, the solution of Eq. 11 can be written in term

of a� ¼ ða�T1 ; a�T2 ; :::; a�Tm ÞT and b�. Hence, the respec-

tive decision function for the multiple output is

expressed as Eq. 12.

f ðxÞ¼/ðxÞTW�þb�T ¼/ðxÞTrepmatðw�
0;1;mÞ

þ/ðxÞTV�þb�T

¼/ðxÞTrepmatð
Xm

il

Za�il;1;mÞþ
m

k
/ðxÞTZA�þb�T

¼repmatð
Xm

il¼1

Xl

j¼1

a�il;jKðx;xjÞ;1;mÞ

þm

k

Xl

j¼1

aj�Kðx;xjÞþb�T

ð12Þ

Same as the conventional LSSVR, the linear system

of MLSSVR as displayed in Eq. 11 is not positive

define, hence solving Eq. 11 instantly is hard. But it

can be reconstructed into the following linear system

(Eq. 13):

S 0ml�ml

0m�m H

� �
b

H�1Pbþ a

� �
¼ PTH�1y

y

� �
;

ð13Þ

with S ¼ PTH�1P 2 <m�m. Notice that it is easy to

display S that is a positive definite matrix. Then, this

new linear system as shown in Eq. 13 can be solved

using the following three steps:

Step 1 Solve g, and m from Hg ¼ P and Hm ¼ y,

Step 2 Compute S ¼ PTg,

Step 3 Obtain the solution:b ¼ S�1gTy; a ¼ m� gb.

Thus, in MLSSVR, the solution of the training

procedure can be obtained by solving two sets of linear

equations with the same positive definite coefficient

matrix H 2 <ml�ml and the inverse matrix of S 2
<m�m

þ can be computed easily (Xu et al. 2013).

Figure 2 illustrates the training procedure of

MLSSVR involving the mathematical equations.

In this study, the radial basis function (RBF) kernel

function adopted from Keerthi and Lin (2003) as

shown in Eq. 14 is used in the MLSSVR.

kðx; zÞ ¼ expð�p x� zk k2Þ; p[ 0 ð14Þ

where p is the positive hyperparameter of RBF kernel

function. Moreover, all the tuning parameters in

MLSSVP including c, k, and p are tuned and optimised
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using leave-one-out (LOO) procedure to obtain the

average relative error, d as shown in Eq. 15 (Xu et al.

2013).

d ¼ 1

l

Xl

i¼1

Yi � Ŷi
�� ��

Yi
ð15Þ

whereby Yi shows the actual output and Ŷi shows the

predicted output.

Regression models parameters setting

For case study 1, a total of 56 bleaching data sets

which consists of H2O2 concentration, T, t, and the WI

of the cotton fabric were adopted from Haque et al.

(2018). In this study, H2O2 concentration, T and t are

served as the input variables for the regression models

including MLSSVR, PLSR, LW-PLSR, and LW-

KPLSR models while the WI of the bleached cotton

fabric is denoted as the output variable. Meanwhile,

for case study 2, 48 bleaching data sets including H2O2

Fig. 2 Flowchart explaining the training procedure of MLSSVR involving the mathematical equations

123

Cellulose (2021) 28:8841–8854 8847



concentration, T, t, bursting strength (psi) and the WI

of the cotton fabric were taken from Haque and Islam

(2015). Different from case study 1, an additional

input variable—bursting strength of bleached cotton

fabric is included in the regression models. For both

case studies, their datasets were exported into

MATLAB software and divided into two sets, i.e.,

75% for training data and 25% for testing data. Hence,

they were split into 40 data sets for case study 1 and 36

data sets for case study 2 (see Table 1) to serve as

training data utilized to develop the regression models

and fuzzy method. Then, 16 and 12 data sets for case

study 1 and 2, respectively were used as testing data

for validation purposes. Moreover, training data were

also employed to evaluate the performance of the

MLSSVR, PLSR, LW-PLSR, and LW-KPLSR mod-

els as well as the fuzzy method. Then, RMSE, MAE,

and R2 for all regression models and fuzzy method

were determined and compared. Figure 3 shows a flow

chart explaining the framework of the regression

models and fuzzy method for the bleaching process.

NT, N1, N2, and latent variable (LV) represent the

total numbers of data sets, numbers of training data

sets, numbers of testing data sets, and number of LV,

respectively. In this study, LV is set as 1 while the

kernel parameter (bk) for LW-KPLSR with log kernel

function is set as 1. The value of phi in the LW-PLSR

and LW-KPLSR is fixed at 0.1 (Yeo et al. 2017).

Besides, some parameters for MLSSVR model which

are, c, k, and p were tuned using LOO technique to get

the optimal results. The summarised parameters

setting for MLSSVR, PLSR, LW-PLSR, and LW-

KPLSR models are displayed in Table 1.

Accuracy of the predictive performance

measurement

In this study, the performance of the prediction mod-

els is evaluated using RMSE, MAE, R2 and prediction

error (PE). Both RMSE and MAE are goodness-of-

fit indicators that describe differences in observed

and predicted values (Harmel et al. 2010). RMSE as

shown in Eq. 16 is the square root of the total of the

squared differences between the actual and expected

output. Thus, a lower RMSE implies better accuracy

and predictive performance (Hocaoğlu et al. 2008).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i Yi � Ŷi
� �2

n

s

ð16Þ

whereby n shows the number of samples.

MAE calculates the average absolute difference

between the actual and predicted output value. The

formula to calculate MAE is displayed in Eq. 17:

MAE ¼ 1

n

Xn

1

Yi � Ŷi
�� �� ð17Þ

As can be seen from Eq. 18, R2 is obtained by

comparing the total of the squared errors to the total of

the squared deviations about its mean. R2 is used to

measure the goodness of fit between real and predicted

variables with value ranging between 0 and 1 (Jaeger

et al. 2017).

R2 ¼ 1 �
P

i Yi � Ŷi
� �2

P
i Yi � Y
� �2

ð18Þ

whereby Y represents the mean value of the actual

output.

Additionally, PE (%) can be calculated using

Eq. 19 (Guang et al. 1995).

PE ¼ Ŷi � Yi
Yi

����

����� 100 ð19Þ

Computer hardware and software configuration

specifications

In this study, all simulation works were performed on

the same computer and software system to ensure the

consistency of the results from all regression models.

The hardware and software configuration

Table 1 Values used for the regression models in two different case studies

Parameters NT N1 N2 LV phi bk c k p

Values (case study 1) 56 40 16 1 0.1 1 15 10 3

Values (case study 2) 48 36 12 1 0.1 1 15 10 3
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specifications of the used Asus ZenBook UX305

laptop are Window 10 (64 bit), MATLAB (version

R2021a), 2.20 GHz Intel core M3-6Y30, 4.0 GB

random-access memory and 128 GB solid state drive

storage.

Results and discussion

As mentioned earlier, for case study 1, an LSSVR

model that is called MLSSVR was developed using

several key parameters of bleaching process, and these

parameters including H2O2 concentrations, T, t, and

WI of cotton fabric samples are nonlinear. Case study

2 is very similar to case study 1 except one additional

parameter, i.e., bursting strength of cotton fabric

samples was included to build MLSSVR model. The

higher value of WI indicates the greater degree of

whiteness of the cotton fabric. Whiter cotton fabric is

desired before it is dyed, printed or other wet-

treatments (Ferreira et al. 2019; Kabir et al. 2014).

Many studies reported that WI of cotton fabric can be

increased by increasing H2O2 concentrations and T

(Abdul and Narendra 2013; Ferdush et al. 2019).

Nevertheless, high concentrations of H2O2 could

break up the unsaturated bonds (e.g., C=C) and

decreases the bursting strength of cotton fabric

(Ferdush et al. 2019; Haque and Islam 2015; Tang

et al. 2016). Hence, optimum bleaching process

parameters are required to determine the effectiveness

of the bleaching process to produce a targeted cotton

fabric whiteness.

The predictive modelling techniques including the

MLSSVR model can be used to estimate the outcome

or the results of the bleached cotton fabric such as its

WI using the bleaching process parameters. Initially, a

fuzzy predictive model was constructed by Haque

et al. (2018) for a bleaching process using a MATLAB

app that is called a fuzzy logic designer. However, this

method is unable to predict beyond the range of

the input data. Hence, in this study, an MLSVVR

was developed using the bleaching process parameters

reported in two different case studies to overcome the

limitations of this fuzzy method. Moreover, other

regression models including PLSR, LW-PLSR, and

LW-KPLSR models were also built using the same

process parameters from case study 1 and 2.

All results from these regression models and fuzzy

method for case study 1 are summarized in Table 2 for

comparison purpose and the results for fuzzy method

were adopted from Haque et al. (2018). Moreover, the

results from the regression models and fuzzy method

for case study 2 are presented in Table 3 where the

results for fuzzy method were generated from the

fuzzy logic designer app in the MATLAB. In Tables 2

and 3, RMSE1, MAE1, and R2
1 are the RMSE, MAE,

Fig. 3 Framework of regression models and fuzzy method for the bleaching process
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and R2 for training data, respectively whereas RMSE2,

MAE2, and R2
2 are the RMSE, MAE, and R2 for

testing data, respectively. From both tables, among

these regression models and fuzzy method, MLSSVR

with RBF kernel function provided the best predictive

performance. However, the results of MLSSVR for

case study 2 (Table 3), especially the results for

training data (RMSE1, MAE1, and R2
1) are much

better compared to the case study 1 (Table 2).

Based on Tables 2 and 3, PLSR did not work well

for both case studies as its RMSE and MAE values for

case studies 1 and 2 are significantly higher than

MLSSVR. Furthermore, its R2 values for both case

studies are lower than 0.84. PLSR which is a linear

model gave the worse results as it is unable to cope

with the nonlinear process data from bleaching

process (Wang et al. 2021). Additionally, compared

to fuzzy method, MLSSVR showed 60–445% (for

case study 1) and 2080–8107% (for case study 2)

lower RMSE and MAE values, and 3–112% higher R2

values. The fuzzy method involves membership

function, fuzzy logic operators, and if-then rules.

There are three conceptual components such as a rule

case that include a selection of fuzzy rules, a database

which explains the membership functions used in the

fuzzy rules, and a reasoning mechanism that shows the

inference way upon the rules to derive an output

(Kovac et al. 2013). From Table 2, for testing data set,

fuzzy method performed better than PLSR, LW-

PLSR, and LW-KPLSR in which the RMSE2 and

MAE2 for fuzzy method are lower and its R2
2 values

are higher. However, in Table 3, fuzzy method

performed poorer than PLSR, LW-PLSR, and LW-

KPLSR.

In addition, the overall results show that the fuzzy

method worked badly compared to MLSSVR. This

may be due to the helps of LOO in the MLSSVR to

determine the optimal tuning parameters and the RBF

kernel function that helps to map the original data into

a high dimensional space for better prediction of the

nonlinear data. For both LW-PLSR and LW-KPLSR,

it is found that MLSSVR demonstrated 101–263% for

case study 1 and 175–1108% for case study 2 lower

RMSE and MAE values and 1–7% for case study 1 and

0.30–15% for case study 2 higher R2 values. On the

other hand, LW-PLSR and LW-KPLSR gave better

Table 2 Comparison of the results obtained from different models for case study 1

Results MLSSVR Fuzzy method PE (%) PLSR PE (%) LW-PLSR PE (%) LW-KPLSR PE (%)

Kernel function RBF – – – – – – Log kernel –

RMSE1 0.1606 0.7373 359 2.1014 1209 0.3335 108 0.4755 196

MAE1 0.1126 0.6133 445 1.5981 1320 0.2560 127 0.4088 263

R2
1 0.9985 0.9673 3 0.6469 35 0.9934 1 0.9863 1

RMSE2 0.3339 0.5358 60 1.2194 265 0.8122 143 0.6714 101

MAE2 0.2388 0.4781 234 1.0427 337 0.7101 197 0.5861 145

R2
2 0.9829 0.9549 3 0.8357 15 0.9103 7 0.9334 5

Table 3 Comparison of the results obtained from different models for case study 2

Results MLSSVR Fuzzy method PE (%) PLSR PE (%) LW-PLSR PE (%) LW-KPLSR PE (%)

Kernel function RBF – – – – – – Log kernel –

RMSE1 0.0408 3.3523 8107 2.1117 5070 0.2304 464 0.4025 885

MAE1 0.0274 1.5914 5706 1.5815 5670 0.2024 638 0.3311 1108

R2
1 0.9999 0.4206 58 0.6589 34 0.9970 0.30 0.9906 0.93

RMSE2 0.2972 6.4790 2080 1.8877 535 0.8185 175 0.9051 205

MAE2 0.2302 6.1358 2566 1.6081 599 0.7822 240 0.8721 279

R2
2 0.9810 - 0.1150 112 0.6828 30 0.8825 10 0.8337 15
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results than fuzzy method for the training data set of

case study 1 where their RMSE1 and MAE1 are lower

and R2
1 are higher. Moreover, for case study 2, LW-

PLSR and LW-KPLSR also performed better than

fuzzy method and PLSR. This may be due to the

presence of locally weighted algorithm in both LW-

PLSR and LW-KPLSR which improves their predic-

tive performance for the training data. These locally

weighted based models (LW-PLSR and LW-KPLSR)

are using a PLSR model that is constructed by

weighting data with Euclidian distances similarity

measurement (Kaneko and Funatsu 2016).

From Figs. 4 and 5, it is obvious that the predicted

outputs for training data and testing data of case stud1

1 and 2 from MLSSVR are closer to the actual data

compared to other regression models and fuzzy

method. From Fig. 4b for testing data, except for

MLSSVR, other regression models and fuzzy method

performed poorer compared to training data in Fig. 4a

in which their predicted outputs are far from the actual

output. Similarly, besides MLSSVR in Fig. 5a, b for

training and testing data, the predicted outputs from

the rest of the regression model and fuzzy model are

far apart from the actual data. Moreover, Fig. 6a, b

illustrate the correlation between the actual and

predicted values of output from MLSSVR for testing

data of case study 1 and 2, respectively. From these

figures, notice that all data points are close to the line

which indicate that the predicted outputs from

MLSSVR are near to the actual data for testing data

of both case studies. In general, all the results show

that MLSSVR copes much better than the rest of the

methods. Hence, it can conclude that MLSSVR is an

effective method to predict the WI using the bleaching

process parameters.

Conclusions

In the current study, LSSVR model, namely MLSSVR

was developed using the experimental results of

bleaching process from two different case studies to

predict the WI of the cotton fabric. The input variables

for case study 1 are H2O2 concentrations, T, and t

while case study 2 contains 1 additional input variable,

i.e., bursting strength. It is important to determine the

optimal bleaching process parameters in order to

achieve the highest WI of the cotton fabrics. Hence,

the predictive modelling including MLSSVR plays an

essential role to meet the targeted quality of cotton

fabrics in the textile manufacturing processes. For

both case studies, the developed MLSSVR could

outperform other methods including fuzzy method,

PLSR, LW-PLSR, and LW-KPLSR as it improved

RMSE and MAE values by 60–8107%. Besides, its R2

values in both case studies are also very high, reaching

up to 0.9999. These results denote that MLSSVR

model is a potential predictive model for the bleaching

process in the textile domain. In future studies,

integrating a locally weighted algorithm in the

(b)(a)

Fig. 4 Comparison of the predicted output values from regression models a for training data and b for testing data of case study 1
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MLSSVR model could be expected to enhance its

predictive outcomes. Furthermore, more attention

should be paid to the new aspects of the textile fiber

bleaching process and the cost of the process

optimization.
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