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Abstract In this study, new amino heterocyclic

cellulose derivatives were prepared. Dialdehyde cel-

lulose was functionalized by Schiff base reaction with

(E)-2-(4-(dimethylamino) benzylidene)-4-oxo-4-

phenylbutanehydrazide, (E)-2-((1,3-diphenyl-1H-

pyrazol-4-yl)-4-oxo-4-phenylbutane hydrazide, and

thiophene-2-carbohydrazide. The prepared derivatives

were characterized and confirmed by Fourier-trans-

form infrared spectroscopy, scanning electron micro-

scopy, energy-dispersive X-ray, and Thermo

gravimetric analysis. Additionally, antimicrobial

activity of all derivatives was assessed as well as

antitumor activity. Results revealed that, all deriva-

tives have potential antimicrobial activity against

Escherichia coli, Pseudomonas aeruginosa, Staphy-

lococcus aureus, Bacillus subtilis, Candida albicans,

Cryptococcus neoformance, Aspergillus niger, A.

fumigatus. Additionally, (E)-2-(4-(dimethylamino)

benzylidene)-4-oxo-4-phenylbutanehydrazide and

(E)-2-((1,3-diphenyl-1H-pyrazol-4-yl)-4-oxo-4-

phenylbutanehydrazide cellulose compounds have

good antitumor activities against Hep G2 and MCF7

cancerous cell lines without any effects on Wi38

normal cell line. Molecular dynamics study revealed

that (E)-2-(4-(dimethylamino) benzylidene)-4-oxo-4-

phenylbutanehydrazide and (E)-2-((1,3-diphenyl-1H-

pyrazol-4-yl)-4-oxo-4-phenylbutanehydrazide cellu-

lose derivatives have selectively target the ATP

binding pocket residues. Identification of these ATP

binding site residues and their crucial roles could

provide the structure basis for understanding c-Kit

kinase auto-inhibition

Keywords Cellulose � Periodate oxidation � 2,3-
Dialdehyde cellulose � Antimicrobial � Antitumor �
Heterocyclic derivatives � Docking study

Introduction

Cancer is one of the most life-threatening diseases,

with more than 100 different types occurring due to

some molecular changes within the cell. It is the third

leading cause of death worldwide following cardio-

vascular and infectious diseases (Kelloff 1999).

Cancer is a multistage or multi mechanism procedure

leading to the uncontrolled proliferation of abnormal
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cells due to aberrations in numerous cell signaling

circuits (Sung et al. 2012). The tumors and secondary

infections especially in cancer patients are the first

causes of mortality and morbidity over all the World

(Siegel et al. 2015). Unfortunately, the most anticancer

agents not necessarily have antimicrobial activity. In

fact, the secondary infections by microorganisms in

immune suppressed patients (usually cancer patients)

in many cases are severing (de Coaña et al. 2015;

Elbahnasawy et al. 2021). Therefore, the dual effect

agents which have anticancer activity and antimicro-

bial activity are preferred in medical applications

(Felı́cio et al. 2017; Muthukumar et al. 2016).

Moreover, due to lack of effective drugs, cost of

chemotherapeutic agents, and the side effects of

anticancer drugs, cancer can be a cause of death.

Therefore, synthesis of new compounds have anti-

cancer and antimicrobial is required, these compounds

it must be effective, cheap and safe.

Cellulose derivatives are popular in medical appli-

cation as carriers, filers, additives, stabilizer, thickness

agents and ect (Ciechanska 2004; Hoenich 2006).

Cellulose and its derivatives are characteristic by high

safety profile materials (Abu-Elghait et al. 2021; El-

Naggar et al. 2020; Hasanin et al. 2019; Hasanin and

Moustafa 2020). Hence, there are used in many

pharmaceutical industrial applications (Abdelraof

et al. 2019a, 2019b, 2020). Moreover, the functional-

ized cellulosic materials now are targeted in pharma-

copeia of drug preparations. DAC is one of the most

attractive materials to use in drug formulation. Addi-

tionally, the DAC is the functionalized cellulose

derivative with high reactivity as well as nontoxic,

biodegradable and biocompatible (Dacrory et al.

2020). This study aimed to synthesize new hetero-

cyclic cellulose derivatives through the Schiff‘s base

reaction of TEMPO oxidized cellulose with some

heterocyclic compounds. The structure of the prepared

derivatives will be characterized by FTIR, TGA, SEM,

and EDX analysis. The antimicrobial, antitumor,

cytotoxicity, as well as molecular docking and

dynamics prediction of the binding mode of the active

compounds has been explored. This study illustrates

an insight on the molecular properties of the lead

compounds as potential inhibitors as well as the

binding mode and contribution of the important

residues at the active sites necessary for interaction

of these identified inhibitors.

Materials and method

Materials

Bleached Kraft bagasse pulp was obtained from Misr

Edfu Pulp,Writing & Printing Paper Company (MEPP

Co.), Egypt. The chemical analysis of the pulp was; a-
Cellulose, Klason Lignin, Hemicelluloses and Ash

were 77.60 ± 0.65, 0.87 ± 0.23, 21.40 ± 0.76, and

1.30 ± 0.41%, respectively. All chemicals were

obtained from Fluka and Aldrich without further

purification.

Methods

Oxidation of cellulose to dialdehyde cellulose (DAC)

In a water bath at 60 �C, 1.6 g of sodium metaperi-

odate (NaIO4) was added to 2 g of cellulose suspended

in water (1% consistency) and the reaction container

was covered with aluminum foil to avoid the photo-

induced decomposition of the periodate. After 5 h,

ethylene glycol was added into the mixture to end the

reaction by quenching the residual periodate. The

oxidized cellulose (DAC) was thoroughly washed

with alcohol followed by distilled water during the

filtration. The aldehyde content which means the

degree of oxidation was determined using hydroxy-

lamine hydrochloride reacts with aldehyde group to

generate hydrochloric acid (Kalmoush et al. 2020).

The released hydrochloric acid was titrated with

sodium hydroxide and the degree of oxidation was

calculated from the following equation:

DO% ¼ MNaOHðV sample� V controlÞ
m=Mw

� 100

where M is molarity of NaOH, m is the dry weight of

the DAC sample (g), and Mw is the molecular weight

of the repeating unit, (C6H8O10)n, in DAC

(160.124 g/mol).

Preparations of heterocyclic derivatives

(E)-2-(4-(dimethylamino)benzylidene)-4-oxo-4-

phenylbutanehydrazide (a), (E)-2-((1,3-diphenyl-1H-

pyrazol-4-yl)-4-oxo-4-phenylbutanehydrazide (b),

and thiophene-2-carbohydrazide (c) were prepared

according to a procedure previously reported in the
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literatures (Abou-Elmagd et al. 2016; Khan and

Rastogi 1991; Reid and Heindel 1976).

Preparation of heterocyclic cellulose compounds

To suspended solution of 1 g DAC in 10 mL amixture

of ethylene glycol/ DMSO (10:1) a heterocyclic

compound as individual was added and homogenized

for 2 min. In a sonication water path, the homogenate

mixture was heated to 50 �C. After 1 h, the reaction

product was washed several times with ethanol and

frozen in a deep-freezer at - 80 �C followed by the

freeze-drying process (ALPHA 1–2/LD PLUS,Martin

Christ, Germany). The cellulose derivatives from the

reaction of cellulose with (E)-2-(4-(dimethy-

lamino)benzylidene)-4-oxo-4-phenylbutanehy-

drazide, (E)-2-((1,3-diphenyl-1H-pyrazol-4-yl)-4-

oxo-4-phenylbutanehydrazide, and thiophene-2-car-

bohydrazide were taken the following code letters R,

Y, and W respectively.

Characterizations

Fourier transfer infrared spectroscopy (FT-IR)

The FT-IR spectra of native DAC, heterocyclic

derivatives, as well as the prepared compounds were

recorded with FT-IR spectrometer (Nicolet Impact-

400 FT-IR spectrophotometer) in the range of

400–4000 cm-1.

Surface morphology and EXD

The surfaces of the prepared samples were investi-

gated by SEM coupled with energy dispersive X-ray

analysis; Model Quanta 250 FEG (Field Emission

Gun) attached with EDX Unit (Energy Dispersive

X-ray Analyses) for EDX, with accelerating voltage

30 kV (Hashem et al. 2020a).

Thermo gravimetric analysis

The thermal stability of native DAC and prepared

compounds were carried out using a TGA Perkin-

Elmer (STA6000), with a heating rate (10 �C/min).

The temperature ranged from room temperature up to

800 �C under air atmosphere (50 mL/min).

Antimicrobial activity

Microbial strains and growth conditions

Antimicrobial activity of heterocyclic cellulose com-

pounds was assessed against seven microorganisms

including Gram-negative bacteria (Escherichia coli

ATCC25922 & Pseudomonas aeruginosa ATCC

27,853), Gram-positive bacteria (Staphylococcus aur-

eus ATCC25923 & Bacillus subtilis ATCC6051),

unicellular fungi (Candida albicans ATCC90028 &

Cryptococcus neoformance ATCC 14,116), and mul-

ticellular fungi (Aspergillus niger RCMB 02,724 and

A. fumigatus RCMB 02,568). Bacterial strains were

cultured on nutrient agar at 37 �C for 24 h, while

fungal strains were inoculated on malt extract agar

(MEA) plates then incubated for 3–5 days at

28 ± 2 �C; and then kept at 4 �C for further use

(Fouda et al. 2015; Hashem et al. 2019, 2020b; Khalil

and Hashem 2018).

Agar well diffusion method

Agar well diffusion method was used for inhibition

zone determination of tested heterocyclic cellulose

compounds. The test of diffusion in agar was

performed in accordance with the document M51-A2

of the Clinical Laboratory Standard Institute (Stan-

dards 2002) with minor adaptations. The selected

bacterial strains were cultured on nutrient agar media

for 24 h at 37 �C. Bacterial suspensions of

1.5 9 106 CFU/mL were separately prepared, seeded

into Muller Hinton agar media, and poured aseptically

into sterilized petri plates. 100 lL of the tested

compound and standard antibiotic (Amoxicillin/clavu-

lanate) at concentration 1 mg/mL was added in agar

well, and then plates were put in refrigerator for 2 h

followed by incubation at 37 �C for 24 h. While as,

fungal strains were initially grown on MEA plates and

incubated at 30 �C for 3–5 days (Suleiman et al.

2018a, 2018b). The fungal suspension was prepared in

sterilized phosphate buffer solution (PBS) pH 7.0, and

then the inoculums was adjusted to 107 spores/mL

after counting in a cell counter chamber. One mL was

uniformly distributed on agarMEA Plates. Sterile cork

borer (75 mm) was used for making well in inoculated

MEA plates, and then 100 ll of the tested compound

and reference antifungal (nystatin) at concentration

1 mg/mL was added. All MEA plates were incubated
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at 30 �C for 72 h, and then the inhibition zone

diameter was measured (Dacrory et al. 2021; Hashem

et al. 2021a).

Minimum inhibitory concentration (MIC)

Three heterocyclic cellulose compounds (R, W, and

Y), DAC as a start material, Amoxicillin Clavulanate

(AMC) as a standard antibiotic and nystatin as a

standard antifungal agent were prepared in different

concentrations ranged from 1000 to 15.62 lg/mL,

then assessed separately to detect MIC against

selected bacterial and fungal strains (Hashem et al.

2021b; Valgas et al. 2007).

In-vitro cytotoxicity and anticancer activity

The cytotoxicity of DAC and the three heterocyclic

cellulose compounds was determined using the MTT

protocol (Khalil et al. 2020; Van de Loosdrecht et al.

1994) with minor modification. The normal Wi38 cell

line, and two cancerous cell lines Hep G2 (liver

hepatocellular carcinoma) and MCF7 (breast cancer)

were collected from American type culture collection

(ATCC). The cell quantity and the percentage of

viable cell were totaled by the following formula:

Viability% ¼ Test OD

Control OD
� 100

Cytotoxicity% ¼ 100� Viability%

Computational methodology

System preparation

The X-ray crystal structures of cKit tyrosine kinase

was retrieved from the Protein Data Bank (PDB code:

1t46) (Mol et al. 2004). These structures were then

prepared for molecular dynamics (MD) studies using

UCSF Chimera (Pettersen et al. 2004). The missing

residues were modeled using MODELLER 9.19

(Webb and Sali 2014) integrated with Chimera

software. R and W compounds were drawn using

Chem Bio Draw Ultra 12.1 (Reflections On Chem-

Draw 2014). Hydrogen atoms were added to the ligand

and removed from the receptor. Altogether, all three

prepared systems were subjected to 50 ns MD simu-

lations described in the simulation section.

Molecular dynamic (MD) simulations

The integration of Molecular dynamic (MD) simula-

tions in biological systems’ study enable exploring the

physical motion of atoms and molecules that cannot be

easily accessed by any other means (Hospital et al.

2015). The insight extracted from performing this sort

of simulations provides an intricate perspective into

the biological systems’ dynamical evolution, such as

conformational changes and molecule association

(Hospital et al. 2015). The MD simulations of all

systems were performed using the GPU version of the

PMEMD engine present in the AMBER 18 package

(Lee et al. 2018). Each compound’s partial atomic

charge was generated using ANTECHAMBER utiliz-

ing General Amber Force Field (GAFF) protocol

(Wang et al. 2006). Each system was implicitly

solvated within an orthorhombic box of TIP3P water

molecules within 10 Å of any box edge, performed by

the Leap module of the AMBER 18 package.

Neutralization of each system was further imple-

mented via Na? and Cl- counter ions integrated with

the Leap module. An initial minimization of each

system was performed for 2000 steps in the presence

of an applied restraint potential of 500 kcal/mol,

followed by a full minimization of 1000 steps carried

out by conjugate gradient algorithm omitting

restraints.

Each system was gradually heated during the MD

simulation from 0 to 300 K for 500 ps, ensuring that

all systems maintained a fixed number of atoms with a

fixed volume. The system’s solutes were imposed with

a potential harmonic restraint of 10 kcal/mol and a

collision frequency of 1 ps. Ensuing heating, equili-

bration of each system was performed for 500 ps at a

constant temperature of 300 K. The number of atoms

and pressure within each system for each production

simulation were kept constant to mimic an isobaric-

isothermal (NPT) ensemble, with the system’s pres-

sure being maintained at 1 bar using the Berendsen

barostat (Berendsen et al. 1984).

Each system was MD simulated for 50 ns. In each

simulation, the SHAKE algorithm was employed to

constrain the hydrogen bond atoms. The step size of

each simulation was 2 fs and integrating an SPFP

precision model. The simulations coincided with an

isobaric-isothermal ensemble (NPT), with random-

ized seeding, constant pressure of 1 bar, a pressure-

coupling constant of 2 ps, a temperature of 300 K, and

123

8358 Cellulose (2021) 28:8355–8374



Langevin thermostat with a collision frequency of

1 ps.

Post-MD analysis

The trajectories generated after MD simulations were

each saved every 1 ps, followed by analysis using the

CPPTRAJ (Roe and Cheatham III 2013) module

implemented in the AMBER18 suite. All plots and

visualizations were completed using the Origin

(Seifert 2014) data analysis tool and Chimera (Pet-

tersen et al. 2004), respectively.

Thermodynamic calculation

To estimate the binding interaction of the studied

heterocyclic cellulose compounds toward the c Kit

tyrosine kinase receptor, binding free energy was

computed using molecular mechanics integrated with

the Poisson-Boltzmann or generalized Born and

surface area continuum solvation (MM/PBSA and

MM/GBSA) approach (Genheden and Ryde 2015b).

MM/GB-SA and MM/PB-SA rely on the ligand–

protein complex molecular simulations to compute

rigorous statistical-mechanical binding free energy

within a specified force field (Drissi et al. 2015; Hayes

and Archontis 2012b). Binding free energy averaged

over 500 snapshots extracted from the entire 50 ns

trajectory. The estimation of the change in binding

free energy (DG) for each molecular species (complex,

ligand, and receptor) can be represented as follows

(Hou et al. 2010):

DGblind ¼ Gcomplex � Greceptor � Glignand ð1Þ

DGblind ¼ Egas þ Gsol � TS ð2Þ

Egas ¼ Eint þ Evdw þ Eele ð3Þ

Gsol ¼ GGB þ GSA ð4Þ

GSA ¼ cSASA ð5Þ

The term Egas, Eint, Eele, and Evdw symbolize the gas-

phase energy, internal energy, Coulomb energy, and

van der Waals energy, respectively. The Egas was

directly assessed from the FF14SB force field terms.

Solvation free energy (Gsol) was evaluated from the

energy involvement from the polar states (GGB) and

non-polar states (G). The non-polar solvation free

energy (GSA) was determined from the Solvent

Accessible Surface Area (SASA) (Sitkoff et al.

1994) using a water probe radius of 1.4 Å. In contrast,

the polar solvation (GGB) contribution was assessed by

solving the GB equation. Items S and T symbolize the

total entropy of the solute and temperature, respec-

tively. Each residue contributes to the total binding

free energy obtained at the predicted active site by

carrying out per-residue energy decomposition at the

atomic level using the MM/GBSA method in AMBER

18 (Genheden and Ryde 2015a; Hayes and Archontis

2012a).

Results and discussion

Chemistry

Periodate oxidation of cellulose yields dialdehyde

cellulose (DAC) which is one of a promising func-

tionalized cellulose due to its chemical structure can

provide many possibilities for follow-up chemistry.

Periodate oxidation is the selective oxidation of C2-C3

bonds of glucopyranose ring by periodate ions formed

dialdehyde groups at these positions and the degree of

oxidation depends on the oxidation conditions (Lindh

et al. 2014). Consequently, cellulose can be modified

with aromatic or aliphatic amines by Schiff-base

formation (Scheme 1) (Lucia et al. 2019). In this work

the degree of oxidation is 58%.

The chemical structure of cellulose was changed by

periodate oxidation and examined by FTIR spectra.

Figure 1A shows the FTIR spectra of DAC, the

characteristic bands of DAC appeared in the 1730 and

880 cm-1 regions assigned to the hemiacetal and

hydrated form (Kim et al. 2017). The absorption bands

of the compound at 1555 and 1115 cm-1 were

characterized by N–H deformation and C–N stretching

vibrations. This confirmed that the multifunctional

amines were successfully introduced into the oxidized

cellulose (Han et al. 2010).

The FTIR spectra for the Schiff‘s base products

revealed the existence of the characteristic vibrational

band which are assigned to the (C=N) group at

1620–1625 cm-1. Additionally, the appearance of

new strong bending band for (N–H) at 1600 cm-1 for

derivative W. The absence of the band characteristic

the carbonyl group indicates to the dehydration

process to produce the furan moiety in R and Y
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derivatives. Consequently, the IR analysis for the

products confirms that the reaction occurred through

the formation of Schiff‘s bases between the active

aldehyde group of DAC and the amino group of the

heterocyclic cellulose compound (Abou-Elmagd et al.

2016; Hashem et al. 2017).

Surface morphology by SEM

SEM micrographs of DAC, as well as its derivatives,

proved that the formation of DAC by periodate

oxidation of cellulose and the successive reaction of

amines derivatives with DAC (Fig. 2). SEM image of

DAC shows it is comprised of a smooth surface that

lacked visible fibers and as reported in the literature,

this confirms that the oxidation proceeded from the

particle surface to the inside of the material and not

only from the amorphous domains (Leguy et al. 2018).

The formation of compact materials with smooth

surfaces and no visible fibers has also been observed

when DAC reacted with hetero derivatives.

Elemental compositions of DAC derivatives were

studied by energy-dispersive X-ray spectroscopy

(SEM–EDX) and are displayed in Fig. 2. Firstly, the

Scheme 1 Plausible mechanism for periodate oxidation of cellulose (A) and the preparation of DAC derivatives (B)
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high nitrogen content observed for three DAC deriva-

tives confirmed the efficient reaction of DAC with the

heterocyclic derivatives (R, W, and Y). Another

confirmation is the presence of sulfur in the EDX

analysis of the W derivative.

Thermal analysis

The TGA curves between 50 and 700 8C of DAC and

its derivatives are depicted in Fig. 3. The degradation

behavior of DAC showed significant differences from

that of its derivatives. The first minor weight loss

observed for DAC and its derivatives at 220 and 270

8C respectively, this attributed to dehydration such as

physically adsorbed and hydrogen bond linked water

molecules can be lost at this stage. The second stages

of decomposition appeared at 309, 317, 320, and 336

8C for DAC and its derivatives R, Y, and W

respectively. These results are emphasized that the

reaction between DAC and heterocyclic derivatives

occurred.

Antimicrobial activity

Recently, heterocyclic cellulose compounds have

been used as antimicrobial agents (Desai et al. 2018;

Mustafa 2018). In the current study, compound R, W

and Y which based on DAC and heterocyclic cellulose

compounds were assessed their antimicrobial activity.

Eight different fungal and bacterial strains were used

in antimicrobial activity test. A comparison between

the antimicrobial activity of R, W, and Y towards

fungal and bacterial strains was carried out according

to inhibition zone and MIC as shown in Fig. 4. The

results revealed that, all designed derivatives exhibited

antifungal and antibacterial activity toward all fungal

and bacterial strains. Moreover, Y derivative was the

highest for antimicrobial activity toward gram nega-

tive bacteria (E. coli and P. aeruginosa), unicellular

fungi (C. albicans and C. neoformance) and multicel-

lular fungi (A. niger and A. fumigatus) except gram

positive bacteria (B. subtilis and S. aureus), while as

DAC was the lowest against all strains. However, R

derivative exhibited good antimicrobial activity

toward all strains but it lower than Y derivative except

B. subtilis and S. aureus. Individually, different

concentrations for three designed derivatives, DAC,

(Amoxicillin clavulanate)/(nystatin) as a standard

antibacterial/antifungal were tested for antimicrobial

activity to detect the minimum inhibitory concentra-

tion as shown in Fig. 4. EL-Sayed et al. (2017) proved

that cellulose based 2-((2-aminoethyl)amino)-4-aryl-

6-indolylnicotinonitriles have potential antimicrobial

activity against gram positive bacteria and did not

show any activity on gram negative bacteria. The

Fig. 1 FTIR of neat heterocyclic materials (upper) and the

native DAC as well as the prepared heterocyclic cellulose

compounds (lower)
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results demonstrated that MIC of Y derivative against

E. coli, P. aeruginosa, B. subtilis, S. aureus, C.

albicans and C. neoformance was 62.5 lg/mL, while

it was 31.25 lg/mL toward A. niger and A. fumigatus.

However, MIC of R and W derivatives toward E. coli,

P. aeruginosa, C. neoformance was 125 lg/mL, but

MICs of R derivative against B. subtilis, S. aureus, C.

albicans, A. niger and A. fumigatus were 62.5, 62.5,

125, 62.5 and 31.25 lg/mL respectively. Also, MIC of

W derivative was 125 toward B. subtilis, S. aureus, C.

neoformance and A. fumigatus, while as MICs of W

derivative toward C. albicansand A. niger were 31.25

and 62.5 lg/mL. Generally, our designed heterocyclic

cellulose derivatives exhibited good antimicrobial

activity more than standard antibacterial/antifungal

(AMC/nystatin) compounds. Eventually, these results

concluded that quit low concentrations of three

derivatives Y, R, andW (31.25–125 lg/mL) exhibited

potential antimicrobial activity against gram positive,

gram negative bacteria, unicellular and multicellular

fungi.

Antitumor activity

The cytotoxic effect of DAC, heterocyclic cellulose

derivatives was determined against Wi38 by estimat-

ing the concentration for each compound (IC50) at

50% cell viability. Figure 5A revealed that, IC50 for

all derivatives were more than 200 lg/mL. Generally,

if the IC50 is C 90 lg/mL, the compound is classified

as not cytotoxic (Ioset et al. 2009). Based on the

above-mentioned results, heterocyclic cellulose

derivatives did not display a significant toxicity to

Wi38 cell line.

In vitro antitumor activity against Hep G2 andMCF

cell lines at different concentrations (31.25–1000 lg/

Fig. 2 SEM image of DAC and SEM images as well as EDX analysis of R, W, and Y derivatives
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mL) was assessed as shown in Fig. 5. The results

revealed that, Y derivative was the highest for

antitumor activity against cancerous cell lines Hep

G2 and MCF, where concentrations above 100 lg/mL

exhibited inhibition rate for both cancerous cell lines

more than 50%. Moreover, R and W derivatives had

antitumor activity against Hep G2 and MCF7 but

lower than Y derivative. The compound Y caused a

remarkable decrease in the development of tumor Hep

G2 and MCF7, where the lethal concentrations of Y

derivative which caused the death of 50% of human

tumor Hep G2 and MCF7 were 90 and 102 lg/mL.

Additionally, two derivatives R and W caused a

decreasing in Hep G2 and MCF7 but lower than Y

derivative, where IC50 of R andW toward Hep G2 and

MCF7 were (163 and 258) and (172 and 349 lg/mL)

respectively. On the other hand, two derivatives Y and

R have no effect on normal cell line Wi38 at these

concentrations, but compound W has cytotoxic effect

on Wi38 normal cell line at 349 lg/mL. Eventually,

two compounds Y and R have good antitumor

activities against Hep G2 and MCF7 tumor cell lines

without any effects on Wi38 normal cell line. How-

ever compound W has antitumor activity but has

cytotoxic effect on Wi38 normal cell line. In accor-

dance with our results, recent studies proved antitumor

activity of hetrocyclic compounds (Ali et al. 2018;

Ismail and El-sayed 2019; Martins et al. 2015). Ismail

and El-sayed (2019) screened fourteen heterocyclic

compounds according to their antitumor activity

against Hep G2 and MCF7 tumor cell line, and found

all compounds had antitumor activity, and IC50 in

range 5.48–19.02 lM for all compounds. Moreover,

Yusefi et al. (2020) loaded 5-Fluorouracil as a

heterocyclic organic compound on cellulose fibers

from rice straw and evaluated their antitumor activity,

and reported the drug-loaded sample of CF/5-FU at a

250 lg/mL concentration inhibits colorectal cancer

cells in ration 58%.

Molecular dynamic (MD) and system stability

MD simulations were performed to investigate the

inhibition efficiency and binding of the ligands within

the catalytic active site. The validation of system

stability is essential to trace disrupted motions and

avoid artifacts during the simulation. The recorded

average RMSD values for the entire systems were

2.00, and 1.63 Å for ckit- R and ckit- W derivatives

respectively. The RMSD plot indicates that the cKit-

W derivative system was more stable and convergence

from the beginning of the simulation compared to the

Fig. 2 continued
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Fig. 3 TGA (upper) and DTGA (lower) of DAC, R, W, and Y derivatives
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Fig. 4 Antimicrobial activity and MIC of DAC, R, W, and Y compounds against E. coli, P. aeruginosa, S. aureus, B. subtilis, C.
albicans, C. neoformance, A. niger and A. fumigatus (AMC = Amoxicillin Clavulanate and Nyst. = Nystatin)
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cKit-R derivative, which has been convergence 35 ns

(Fig. 6A).

Afterward, we calculated the Root mean square

fluctuation (RMSF) values to invest the R and W

inhibitor’s inhibitory effect towards the amino acid

residues of the C kit receptor (Li et al. 2011). The

computed average atomic fluctuation of Ckit-R and

Ckit-W derivatives systems were 1.20 and 1.16 Å

Fig. 5 The cytotoxicity of DAC, R, W, and Y compounds

againstWi38 normal cell lineA. Antitumor activity of R,W, and

Y derivatives against Hep G2 andMCF7 cancer cell line: Photos

of treated Hep G2 B andMCF7D; Inhibition rate % against Hep

G2 C and MCF7 E
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Fig. 5 continued
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respectively (Fig. 6). This result indicated a higher

residue fluctuation of Ckit-R compared to the Ckit-W

derivative systems (Fig. 6B).

The radius of gyration was measured to measure the

overall system compactness as well as stability during

MD simulation after ligand binding. The computed

average Rg values were 19.8 and 19.76 Å for cKit-R

and cKit-W derivative systems respectively (Fig. 6C).

The observed behaviour suggested that the Ckit-W

derivative system exhibited a high rigid structure

compared to the Ckit-R derivative system.

Mechanism of binding interactions based

on binding free energy calculation

The binding of a ligand to a specific pharmacological

target provides the structural basis for that ligand’s

activity. Therefore, predicting protein–ligand binding

affinities based on free binding free energy calcula-

tions is an attractive approach to discovering new

protein inhibitors (Cournia et al. 2017). The MM-

GBSA program in AMBER18 was used in calculating

the binding free energies by extracting snapshots from

Fig. 6 RMSD of Ca atoms of the protein backbone atoms (A),
RMSF of each residue of the protein backbone Ca atoms (B).
Radius of Gyration (ROG) of Ca atoms of protein residues of the

backbone atoms relative to the starting minimized over 50 ns for

cKit-R compound,and cKit-W compound systems (C)
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the trajectories of the compounds. As shown in

Table 1, all the reported calculated energy components

(except DGsolv and DGGB) gave high negative values

indicating favorable interactions. For cKit receptor

interactions with R and W derivatives, binding free

energy (DGbind) values of- 34.06 and- 38.91 kcal/-

mol were obtained. This indicated a more favorable

binding of W towards compared to the R derivative

system. It is fascinating to observe that the calculated

binding free energies gave a good order regarding the

experimentally determined IC50 values.

A close look at the individual contribution of

energy reveals that the more positive van der Waals

energy components drive both R, and W derivative

interactions with the C kit enzyme, resulting in the

observed binding free energies. Substantial binding

free energy values were observed in gas phase for all

the inhibition process with values up to

- 135.94 kcal/mol (Table 1).

Identification of the critical residues responsible

for inhibitor binding

In order to gain further insights into key residues

involved in the inhibition of cKit tyrosine kinase

receptor, the total energy involved when R and W

derivatives bind these enzymes was further decom-

posed into the involvement of each site residues. From

Fig. 7, the major favorable contribution of R deriva-

tive to C-kit tyrosine enzyme is predominantly

observed from residues Tyr 14 (- 4.963 kcal/mol),

Lys 17 (- 9.839 kcal/mol), Leu 31 (- 9.256 kcal/-

mol), Lys38 (- 9.012 kcal/mol), Thr 30

(- 6.33 kcal/mol), Val 39 (- 8.93 kcal/mol), Val 40

(- 10.04 kcal/mol), Leu 73 (- 12.96 kcal/mol), Leu

77 (- 9.359 kcal/mol), lys 78 (- 9.322 kcal/mol),

Val 79 (- 7.931 kcal/mol), Leu 80 (- 14.56 kcal/-

mol), Leu 157 (- 10.609 kcal/mol), Leu 163

(- 12.54 kcal/mol), Leu 164 (- 16.091 kcal/mol),

Thr 165 (- 9.524 kcal/mol), Asp 174

(- 44.592 kcal/mol) and Leu 177

(- 9.635 kcal/mol).

On the other hand, the major favorable contribu-

tions of C kit tyrosine kinase inhibition by W

derivative were predominantly observed from residues

Glu 76(- 46.72 kcal/mol), Leu 77 (- 7.72 kcal/mol),

Lys 78 (- 6.376 kcal/mol), Val 79 (- 7.222 kcal/-

mol), Leu 80 (- 14.619 kcal/mol), Leu 83

(- 13.118 kcal/mol), Lys 142 (- 7.598 kcal/mol),T
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Gly 143 (- 8.424 kcal/mol), Leu 147

(- 13.009 kcal/mol), Asp 156 (- 48.54 kcal/mol),

Leu 157 (- 10.844 kcal/mol), Lys 171

(- 7.103 kcal/mol), Asp 174 (- 45.549 kcal/mol),

Leu 177 (- 7.285 kcal/mol), Lys 182 (- 6.74 kcal/-

mol), Lys 190 (- 5.31 kcal/mol), Gly 191

(- 4.61 kcal/mol), Lys 198 (- 7.948 kcal/mol), and

Thr 211 (- 9.424 kcal/mol).

Molecular mechanism and ligand binding mode

analysis

Figure 8 illustrated that the c Kit tyrosine kinase ATP

catalytic binding site Asp 174 residue has established a

hydrogen bond interaction with the oxygen atoms of

the cellulose group in both R and W compounds. In

addition, the pharmacophoric hot spot, His 154,

formed van der Walls interaction with R compound

Fig. 7 Per-residue decomposition plots showing the energy contributions to the binding and stabilization of R (A) and W (B) at the
catalyatic active site of C kit tyrosine kinase receptor. Corresponding inter-molecular interactions are shown in R (a) and W (b)
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and Pi -Anion interaction with W compound. It is

noteworthy that five other hydrophobic- interacting

residues were typical to both ligand; Ile 153, Lys 152,

Glu 76, Val 79, and Leu 83 thus stabilizing both

energetically favorable ligands in the hydrophobic

pocket accessible. A total number of 21 residues were

found at the binding interface of the cKit- R compound

complex while 23 residues were seen in cKit-W

compound interaction.

Conclusion

Heterocyclic cellulose derivatives were prepared

through the Schiff base reaction of oxidized cellulose

(DAC) with amino heterocyclic derivatives. The

reaction was elucidated by different analysis tech-

niques and the results prove the successful formation

of Schiff base with heterocyclic derivatives. The

prepared derivatives have a broad antimicrobial

activity against gram-positive, negative bacteria, uni-

cellular, and multicellular fungi. Also, they exhibited

good antitumor activities against Hep G2 and MCF7

tumor cell lines without any effects on the Wi38

normal cell line. Differential binding of R compound

and W compound to these protein targets was mea-

sured using the MM-GBSA method, which revealed

favorable interactions with DG values of -34.06 and -

38.91 kcal/mol, respectively. The calculated binding

free energy of W compound was higher compared to

the R compound. The binding free energy component

analysis suggests that the major energy constituent

driving the W compound activity was van der Waals

energy component. The decomposition of the total

energies into individual active site residue contribu-

tions revealed that the amino acids that contribute

largely to the inhibitor binding to c Kit tyrosine kinase

are Glu76(- 46.72 kcal/mol), Leu77 (- 7.72 kcal/-

mol), Lys 78 (- 6.376 kcal/mol), Val 79

(- 7.222 kcal/mol), Leu 80 (- 14.619 kcal/mol),

Leu 83 (- 13.118 kcal/mol), Lys 142 (- 7.598 kcal/-

mol), Gly 143 (- 8.424 kcal/mol), Leu 147

(- 13.009 kcal/mol), Asp 156 (- 48.54 kcal/mol),

Leu 157 (- 10.844 kcal/mol), Leu 164

(- 16.091 kcal/mol), Lys 171 (- 7.103 kcal/mol),

Asp 174 (- 45.549 kcal/mol), Leu 177

(- 7.285 kcal/mol), Lys 182 (- 6.74 kcal/mol), Lys

190 (- 5.31 kcal/mol), Lys 198 (- 7.948 kcal/mol),

and Thr 211 (- s9.424 kcal/mol) are key components

to the binding of cKit tyrosine kinase. Identification of

these ATP binding site residues and their crucial roles

could open a novel paradigm towards structure-based

drug design of highly selective anti-tumor inhibitors

Fig. 8 The key interactions between the cKit tyrosin kinase at the ATP binding site residues with R compound (A) and W compound

(B)
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which would be considered in subsequent research

from our group.
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