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Abstract Recently, with the high requirement of

electromagnetic interference (EMI) shielding materi-

als, micro- or nano-fibrillated cellulose reinforced

Ti3C2Tx nanosheets (transition-metal carbides/car-

bonitrides, MXene) composites have attracted wide

attention due to their complementary functional

properties. Nevertheless, it is still challenging to

overcome a trade-off between EMI shielding perfor-

mance and mechanical enhancement with the addition

of reinforcing fillers. Herein, modified bacterial cel-

lulose nanofiber (BCNF), with well-tuned micro

structure, is employed as the unique reinforcing unit

to self-assembly with MXene. The mechanical and

electrical properties of different cellulose-derived

composites were further compared to get insights into

the effect of the fiber configuration on reinforcing

properties. Particularly, the optimized MXene/BCNF

sample simultaneously exhibited high tensile strength

(252.2 MPa), excellent folding endurance ([ 10,000

times), and high electrical conductivity (443.5 S

cm-1). With striking shielding effectiveness

(19,652 dB cm2 g-1), the sample effectively inter-

feres with emitted electromagnetic waves, and is

therefore a promising candidate for wearable devices

and human electronic equipment.Xuran Xu, Shuaining Wu have contributed equally to this

work.
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Introduction

With the rapid popularity of portable communication

equipment and wearable electronics, electromagnetic

radiation has emerged as a serious problem due to its

potential detrimental effects on human health and

signal propagation (Sage and Burgio 2018; Yadav

et al. 2018; Zhang et al. 2018). Electromagnetic

interference (EMI) shielding materials, with light

weight, good flexibility and high shielding efficiency,

are highly required as the effective shelter for relieving

the electromagnetic radiation from these wearable

resources (Shen et al. 2014; Yan et al. 2015; Yu et al.

2018). Metal materials are considered as a traditional

choice, while their promotion and widespread appli-

cation are largely restricted by the drawbacks of high

weight, poor flexibility and easy corrosion (Lee et al.

2017; Wan et al. 2018). Recently, 2D carbon-based

nanomaterials (Joseph et al. 2017; Liang et al. 2019;

Zeng et al. 2017; Zhao et al. 2018), typically

transition-metal carbides/carbonitrides [i.e. Ti3C2Tx

(MXene)], have attracted expanded attention in EMI

shielding (Cao et al. 2019a; Wang et al. 2019a, 2019b;

Zhang et al. 2019) due to the remarkable electrical
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conductivity (Geng et al. 2019; Xiong et al. 2018) and

high dielectric loss as well as non-toxicity (Liu et al.

2017; Valekar et al. 2017; Zeng et al. 2016). However,

their weak interplanar van der Waals interactions

between overlapped MXene planes usually result in a

weak-assembled macrostructure, thus leading to the

low mechanical strength of neat papery film (Kumar

2019; Ma et al. 2020). Therefore, efforts have been

made to achieve a percolated reinforcing skeleton

using large aspect ratio fillers (Tang et al. 2019) to

satisfy the mechanical requirements in practical

applications (Cao et al. 2019b; Liu et al. 2018, 2019;

Ma et al. 2020; Weng et al. 2018; Xie et al. 2019b).

Utilization of 1D polymer nanofiber as the rein-

forcing component (Palazzetti and Zucchelli 2017;

Xie et al. 2019a), for example cellulose nanofiber

(CNF), has proved to be one of the most efficient

strategy for constructing the stable layer-by-layer self-

stacking 2D MXene/1D CNF macrostructure (Ma

et al. 2021; Rahman et al. 2019; Tian et al. 2019).

Compared with other polymer fillers, cellulose

nanofiber could greatly reduce the contact resistance

between overlapped MXene planes, thus enhancing

the mechanical properties while maintaining the high

electrical conductivity (Chen et al. 2020; Wang et al.

2020). For example, a nacre-like MXene/CNF com-

posite film with an EMI SSE of 2647 dB cm2 g-1 was

fabricated by a facile vacuum-filtration self-assembly

method, in which percolated 1D CNF network could

both strengthen and toughen the composite film

(135.4 MPa) due to the unique nacre-like lamellar

structure and strong MXene-CNF interfacial interac-

tions (Cao et al. 2018). Another work reported a

MXene/CNF composite film with an alternating

multilayered structure, in which tightly packed CNF

layers could prevent the zigzag cracks in MXene

layers, thus resulting in an improved mechanical

strength (112.5 MPa) with excellent EMI SSE

(7029 dB cm2 g-1) at the thickness of only 35 lm
(Zhou et al. 2020). However, it should be noted that an

inevitable decrease in EMI SSE of MXene/CNF

composite film is still accompanied with the enhance-

ment in tensile strength by the addition of reinforcing

CNF. The optimization between the percolated rein-

forcing CNF network and CNF-MXene contact resis-

tance remains challenges (Malucelli et al. 2019; Nie

et al. 2020). Therefore, ideal configurations such as

higher-aspect, better dispersion, and stronger inter-

fiber interactions are highly expected for cellulose

fillers in order to the provide extraordinary mechanical

properties together with well-preserved EMI shielding

performance for practical applications.

In this study, modified bacterial cellulose nanofiber

(BCNF) with a typical interconnected conformation

and an ultrathin thickness (30–50 nm) (Gao et al.

2019;Wang et al. 2017), has been used as a reinforcing

substrate to prepare MXene-based EMI shielding film.

Different from widely reported CNF, its high aspect

ratio could provide less contact resistance and the

strong inter-fiber connections could act as an effective

mechanically enhanced interlock (Hua and Fei 2019).

Therefore, a tightly packed 2D/1D lamellar structure

was built with well-percolated BCNF reinforcing

skeleton and continuous MXene-MXene conductive

paths. A comparative study on the mechanical and

electrical properties of different cellulose-derived

composite films were further evaluated to get insights

into the reinforcing mechanism. As a result, at an

extremely low thickness of only 11.4 lm, the MXene/

BCNF sample exhibited a high tensile strength

(252.2 MPa), excellent flexibility (folding endurance

more than 10,000 times) as well as high EMI SSE

(19,651 dB cm2 g-1), outperforming most reported

MXene-based paper-like films. With the excellent

comprehensive mechanical and EMI shielding perfor-

mances, the MXene/BCNF composite film presents

potential applications in preventing human from

continuous interference by electromagnetic waves.

Experimental

Materials and characterizations

All the reagents and characterizations used in this

study are described in Supporting Information (SI).

Fabrication of cellulose-derived nanofibers

Raw BCwere cultivated using an Acetobacter xylinum

NUST4.2 through a dynamic fermentation process at

30 �C as reported previously (Yan et al. 2017). After

the fermentation, the sample was treated with 0.1%

sodium hydroxide solution and hydrogen peroxide at

80 �C for 6 h to remove the bacteria and finally

washed with distilled water several times. The

dispersed BCNF was prepared by a TEMPO oxidation

followed with a high-pressure treatment. Typically,
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2.0 g prefabricated BC was dispersed in 200 mL PBS

buffer (0.05 M, pH 6.8) and stirred at 60 �C for

30 min in a sealed flask. Then TEMPO (0.036 g,

0.2 mmol) was added and stirred. After this, NaClO2

(3 mmol) and NaClO (30 mmol) were added into the

suspension and stirred at 60 �C for 24 h. The TEMPO

oxidation was quenched by adding 10 mL ethanol, and

the TEMPO-oxidized BC was obtained after washing,

centrifugation for several times. Finally, the diluted

products (0.5 wt%) were homogenized in a high-

pressure homogenizer (AH-2010, ATS Engineering

Inc., Canada) at pressure levels of 100 MPa and for up

to 30 HPH cycles. The raw CNF with only high-

pressure treatment (PCNF) and acid hydrolyzed BC

nanofiber (HBC) were also prepared for comparison

(Yan et al. 2017).

Fabrication of delaminated Ti3C2Tx nanosheets

The delaminated Ti3C2Tx nanosheets were obtained

by selectively etching the Al from Ti3AlC2 (Zhang

et al. 2017). Typically, 1.0 g Ti3AlC2 was added in

20 mL, 6 M HCl containing 1.0 g LiF under magnetic

stirring at 35 �C for 24 h. The resulting suspension

was washed with distilled water and centrifuged at

6000 rpm several times to obtain the clay-like Ti3C2-

Tx sediment. Subsequently, the sediment was dis-

persed in deionized water and ultrasonicated for 3 h to

obtain delaminated Ti3C2 nanosheets, named as

MXene. The MXene samples were then collected by

a centrifugation process and freeze-dried for 24 h.

Finally, 0.5 wt% MXene suspension was prepared for

the following experiment.

Fabrication of MXene/BCNF composite films

The Ti3C2Tx nanosheets and BCNF suspension with a

total weight of 6.0 g were dispersed in 50 mL

deionized water under ultrasonication for 5 min. A

series of MXene/BCNF-x composite films was

obtained by the vacuum filtration and dried under

ambient temperature. The value of x represents the

weight percentage of MXene. Afterwards, the films

with different thickness were prepared with a total

suspension weight of 3.0 g, 6.0 g, 9.0 g, 12.0 g and

15.0, respectively. Meanwhile, the MXene/other cel-

lulose-derived composite films were prepared as

control groups under the same conditions.

Results and discussions

Morphology and macrostructures

The most intriguing design of this study is the

combination of 2D MXene with the well-tuned BCNF

to guarantee the good conjunction between the elec-

tromagnetic interference (EMI) shielding performance

and mechanical enhancement as shown in Fig. 1a.

Herein, BC, with the typical 3D interconnected

conformation, was cultivated through a dynamic

fermentation process as shown in Fig. S1a (Krasteva

et al. 2017; Tian et al. 2019). Although the strong

inter-fiber interactions contribute to effective mechan-

ical enhancements (Huang et al. 2019), they may also

induce obvious aggregations during vacuum-assisted

filtration, resulting in contact resistance reducing and

tight MXene-BC stacking. Therefore, a gentle

TEMPO-oxidation treatment followed with high-

pressure homogenization was carried out. AFM image

in Fig. S1b manifests that the obtained BCNF

preserves a well-tuned conformation with an ultrathin

thickness of only 30–50 nm, which is expected to be

beneficial for mechanical enhancement and the reduc-

tion of MXene-MXene contact resistance. MXene was

synthesized by selective etching Ti3AlC2 (MAX,

Fig. S2) in a mixture of HCl and LiF, and the etched

powder was delaminated by manual shaking to form a

stabilized dispersion. From the morphology charac-

terization in Fig. 1b and c, one can see that the

delaminated MXene nanosheets presents large dimen-

sion with a thickness of only 4.23 nm. The final

MXene/BCNF composite film could also exhibit

excellent flexibility and foldability as shown in

Fig. 1d.

To get insights into the effect of cellulose config-

urations on the microstructure of the composites, we

first characterized the morphology of different cellu-

lose-derived composite films including MXene/BC,

MXene/BCNF, MXene/HBC, and MXene/PCNF. As

the TEM images shown, compared with pure BC

(Fig. 2a), HBC (Fig. 2e) and PCNF (Fig. 2g), the

BCNF presented best dispersion and highest aspect

ratio with fiber diameter of 20–30 nm (Fig. 2c). The

particle size distributions of different fibers were also

investigated as shown in Fig.S3, one can see that the

HBC and BCNF present smaller size distributions

compared to BC and PCNF, which are consistent with

structural characterization. As shown in Fig. 2d and
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Fig. S4, the porous layered structure of the pure

MXene film could be gradually transformed into a

tightly stacked, orderly layer-by-layer and nacre-like

counterpart in MXene/BCNF composite film. The

tightly stacked and dense 2D/1D structure is finally

confirmed by AFM image in Fig. S5, which possesses

a relatively smooth surface without obvious local

folds, defects or fractures in the composite film. In

comparison, due to a large number of inter-fiber

entanglements and connections, the MXene sheets are

arranged in an inclined way along the base direction in

both MXene/BC and MXene/HBC samples (Fig. 2b,

f), which may prevent the effective orientation and

tight inter-layer self-assembly, resulting in crimp or

stack between layers. Even though a more ordered

microstructure can be obtained for MXene/PCNF

composite film as shown in Fig. 2h, there still exists

some random defects because of the strong interaction

between fibers. Therefore, with a well in-plane

orientated and tightly stacked microscopic lamellar

structure, the MXene/BCNF composite film is

expected to provide excellent mechanical properties

and electrical properties in the following tests.

The successful TEMPO-oxidation of BCNFmay be

deduced from the FT-IR spectra in Fig. 3a. In the pure

BC spectra, the peak in 3347 cm-1 is attributed to the

tensile vibrations of hydroxyl and the peak groups at

1290 cm-1 are related to the tensile vibrations of C–H

carbohydrates. The 1159 cm-1 peak corresponds to

the asymmetric tensile bonding of the C–O. The peak

at 1050 cm-1 is attributed to hydroxyl and C–O–C

groups and tensile vibrations of carbohydrates. The

characteristic peak at 1598 cm-1 corresponding to

C=O stretching of –COOH is observed in the spectrum

of TEMPO-oxidized bacterial cellulose. This typical

treatment is considered to be beneficial for not only the

remove of the amorphous counterpart, but also the

weakness of the inter-fiber hydrogen-bonding interac-

tions while preserving some inter-fiber crystalline

connections (Luo et al. 2013). The crystalline struc-

tures of the MXene/BCNF products were also char-

acterized by XRD with patterns shown in Fig. 3d. One

Fig. 1 a Schematic illustration of the fabrication process of the MXene/BCNF composite film; b TEM and c AFM micrographs of

MXene; d digital image of a folded MXene/BCNF composite film and a small paper crane prepared by folding the composite film
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Fig. 2 TEM micrographs of a pure BC, c BCNF, e HCF, g PCNF; Cross-section SEM images of b MXene/BC, d MXene/BCNF,

f MXene/HCF, and h MXene/PCNF
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can see the typical peaks of the cellulose I at 14.8�,
16.7� and 22.3� in all BC-based samples, correspond-

ing to the (101), (101) and (002) crystal planes (Wang

et al. 2018). Moreover, in the MXene/BCNF film, the

characteristic peak of MXene shifts from 2h = 6.2� to
5.5�, implying that the percolated reinforcing network

of interconnected BCNF are successfully intercalated

into the overlapped MXene nanosheets to form the

homogeneously assembled lamellar structure (Song

et al. 2020). EDS mapping image of the cross-section

by a rapid stretching in Fig. 3c demonstrates that

MXene could form continuous conductive paths in the

in-plane direction. This could also be deduced from

the BET results in Fig. 3d, in which BET specific

surface areas of 24 m2 g-1 for pristineMXene film has

decreased to almost zero for MXene/BCNF film,

signifying the typical importance of BCNF’s config-

uration. We further investigated the chemical compo-

sitions and element status of MXene/BCNF samples

by XPS measurement. Figure 3e shows that the pure

MXene has the F/Ti atomic ratio of 0.28, O/Ti atomic

ratio of 0.52, C/Ti atomic ratio of 1.64. After the

introduction of BCNF, three of the above atomic ratios

increase to 0.70, 4.91 and 11.54. The surface

hydrophilicity of the samples was finally characterized

by water contact angle measurements. Figure 3f

shows that the introduction of BCNF effectively

improves the hydrophilicity of the composite film,

thus improving its human skin affinity for the wearable

applications.

Mechanical properties

A comparative study of the mechanical properties

between MXene/BCNF composite film and other

cellulose-derived composite films is first conducted

under the same MXene weight fraction. As shown in

Fig. 4a, MXene/BCNF composite film presents the

highest tensile strength and outperforming toughness

among these four types of cellulose-based composites

films, signifying the critical role of the ultrafine but

interconnected configuration of BCNF. To further

explore the effect of cellulose content on mechanical

properties, pure MXene, BCNF and MXene/BCNF-

12.5 to 87.5 films were compared by tensile strain test

as shown in Fig. 4b–f. PureMXene exhibits the lowest

tensile strength and fracture strain (33.9 ± 7.2 MPa,

1.4 ± 0.2%), probably due to the weak interplanar

interactions and obvious inner hole defects. However,

these values are greatly improved after introducing the

interconnected BCNF. For example, the tensile

strength of the composite film is improved to

Fig. 3 a FT-IR spectra, b XRD analysis of pure BC, BCNF,

pureMXene andMXene/BCNF-50; cCross-section SEM image

and elemental mapping of the tensile-fracture MXene/BCNF-50

composite film; d BET specific surface areas, e XPS spectra and

f Water contact of BCNF, MXene and MXene/BCNF-50
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81.5 ± 9.2 MPa (2.5 times higher than pure MXene

film) with the loading rate of only 12.5% BCNF. The

optimized tensile strength ([ 250 MPa) is achieved at

the weight fraction of MXene from 0 to 62.5%, where

MXene/BCNF composite films perform the both

tightly packed macrostructure and well-percolated

reinforcing BCNF network. It is also known that over

loading of BCNF may reduce the electrical conduc-

tivity so that prevent EMI shielding efficiency.

Therefore, 50% BCNF loading is taken as the optimal

condition and the main object for the subsequent EMI

performance tests. At this critical content, MXene/

BCNF composite film exhibits excellent comprehen-

sive mechanical properties with Young’s modulus,

elongation and toughness achieving to 9.0 GPa, 2.6%

and 3.2 MJ/m3, respectively. The possible stretching

process of MXene/BCNF composite films is illus-

trated in Fig. 4d. The robustness of MXene/BCNF

composite film is attributed to the effective enhance-

ment effect of well-percolated and interconnected

BCNF, which could serve as the interlocks to dissipate

the tensile stress. During the stretching process,

MXene plates are broken into zigzag shape, while

BCNF could be further straightened and slippage to

enable a large elongation, which is also beneficial to

the toughness of MXene/BCNF composite film.

To further investigate the folding endurance of the

MXene/BCNF composite film, the MXene/BCNF-50

film was chosen to be folded by a 100 g weight for 1 to

10,000 times. As shown in Fig. 4g, after 10,000 times

of folding, the tensile strength and elongation of the

composite film could be well-preserved to

Fig. 4 aTensile stress–strain curves ofMXene/BC-50, MXene/

BCNF-50, MXene/HBC-50 and MXene/PCNF-50 composite

films; b tensile stress–strain curves of pure BCNF film, pure

MXene film and MXene/BCNF-12.5 to 87.5 composite films;

c digital images of theMXene/BCNF-50 composite film that can

withstand a weight of 250 g, and show a super-flexibility;

d schematic of stretching process of MXene/BCNF composite

films; e tensile strength and modulus and f elongation and

toughness of MXene/BCNF-0 to 100 composite films; g tensile

strength and elongation of folded MXene/BCNF-50 composite

film
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216.3 ± 21.1 MPa and 2.37 ± 0.39%, respectively.

Meanwhile, the fracture location showed slightly

change after 10,000 folds, indicating that the remark-

able folding endurance. Furthermore, digital images in

Fig. 4c show that this composite film could withstand

a 250 g weight that is almost 30,000 times of its own

weight, and it could also be repeatedly bended and

folded without any rupture, which is also a significant

proof of concept for its high strong and flexible

performances.

Electrical conductivity and EMI shielding

performance

Generally, the intrinsic electrical conductivity of

flexible composite film is one of the most critical

factors for its EMI shielding performance. In our

work, due to the well-tuned micro structure of BCNF,

the design of nacre-like architectures of MXene/

BCNF films is believed to be beneficial to maintain the

continuous morphology from the single-layer per-

spective. This architecture would also provide more

low-defects and high-efficiency electron pathways,

leading to higher electrical conductivity and better

EMI performances (Fang et al. 2015; He et al. 2019b).

Firstly, we compared the electrical conductivity of

different cellulose-derived composite films as shown

in Fig. S6. One can see at the high BCNF loading of

50 wt%, MXene/BCNF film could still maintain the

high electrical conductivity of 443.5 ± 83.0 S cm-1

(Fig. 5a). We deduced that with high-aspect ratio,

ultrathin thickness and interconnected configuration,

BCNF could relieve most contact resistance between

MXene-MXene overlaps, resulting in superior elec-

trical conductivity among different cellulose derived

MXene films. This high electrical conductivity is

responsible for the corresponding excellent EMI SE

(Fig. 5b). The MXene/BCNF-50 composite film could

maintain the high value of 41.2 dB at the frequency

ranging from 8.2 to 12.4 GHz (X-band), which is

comparable to that of pure MXene film (52 dB).

To further explore the EMI shielding mechanism of

the MXene/BCNF composite film, the total EMI SE

(SET), EMI absorption efficiency (SEA) and EMI

reflection efficiency (SER) at the frequency of

12.4 GHz are calculated (Supporting Information)

and presented in Fig. 5c. As can be seen, when the

MXene content is less than or equal to 25 wt%, the

SEA value is lower than SER, reflecting that the

shielding performance of the composite film is mainly

due to reflection. However, when the MXene content

is more than 37.5 wt%, the SEA makes more contri-

bution to the shielding efficiency than SER. At this

condition, the value of SEA/SET is stable at above

60%. This is ascribed to the unique 2D/1D lamellar

structure that allows electromagnetic waves to be

multiply absorbed and reflected between the contin-

uously MXene-MXene conductive pathways. How-

ever, when the continuousMXene paths are destroyed,

the SEA caused by multiple absorption and reflection

will decline significantly. Generally, in comparison

with SER, SEA is more welcome as it could gainfully

prevent the secondary electromagnetic radiative pol-

lution. Based on above considerations, the MXene/

BCNF-50 composite film, with the most outstanding

EMI shielding performance and optimal mechanical

properties, was chosen as optimized sample for the

following studies. With increasing the thickness of

MXene/BCNF composite film from 6.0 to 11.4 lm,

the EMI SE increases obviously in whole X-band

(Fig. 5d), while after 11.4 lm, the increasing trend

performs negatively. In addition, as increase of the

thickness, SSE/t that describes the specific shielding

efficiency also decreases from 25,851 to

8974 dB cm2 g-1 (Fig. S7). It suggests that at the

high thickness, MXene’s in-plane orientation may be

hindered and some hole defects or aggregations may

be inevitable during the vacuum-filtration induced 2D/

1D self-assembly process. Therefore, MXene/BCNF

composite film with the thickness of 11.4 lm is the

optimized one, which is then chosen as the research

sample and has been folded for different times to

explore the folding durance. Interestingly, both EMI

SE and SSE/t perform a stable trend, even though a

100 g weight oppressed folding process has been

carried for 10,000 times to this MXene/BCNF com-

posite film, demonstrating its excellent flexibility and

durable EMI shielding capability. We also compare

this composite film with most of the metal-based and

carbon-based EMI shielding materials (Fig. 5f and

Table S1), our MXene/BCNF-50 composite films with

different thickness (i.e. 6.0, 11.4 and 24.3 lm) behave

the outstanding SSE/t values (10,355 * 25,851 dB

cm2 g-1) and great mechanical strength among the

MXene-based composite films, which are almost

equal to the values of pure MXene (25,863 dB

cm2 g-1) (Shahzad et al. 2016), pure graphene

(10,822 dB cm2 g-1) (Shen et al. 2014), and metal
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Fig. 5 a Electrical conductivity, b EMI shielding performance

at whole X-band, c total EMI SE (SET), EMI absorption

efficiency (SEA), EMI reflection efficiency (SER) and SEA/SET

values at the frequency of 12.4 GHz of MXene/BCNF

composites film; d EMI shielding performance of MXene/

BCNF-50 composite films with different thicknesses at whole

X-band; e EMI SE and SEA/SET values of folded MXene/

BCNF-50 composite films; f Comparison of SSE/t value as a

function of thickness with previous reports
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materials (7812–30,555 dB cm2 g-1) (Shahzad et al.

2016).

Figure 6a and b show the real permittivity (e0),
imaginary permittivity (e00), real permeability (l0) and
imaginary permeability (l00) for MXene/BCNF-50

composite film in the frequency range of

8.2–12.4 GHz, which is used to simulate the EMI

shielding efficiency to enable a visual analysis. The

detailed simulation by the finite element analysis is

provided in the Supporting Information, and the

parameters are listed in Tables S2 to Tables S3.

Figure 6c describes the schematic propagation process

of the electromagnetic waves from mobile device or

microchip to a human head, in which the MXene/

BCNF composite material is utilized as the shielding

barrier to protect human brain from electromagnetic

radiation; this conceptual simulative experiment is

intended to be carried out as the significant proof of

concept for MXene/BCNF composite film’s excellent

EMI shielding performance. As shown in Fig. 6d,

when the head is directly exposed to radiation,

electromagnetic waves can easily pass through the

skin, resulting in an increasing intensity of electric

field on the side of the head close to the source, which

may be harmful to human health. In contrast, when the

head is completely protected by the MXene/BCNF

shielding film, in the X band, the intensity distributed

within both the head and air regions inside the

protective film is almost invisible. Herein, transmit-

tance (%) is calculated by EMI SE of the composite

film according to Equation S9 and Equation S10, and

the results are listed in Fig. 6e and Table S4. It is found

Fig. 6 a Permittivity and b permeability of the MXene/BCNF-

50 composite film in the frequency range of 8.2–12.4 GHz;

c schematic diagram of the model prototype for protecting

human from electromagnetic radiation; d map of the electric

field distribution in the microwave cavity at the frequency of 8.2

and 12.4 GHz; e electromagnetic wave transmittance of the

MXene/BCNF-50 composite films with different thicknesses;

f schematic illustration of the electromagnetic wave transferring

across the MXene/BCNF composite film
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that MXene/BCNF-50 composite film with the thick-

ness of only 11.4 lm could effectively prevent more

than 99.99% electromagnetic waves from entering

into the protected regions, which verifies an excellent

EMI shielding performance of the composite film. To

be specific, as illustrated in Fig. 6f, when the electro-

magnetic waves propagate at the interface between air

and the conductive composite film, partial electro-

magnetic waves are reflected back due to the high

impedance mismatch of the air-sample interface. Then

the penetrating electromagnetic waves would further

interact with the high-density and conductive MXene

nanosheets within the composite film. Since the

unique intercalated BCNF is uniformly clustered

between MXene nanosheets, a largely reducing con-

tact resistance and a frequent impedance mismatch

between BCNF and MXene would induce the multiple

absorption and reflection, which also results in an

efficient wave absorption. On one hand, the massive

and large exposed surface of in-plane oriented MXene

nanosheets is the main cause of increased polarization,

resulting in effective wave attenuation. Meanwhile,

the rich capacitor-like interfaces formed between

MXene nanosheets also play an important role in the

attenuation of electromagnetic waves (He et al. 2019a;

Wang et al. 2019c). Therefore, this composite film

could perform an absorption-dominant EMI shielding

property, promising an effective protective effect for

wearers from the influence of wearable or

portable electronics, such as phone, embedded micro-

chip, and so on.

Conclusion

In this work, we report the fabrication of a robust and

flexible MXene/BCNF composite film by optimizing

microscopic configuration of bacterial cellulose nano-

fiber. By comparison with different cellulose derived

MXene films, the BCNFwith higher dispersion as well

as larger aspect ratio is proved to be an effective

reinforcing unit to construct a stable layer-by-layer

self-stacking macrostructure with 2D MXene

nanosheets. As a result, the optimized MXene/

BCNF-50 sample could achieve both excellent tensile

strength of 252.2 MPa and ideal electrical conductiv-

ity of 443.5 S cm-1, respectively. Meanwhile, the

sample with a thickness of only 11.4 lm presents an

excellent folding endurance of more than 10,000

times, and high EMI SSE/t of 19,652 dB cm2 g-1 at

the frequency of 12.4 GHz. Our work provides a

rational design of flexible EMI shielding film, showing

great potential applications in the field of portable and

wearable electronics for protecting human from elec-

tromagnetic radiation.
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