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Abstract Textile based sensors, an emerging class

of wearable devices, are a potential platform for next

generation, functionality and amenability for the

human body incorporating sensing and control. The

main purpose of this review is to provide an overview

of textile based sensors, sensor substrates, and sub-

strate pre-processing including surface modification of

the base substrates. This review also summarizes

various conducting polymers and inks, production

methods of developing robust conductive fibres or

textiles, and different factors affecting the durability

and cleaning of conductive textiles. This manuscript

also critically examines properties relating to accept-

ability and performance of textile based sensors which

are subjected towear and care during repeated use e.g.

care, maintenance, and durability. This aspect (wear

and care) of performance is often ignored during

development. Wear and care effects on performance

need to be understood and solutions found for

extending the life cycle and performance of textile

based sensors.

Keywords Conducting polymers � Surface

modification � Encapsulation � Smart textile �
Wearable sensor � Wash durability

Introduction

The term ‘‘sensor’’ refers to perception of something, a

specific target stimulus. A device that detects a signal

(stimulus) and converts that stimulus into a signal

which can be measured electronically is called a

sensor (Chun et al. 2018). For example, sensors

respond to a physical impetus such as heat, light

(Kolodziejczyk et al. 2018; Stragliotto et al. 2018),

and pressure (Kim et al. 2019), and provide an output

for either measurement of that physical quantity or

operating a control. Smart textiles are concerned with

sensors integrated mechanically and/or structurally

into a textile (Gonçalves et al. 2018; Luo et al. 2018).

This class of wearable electronic systems i.e. elec-

tronic textiles (e-textiles) is intended to meet new and

advanced applications in the field of military, safety,

healthcare, sports and fitness (Park and Jayaraman

2011). Allowing the textile to sense different stimuli

(e.g. strain, pressure, temperature, and humidity),

wearable e-textiles have embedded capacitive, resis-

tive, and optical sensors (Gonçalves et al. 2018) and

also act as carriers for independently developed

sensors, (i.e. forming pockets or straps) or by

supporting the sensor which is an integrated part of a
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textile (Tamura 2018) an example shown in Fig. 1. As

the textile based sensor is a part of the textile, so the

textile itself is also considered as part of the sensor.

Sensors for ‘communicative’ wearable clothing gar-

ments are used to measure physical performance of a

sports participants and/or the heath record and follow

up in real time of patients and personal protective

equipment including helmets, and gloves with full

function against various mechanical or chemical

hazardous (Aroganam et al. 2019; Metcalf et al.

2009). Electronic mechanisms have been integrated

within textile structures for imparting smart function-

alities such as sensing, monitoring, and information

processing to conventional clothing (Seyedin et al.

2015).

Wearable sensors, worn on body by humans or

other animals such (e.g. livestock or poultry) play a

vital role in monitoring physiological parameters as

the connections between sensor and bodies (Rebeccah

2018). Cui et al. (2019) has produced a wearable

system for monitoring the basic physiological charac-

teristics such as heart rate and skin temperature of the

sheep based on IoT multi-sensor platform. Examples

of biosensors are those that facilitate the measurement

of calcium, lithium, lactate, cholesterol, urea, uric

acid, oxalate, triglycerides, ascorbic acid, creatinine,

oxygen saturation, blood pressure and pulse rate

(Neethirajan 2017).

The sensors have drawn attention from the research

community and industry as a means of measurement

due to their high sensitivity, passive wireless opera-

tion, multitasking capability, low cost, and easy

installation. To monitor complex human movement

in an acceptable way to the user and for a wider range

of applications, wearable sensors should be mounted

on the human body (Du et al. 2016). Different versions

of electronic textiles have been developed for various

applications such as energy storage (He et al. 2019),

device systems for monitoring the tiny movement of

human body (Park et al. 2016b) and strain detection of

angular displacements (Huang et al. 2019). Heart rate

is one of the most important parameter can be

measured using wearable sensors and this vital sign

can easily be detected from various body parts shown

in Fig. 2.

There are so many wearable textile sensors in the

market to monitor heartbeat rate during resting,

walking, running from various parts of the body

Fig. 1 The wearable textile sensing system for lower limb motion monitoring (Ozlem et al. 2019). Copyright (2019) Springer Nature

Switzerland AG
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including finger, ear, chest, and wrist using optical

sensor, accelerometers and pressure sensors. These

wearable devices detect not only the heartbeat rate but

also record the time based history to improve sports

performance. Another vital sign named blood oxygen

saturation level, a measure of breathing and circula-

tion of blood in the vessels can also be measured by

wearable textile sensors. Body temperature is one

most important vital signs for a healthy person. It can

be measured from the mouth, the skin, eardrum, under

the arm, and rectum by temperature sensors and any

increase in temperature indicates the disturbance in the

immunological system of patients.

Textile substrates

Textiles represent a smart class of substrates for

fabricating wearable chemical sensors (Yang et al.

2010). Textiles can serve as an information processing

infrastructure supporting the sensing, feeling, and

‘thinking’/processing and acting based on the wearer’s

stimuli and/or stimuli from the functioning environ-

ment. Generally fibres must be non-toxic, and able to

be modified without any change in their intrinsic

physical or chemical characteristics. Yarns and fabrics

should be designed in such a way to fulfil the end use

requirements, for example a hydrophobic surface with

desirable morphology is required to print on this

surface by different techniques (Chuang et al. 2010).

Fibres

Fibres present unique advantages with required dura-

bility and light weight properties for different practical

applications (Yang et al. 2010). Fibre is the most basic

unit of clothing to produce different patterns and styles

of clothing by the knitting and weaving technology. It

is essential to explore functional fibres in order to

design flexible, elastic and stretchable smart clothing

Fig. 2 An overview of the different applications of wearable flexible sensors worn on various body parts (Koydemir and Ozcan 2018).

Copyright (2018) Annual Review of Analytical Chemistry
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with health monitoring, energy collection, energy

storage, colour tuning, and shape change (Shi et al.

2019). For centuries fibre based clothing systems have

been known to be soft, deformable, durable, water and

air permeable depending on the structure, finish and

other manufacturing variables. Fibres or fibre assem-

blies (textile structures) present exciting possibilities

for production of flexible circuits (Liu et al. 2013),

skin-like pressure sensors (Li and Wang 2011),

conformable radio-frequency identification tags (Si-

morangkir et al. 2018), and other devices which

interact with the human body (Kaltenbrunner et al.

2013). Figure 3 illustrates a brief outline of the

developments of manmade fibres.

Different types of fibres including cellulose fibre,

regenerated cellulose fibre (viscose), polyamide fibre,

and manmade fibre (polyester) have various advan-

tages such as wear resistance, mildew resistance, easy

drying, and light resistance. Cotton fibre is a widely

used textile fibre valued for wearing comfort, flexi-

bility, water absorptivity (Trad et al. 2018; Xu et al.

2018) and air or water permeability (Jinno et al. 2017).

Fibre selection is important because resulting fabric

needs to be hydrophobic. For example, Zhang et al.

(2018a) hypothesised that ‘‘The abundant hydroxyl

groups on the surface of cotton fibres could serve as

active sites for the adhesion of conductive materials’’.

Here the functional fibre is also one of the import

parts for producing conductive textile sensors due to

their special functions such as high elasticity, antibac-

terial, antistatic property, flame retardant, thermal

insulation, light-guide, ion exchange, and radiation

protection (Azab et al. 2017; Park et al. 2017).

Advanced functional fibres have drawn attention for

producing smart textiles with sensing, shape deform-

able, and biometric characteristics. But there are some

critical challenges to promote the commercialization

of functional fibres such as application stability,

integration process of the functional fibres with the

traditional textiles, safety and scale up fabrication. So

to achieve their functional versatility for the next

coming smart textiles, fabrication procedures and

application characteristics based on different func-

tional fibres should be more realistic, intellectual and

self-determining.

Yarns

Yarn is a product of substantial length and relatively

small cross-section consisting of fibres and/or

Fig. 3 A brief timeline of the developments of fibres for various applications (Shi et al. 2019). Copyright (2019) Advanced Fiber

Materials
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filament(s) with or without twist (Denton and Daniels

2018). Generally yarns are made by combining

different types of fibres into a strand as the basic

elements of forming fabrics and textiles. The combi-

nation of non-stretchable metallic fibres with poly-

meric yarns produces a metal-based yarn incorporated

into the textile by weaving, knitting or embroidery

(Gil et al. 2019) with good elongation and recovery

properties (Guo et al. 2012). Afroj et al. (2019)

developed highly scalable engineering graphene flakes

via ultrafast yarn dyeing technique for next generation

wearable electronics applications. Then the produced

conductive yarn was integrated into knitted structure

for monitoring the human body temperature. There are

also many composite structures used including

reduced graphene oxide/nylon yarn (Yun et al.

2013), graphene-ferroelectric hybrid electrode (Ni

et al. 2012), functional coatings on yarn (Lima et al.

2011). The hybrid yarns are used for various applica-

tions such as antistatic filter bags, antistatic brushes

and signalling the electrical conductivity (Guo et al.

2016). Selected conductive threads and yarns used in

the development of sensors with resistance per unit

length along with the advantages and disadvantages

are shown in Table 1.

Using silver thread has advantage that is machine

sewable but sensitivity to humidity is a drawback.

Meyer et al. (2010) produced this silver thread based

pressure sensor for measuring pressure distribution on

the human body. The advantage of stainless steel and

staple fibre is the corrosion resistance and biological

inertness but it is difficult to attach to existing

electronic components (Post et al. 2000). Souri and

Bhattacharyya (2018) developed a strain sensor, by

coating the yarns with graphene nano platelets (GNPs)

and carbon black (CB) for sensing the tiny movement

of human body.

Fabrics

Properties such as breathability and/or air permeabil-

ity (Mukhopadhyay and Midha 2008), softness and

comfort (Barker 2002) of cotton fabrics have made

them a preferred choice to be applied with next to the

skin (Dąbrowska et al. 2016). Poly (ethylene tereph-

thalate) (PET), derived from the polyester family has

chemical resistance, rapid drying properties, anti-

wrinkle, and dimensional stability (Liu et al. 2016).

Sensor applications using PET fibre deposition of

metallic layers on flexible PET substrate has gradually

increased for electrical conductivity, electromagnetic

shielding effectiveness and health care (Liu et al.

2016). Fabric based sensors using polyester play a

vital role in various fields/sectors. Table 2 illustrates

the examples of sensors, made from 100% cotton

fabrics and their applications. Both woven and knitted

cotton fabric based sensors can be produced using

different methods. These scalable production methods

include coating (Zhang et al. 2018a), pad-dry tech-

nique (Karim et al. 2017b), in-situ polymerisation

(Tunáková et al. 2018), dipping (Kim et al. 2018) and/

or screen printing (Stephanie 2016). Those sensors are

beneficial for the applications of UV-shielding mate-

rials for manufacturing sustainable and disposable

e-textiles (Nechyporchuk et al. 2017), monitoring of

human organism functions: breathing, control of the

Table 1 Conductive yarns and fibres

Material Resistance

per unit

length

Characteristics Mesh or

core

Advantages Disadvantages References

Silver yarn * 85 X
ft- 1

Composite of 2 ply: Ag fibre

and nylon

Fabric Machine sewable Sensitive to humidity Meyer

et al.

(2010)

Copper wire/

tinsel wired

yarn

* 21 X
cm- 1

Flattened and twisted with

cotton, nylon, Nomex or

Kevlar thread

Polyester,

copper

(tinsel)

Robust connection,

conventional

Challenging to

integrate into

clothing

Cottet

et al.

(2003)

Stainless

steel and

staple fibres

* 50 X
cm- 1

Composite broken bundles Blend with

polyester

Resistance to

corrosion,

biological

inertness

Hard to attach with

existing electronic

components

Post et al.

(2000)
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pulse, heart function and body temperature with

improved comfort during use (Filipowska et al.

2016); and have also been used to measure pH of

sweat for disease diagnosis and drug assumption

monitoring (Caldara et al. 2016). Existing studies on

other substrates adapt printing techniques to coat

polypyrrole to large surface areas (Stempien et al.

2015).

The textile sensors produced from 100% polyester,

100% wool and blend substrates are shown in Table 3.

Polyester based (woven and knitted) sensors have been

produced by coating (Zhou et al. 2018), screen

printing (Filipowska et al. 2016) and inkjet printing

(Stempien et al. 2015) for military (tent, army

uniform) uses and applied to monitor the pulse,

breathing, heart function and body temperature.

Polyester fabrics are widely used for tents, and as

covers of warehouses or yards. 100% polyester has

very low moisture content as compared to natural fibre

such as cotton.

Wool fabric widely varies in gross morphology and

has somewhat variable physio-chemical properties

due to the genetic and nutritional influences on fibre

growth (Campbell and Williams 2018). Wool is a

Table 2 100% cotton based sensors and their applications

Fabric

type

Mass

(g/m2)

Method Application/aim References

Woven 182 Plain fabric coated by nickel (Ni) High sensitivity for rapid response,

and pulse monitoring

Zhang et al.

(2018a)

60 Plain fabric polypyrrole coating by in-situ

polymerisation

Measure electromagnetic shielding

effectiveness

Tunáková et al.

(2018)

N/A Dipping in graphene oxide and single-wall carbon

nanotube hybrid fabric

Detect electrical signals by human

activities

Kim et al.

(2018)

112 2/1 twill fabric coated by wood-derived cellulose

nanofibrils and inkjet printing with cyan ink

Provide a platform for sustainable

and disposable e-textiles

Nechyporchuk

et al. (2017)

94 Graphite/polyurethane coating and adhesive tape glued

onto the plain fabric

Increase the washing fastness of the

conductive layers

Schäl et al.

(2018a)

N/A Dipping in graphene oxide and single-wall carbon

nanotube hybrid fabric

Detect electrical signals by human

activities

Kim et al.

(2018)

170 Screen printing by metallic silver on plain fabric Monitoring of human pulse,

breathing, body temperature

Filipowska

et al. (2016)

N/A Repeating drop casting conductive polymer

PEDOT:PSS on plain fabric

Producing highly electrically

conductive fabric using

PEDOT:PSS

Alamer (2017)

237 Plain fabric coated by litmus-3 glycidoxypropy-

ltrimethoxysilane and synthesised by sol–gel

Monitoring the pH of sweat for

disease diagnosis and drug

assumption monitoring

Caldara et al.

(2016)

N/A Polypyrrole (PPy) coating on plain fabric by mist

polymerization

Heat generation into apparel to make

wearer warm enough using a

portable battery

Zhu et al.

(2014)

N/A Polypyrrole coating by in situ chemical polymerisation

on plain fabric

Increase the conductivity and tensile

strength

Smita and Patil

(2014)

168 Screen printing by carbon ink on twill fabric Military uniform Stephanie

(2016)

Knit 114 Polypyrrole (PPy) nanorods were deposited on cotton

fabrics via in situ polymerisation

Production of flexible super capacitor Xu et al.

(2015)

165 PPy coated conductive cotton interlock composites

produced by in situ chemical oxidative polymerisation

Capacitors, flexible sensors and EMI

shielding application

Cetiner (2014)

Fibre N/A CC/polydimethylsiloxane (PDMS) composites scaffold Sport performance, and health

monitoring

Samad et al.

(2015)
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member of a group of a-keratins due to the presence of
proteins with a a-helical conformation. Wool fibre

consists of approximately 170 different proteins and

the basic structural units of proteins are amino acids.

Wool fabric have been used for sensors to monitor

human motions (Souri and Bhattacharyya 2018),

sensing humidity (Hamouche et al. 2018) and detect-

ing glyphosate (Wang et al. 2016) shown in Table 3.

Gurarslan et al. (2019) produced silver nanowire

coated knitted wool fabrics to monitor the movement

Table 3 100% polyester, wool and blend substrates based sensors and their applications

Fabric

type

Fibre type Mass

(g/

m2)

Method Application/aim References

Woven 200 Coated with polyester twill fabric and

carbon black (CB) mixture

Military tent Zhou et al.

(2018)

198 Polyester fabric was loaded with TiO2

nanoparticles (TiO2 NPs) by a high

temperature pressure exhaustion

process

To produce a self-cleaning

polyester fabric

Li et al. (2018)

100% polyester 180 Screen print by metallic silver on plain

fabric

For monitoring the human

heart function, pulse,

breathing, and body

temperature

Filipowska et al.

(2016)

100 Inkjet print by PANI and PPy on 1/1 twill

fabric

To achieve very good and

moderate electromagnetic

interference (EMI) shielding

effectiveness

Stempien et al.

(2015)

50% nylon 50%

cotton

217 Screen print by carbon ink Military/army uniform Stephanie

(2016)

CVC (65/35%) N/A Interface layer by using polyurethane-

based screen-printable UV curable

interface paste, then repeatedly 3 times

inkjet printing

To improve the robustness and

bending of sensor

Ehrmann et al.

(2014)

Knit 100% polyester 195 Screen print by carbon ink Military/army uniform Stephanie

(2016)

100% wool 380 Hybridisation of graphene nano-platelets

and carbon black particles

Monitoring human tiny

motions, such as finger,

wrist, and knee joint

movements

Souri and

Bhattacharyya

(2018)

97% cotton 3%

polyurethene

170 By coating single-wall carbon nanotubes

through a ‘dip-and-dry’ method

Motion sensing and heating

application

Yang et al.

(2018)

Nylon-76%

elastic fibres

24%

170 Screen print on silver plated fabric Improving the stretch

performance of electro-

textiles

Virkki et al.

(2015)

97% nylon

3% polyurethane

38 Coating of graphene oxide (GO) on

nylon/TPU

Monitoring bending of finger

and rotation of wrist

Cai et al. (2017)

Warp knitted

textile glove

polyester-78%

elastane-22%)

220 Melt-spun piezoelectric poly vinylidene

fluoride fibres were embroidered onto a

textile glove by a screen printed

conductive PEDOT:PSS formulation

Motion sensing glove for

physical rehabilitation

Åkerfeldt et al.

(2015)

CVC (65/35%) N/A Dielectric interface layer printed by

screen printing and the conductive

printing is accomplished using an ink-

jet printer

Producing a device for

communication and tracking

accuracy

Krykpayev et al.

(2017)
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of the joints and respiration from the abdomen. Wool

fabric is a suitable substrate for sensor production

despite its intrinsic variability.

Blending is routinely used to optimise the proper-

ties of textiles for specific applications, with the goal

of remedying a deficiency of one fibre types by mixing

it with another. From Table 3 it is seen that blend

fabrics produced by blending of cotton/polyester

(Ehrmann et al. 2014; Krykpayev et al. 2017; Stem-

pien et al. 2015), cotton/polyurethane (Yang et al.

2018), cotton/wool (Stempien et al. 2015; Stephanie

2016; Yang et al. 2018), cotton/nylon (Stephanie

2016), nylon/elastin, nylon/polyurethane and/or

nylon/spandex (Cai et al. 2017; Stephanie 2016;

Virkki et al. 2015). These sensors are used mainly

for motion sensing such as bending of a finger and

rotation of wrist (Yang et al. 2018), heating applica-

tion, producing a device for communication and

accuracy for printed tracking devices on fabric with

the blending used.

Outlines of others substrate based sensors e.g. those

which are woven into a fabric glove, carbonised

woven fabric based on Polyacrylonitrile nanofiber

yarn (PNY) (Yan et al. 2018a), Polytetrafluo-

roethylene composite laminate with reinforced glass

microfibers, PEDOT:PSS film, A4 Paper and Evo-

lonTM nonwoven-Two polymeric fibres (30% poly-

amide and 70% polyester) and others are detailed in

Table 4. Sensors, produced from these substrates are

developed for use in health monitoring (Du et al. 2016;

Fan et al. 2018; Tunáková et al. 2018; Yu et al. 2018;

Zhang et al. 2018b), improving the acceptability

during wear (durability, air permeability and flexibil-

ity) (Choi et al. 2017; Hasan et al. 2018; Liu et al.

2016; Malhotra et al. 2015; Schäl et al. 2018b),

sensing strain and temperature of skin simultaneously

(Tchafa and Huang 2018) and developing low-cost

wearable energy-storage devices (Sundriyal and Bhat-

tacharya 2018).

Appropriate base substrate plays a vital role for the

production of conductive textiles. Researchers have

used different fabrics as base substrates such as 100%

cotton (woven and knit), 100% polyester and blend

substrates (polyester/cotton, cotton/wool, nylon/span-

dex and woo/nylon) and non-woven for sensors

production. Depending on the type of sensor, many

researchers used 100% cotton woven (plain and twill)

fabrics rather than knit fabrics due to extensibility

characteristics and more porosity of knit fabric. Lower

porosity of woven fabric is more suitable for control of

the ink during inkjet printing. Moreover, woven

fabrics have greater dimensional stability than knit

fabrics. Woven fabrics are less easily deformed by the

laundering process depending on the fibre content,

weaving structure and washing cycle.to improve

stretching performance of e-textiles and improving

the robustness of bending (Krykpayev et al. 2017).

Factors affecting the substrates pre-processing

Pre-processing of substrates is an important consider-

ation for the success of sensor fabrication. The surface

structure of base substrates determines the quality of

deposited films and interfacial characteristics. There

are various pre-treatment and post-treatment pro-

cesses, such as plasma/electron irradiation, wet clean-

ing, and annealing which influence the surface

condition of the substrate (Zhang and Gan 2013).

Pre-treatment of substrates

Textile substrates such as woven, knitted, and non-

woven must be thoroughly cleaned prior to lamination

of the electrode. Before sensors production, fabrics

and/or substrates should be properly pre-treated. Pre-

treatment of substrates plays a vital role during

printing as well as coating. Souri and Bhattacharyya

(2019) produced a wool yarn based strain sensor by

stirring in a highly conductive graphene nanoparticles

(GNPs) and carbon black (CB) hybrid ink without pre-

treating the wool yarn. Zhang et al.(2018a) also

produced a sensor based on 100% cotton plain weave

by nickel (Ni) coating for monitoring human motions

without pre-treating the base fabric. But there are

various processes such as pre-treatment of fabric by

using the specific chemicals e.g. NaOH/KOH (Manna

et al. 2017), and plasma treatment (Salem et al. 2017)

of which will depend on the fabric substrates and

sensor design. Low temperature plasmas (LTPs) are

also suitable for the surface modification of heat-

sensitive polymeric and textile materials (Jelil 2015).

However, the same procedures and chemicals which

are used for cleaning inorganic substrates such as

alumina, glass and silicon may not be suitable for

application to polyimide or other substrate materials

because of the low surface energy of the polymeric

substrates. Generally wet and dry cleaning methods
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are applied for cleaning these substrates. Plasma-

based processing may provide the textile industry with

an attractive means of the surface treatment.

Wet cleaningmethods using chemicals may include

application of dilute hydrochloric acid, sulphuric acid,

acetone, alcohol (i.e. ethanol, methanol, and propanol)

and deionized water to remove the metallic and

organic impurities. Methods differ depending on the

substrates (Zhang and Gan 2013) e.g. for removing

organic impurities, a UV cleaner which has a UV light

fixed in a stainless steel chamber with a closing lid is

most often used. Plasma dry etching can be employed

to remove metal particles where some metal-coated

polyimide substrates, metal particles such as nickel are

strongly adhered to the polyimide surface (Salem et al.

2017). Plasma dry cleaning involves a radio-frequency

plasma is being generated at a pressure below 0.01 Pa

by ionizing inert gases such as argon gas, trifluo-

romethane which will strike the surface of the

substrate with a very high kinetic energy thus removes

any particles present on the surface (Petasch et al.

1997). Researchers pre-treated the 100% PLA (poly

Table 4 Other substrate based sensors and their applications

Substrate type Method Application/aim References

A fabric The microfiber is functionalised by enclosing a

conductive liquid metallic alloy within the

elastomeric micro-tube

Pulse monitoring Yu et al.

(2018)

Nano-fibre yarn Carbon/graphene composites nanofiber yarn/

thermoplastic polyurethane

Electronic textile, soft

robotics, and consumer

healthcare application

Yan et al.

(2018b) and

Zhang et al.

(2018b)

Carbonised woven fabric

based on polyacrylonitrile

nanofiber yarn (PNY)

Using thermoplastic polyurethane and carbonised

PNY woven fabric was obtained through

stabilisation and carbonisation

Health monitoring Tunáková et al.

(2018) and

Yan et al.

(2018a)

Polytetrafluoroethylene

composite laminate with

reinforced glass microfiber

Sensor pattern first drawn by CAD software, and

then printed on a PCB transfer paper film

Sensing strain and

temperature of skin

simultaneously

Tchafa and

Huang (2018)

Viscose

Denim

Linen fabric

Both the graphite/polyurethane coatings and the

powersil coatings were applied using a doctor’s

knife. Adhesive tape had been glued on the

respective textile fabric

Increasing washing

fastness of conductive

layers

Schäl et al.

(2018a)

EvolonTM (nonwoven-30%

polyamide 70% polyester)

Screen print by DuPont 5064H silver conductor to

produce micro-strip patch antennas. Hydrophobic

coatings used as an encapsulation layer

Improve the wearability

(durability, air

permeability, flexibility)

Hasan et al.

(2018)

Polyethylene terephthalate

(PET) film

Inkjet print by polyurethane-based insulator ink

(InkTec-IJ-010)

Insulator for low-voltage

applications

Aminayi et al.

(2017)

Silk Polypyrrole-silk composite fabric by in situ

chemical polymerisation of pyrrole

Improving thermal

stability and wash

durability

Malhotra et al.

(2015)

Kapton� HN PI Mylar� PET

FlexIso� PET Teonex�
PEN

Inkjet print by droplet liquid ink (Ink N/A) Optimal surface treatment

for achieving the high

adhesion of printed

structures

Alena et al.

(2016)

Polyester and viscose

(nonwoven)

Non-woven fabric dipped into graphene oxide (GO)

solution and then reduced in hydroiodic acid (HI)

acid

Healthcare and sports:

pulse and respiration

Du et al.

(2016)

Poly(ethyleneterephthalate)

(PET)

Pre-treatment of polyester by plasma. Copper (Cu)

film plating on polyester by in situ depositing

Producing durable,

washable, and flexible

conductive polyester

nonwoven fabric

Liu et al.

(2016)
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lactic acid) single jersey knit pique fabric before

producing the UV curable inks based heat sensitive

biodegradable PLA fabric by inkjet print (Karim et al.

2015; Karim et al. 2014).

Wettability

Wettability and/or hydrophilic nature of the solid

surface is one of the most common interface phenom-

ena especially for polymeric substrates used for direct

write printing (Wan et al. 2013). Hydrophobic surfaces

have a contact angle greater than 90� but less than 150�
and these surfaces become super hydrophobic when

the contact angle is greater than 150� (Nosonovsky

and Bhushan 2009). Now a days researchers are

focusing on super hydrophobic and super hydrophilic

materials. When a contact angle of tight droplets form

on surfaces is more than 160�, the surface is consid-

ered super hydrophobic. If the contact angle of nearly

flat droplets is less than about 20 degrees, the surface is

super hydrophilic. Mahdieh et al. (2018) achieved

super hydrophobic (167 �C) and super hydrophilic (0

�C) properties based on blend polyester/cellulose (74/

26) fabrics by air corona discharge treatment with any

extra modification. Cheng et al. (2019) produced a

methyltrichlorosilane (MTCS) and enzyme-etched

super hydrophobic silk fabric surface with contact

angle of 156.7 �C via a simple thermal chemical

vapour deposition. This fluorine free coating and

environmental friendly super hydrophobic silk fabric

also showed good abrasion and laundering durability

with no adverse effect on textile physical properties.

The chemical composition and micro geometric

structure of the substrate play a vital role for the

wettability of a substrate surface. The contact angle of

the droplet, the physical parameter which describes the

wettability of the substrate. If the wettability is higher,

contact angle of the substrates will be lower. Wetta-

bility, contact angle (ca.) and the surface energy of ink

drops also have a major effect on their adhesion

(Karim et al. 2017a).

Fabric surface roughness

Fabric surface roughness is the most important key

factor for printing (Alena et al. 2016). Generally a

woven fabric structure is relatively rough because of

the interlacing of warp and weft yarns which creates

ridges and hollow in the structure. Proper contact

between ink and fabric doesn’t occur and high

conductivity is not achieved, as ink is not put evenly

across the rough fabric surface (Krykpayev et al.

2017). Therefore such a rough surface is less suit-

able for direct printing. Limited information about

surface modification process is available. Evaluation

of surface roughness attributes is important for all

fabric types and it also has a greater importance during

sensor development (Aminayi et al. 2017). Generally

surface roughness affects the minimum thickness of

conductor depth layer that may be produced while

maintaining electrical functionality. A drop spreads

out into a pancake shape when it impacts a solid

surface. Surface modification of fabric is necessary to

reduce and minimise the adverse effect of roughness.

The substrate surface roughness has a great effect

on the adhesion mechanism between the substrate and

the deposited layer (Wan et al. 2013). Tominimise this

problem, a thin chemical coating can be applied on the

surfaces of the substrates (Karim et al. 2017a). For

creating a more uniform surface for subsequent

printing processes, fabrics were pre-treated with an

intermediate screen printed interface layer (Willium

et al. 2014). Fabink-UV-IF-1004 (Smart Fabric Inks

Ltd., www.fabinks.com), a polyurethane-based

screen-printable interface paste was applied directly

on the three woven fabrics to facilitate subsequent

inkjet-printed conductive layers. The screen printed

interface layer was applied only in the required

printing area to maintain fabric flexibility, perme-

ability to vapour and air compared to commercial

laminated or transfer coated fabrics. Applying a thin

chemical coating layer on the polymer substrate may

improve thermal stability, dimensional stability, the

barrier properties for moisture, air and gases and also

solvent resistance. Surface roughness needs to be

reduced to ensure continuous conductivity. This is one

of the gaps where attention should be given to reduce

the roughness of the substrates.

Conducting polymers and inks

Generally conducting polymers (cp.) (e.g. polypyr-

role, polyaniline, PEDOT) have great potential for

producing cost-efficient, lightweight, and flexible

sensors (Nguyen and Yoon 2016). Conducting poly-

mer also have advantages such as biocompatibility,

easier surface modification, and large surface area
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(Park et al. 2014). As a consequence of their behaviour

conducting polymers have contributed novel synthesis

and characterisation developments (Su et al. 2012).

Applications of conducting polymers include use as

impedance type gas sensors (Zan et al. 2012), and

selective room temperature sensors (Zhang and Cui

2019). Applying inherently conducting polymers is an

effective technique for modifying fabric surfaces and

developing smart fabric sensors due to their high

sensitivity to the physio chemical conditions of the

surrounding environment. The conductive sensors

have flexibility and elasticity which are well-suited

for use with textile structures particularly close to skin.

Polypyrrole (PPy)

Polypyrrole (PPy) has been a topic of wide analysis

since 1970 due to good electric properties (Deepa and

Ahmad 2008). PPy is more easily deposited than

neutral pH aqueous solutions of pyrrole monomers

(Ramanavičius et al. 2006). Due to the ease of

chemical or electrochemical synthesis and high elec-

trical conductivity, PPy has been applied to create

chemical sensors (Tokonami et al. 2012), photovoltaic

cells, actuators, electrochemical cells (Zhang et al.

2017), as immobilising substrates for bio-molecules

(Stumpf et al. 2016) and as efficient electro-catalysts

(Yuan et al. 2007). PPy is being applied in technical

and biomedical applications due to its stability under a

wide variety of environmental conditions (Asta et al.

2011), thermal stability (Ali et al. 2012), biocompat-

ibility (Ferraz et al. 2012), and biodegradation in

composition with biodegradable polymers (Liu et al.

2012). PPy can also be applied in biosensors for

immobilised enzyme, antibodies or single stranded

DNA, actuators, robot manipulators, machine insects,

artificial limbs and muscles, molecular motors, cell

clinics and scaffolds, electrodes, field-effect transis-

tors, batteries, and antistatic coatings.

One of the key factors related to production of

polypyrrole-integrated fabric is the poor adhesion of

PPy coating to the fabric substrates. Some attempts

have been made to address this poor adhesion. For

example, Mosnáčková et al. (2013) developed a

specially synthesised pyrrole functionalised silane to

improve the wash stability of polypyrrole on poly-

amide fabrics and improved the wash fastness of the

PPy layers. Stempien et al. (2015) developed a

reactive inkjet printing method to overcome the low

conductivity issues associated with earlier versions of

the solutions and developed polypyrrole coated cotton

fabrics using ammonium peroxydisulfate as the oxi-

dant. Another development to overcome the poor

adhesion of polypyrrole to fabric was surface modi-

fication of the polyester substrate using plasma pre-

treatment (Mehmood et al. 2012). To improve the

functionality of polypyrrole, it can be easily adjusted

by covalently attached redox groups (Li et al. 2012)

and proteins (Chen et al. 2010; Mazeiko et al. 2013) or

molecular imprinted by low (Ramanavicius et al.

2012) and high (Pernites et al. 2011) molecular weight

molecular imprints. PPy is also sensitive tomoisture as

it deteriorates over time due to moisture exposure

(Saxena et al. 2009). This limitation can be reduced by

applying required hydrophobic or polymeric counter-

ions such as camphor sulphonic acid or poly styrene

sulfonic acid (Hena et al. 2016). In a nutshell, it can be

started that PPy is one of the most extensively used

conducting polymers for textile sensors production

considering the electrical, mechanical, electrochemi-

cal and morphological properties of PPy films.

Polyaniline (PANI)

Polyaniline is a conducting polymer that has been

widely studied for electronic and optical applications.

Polyaniline (PANI) is the most commonly applied

organic conducting polymer (Kim et al. 2010). The

popularity of polyaniline reflects its good electrical

properties including environmental stability (Ansari

and Keivani 2006), ease of preparation (Debnath and

Ahmad 2017), and ease of handling (Fernandes et al.

2003). The applications of polyaniline are in corrosion

protection (Kalendová et al. 2008), as catalysis of

organic reactions (Drelinkiewicz et al. 2009), and as

fuel cells (Sapurina et al. 2009), super capacitors

(Snook et al. 2011), and/ or analytical electrodes

(Shishkanova et al. 2005). The electrical properties of

PANI were only realised during the 1960s (Mohilner

et al. 1962).

By applying chemical or electrochemical oxidative

polymerisation methods, PANI can also be integrated

into textiles. Generally conductivity of PANI depends

on the pH of the polymerisation atmosphere, rather

than the chemical structure or type of the dopant used.

Polyaniline can be doped by sulfuric acid (H2SO4),

perchloric acid (HClO4) and hydrochloric acid (HCl).

Considering the conductivity, PANI is being broadly
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used in printed textile sensor manufacturing and

corrosion protection (Wessling 2010). Electrical con-

ductivity of polyaniline ranges from 10 to 100 S/cm

(Yi and Abidian 2016). Conductivity of polyaniline

depends on the pH of the processing environment, the

pH of the working medium, the redox state of the

polymerand the type of dopant anion applied. Thermal

degradation of PANI doped with different counter-

ions always occurs when the temperature is more than

200 8C. On the other hand, the use of PANI in

biological applications is limited due to their non-

biodegradability, low processability, and the lack of

flexibility (Park et al. 2016a). Conductivity of

polyaniline varies with the type of protonic acid and

oxidant. Compared to other conjugated polymers,

polyaniline has a simple and reversible acid/base

doping/dedoping chemistry enabling control over

properties such as electrical conductivity, optical

activity and solubility.

Poly (3,4-ethylenedioxythiophene)-polystyrene

sulfonate (PEDOT:PSS)

Poly (3,4-ethylenedioxythiophene) (PEDOT) is a

conjugated polymer that can be applied to study

different electronic properties such as semiconduct-

ing, insulating, metallic, semi-metallic characteristics.

In 2000, PEDOT was considered the most stable con-

ducting polymer available (Groenendaal et al. 2000).

Compared to polypyrrole, PEDOT has also better

conductivity and thermal stability (Peramo et al.

2008). When PEDOT is doped with a polyanion such

as poly-styrenesulfonate (PSS), poly (3,4 ethylene-

dioxy-thiophene)-polystyrene sulfonate (PED-

OT:PSS) is formed. PEDOT is being used in bio-

sensing and bioengineering applications including

heart muscle patches, neural electrodes, and nerve

grafting (Subramanian et al. 2012), humidity, temper-

ature and strain sensors and as piezoelectric sensors

(Åkerfeldt et al. 2015). Numerous mechanisms have

been applied to improve the conductivity of PED-

OT:PSS; one among them is the addition of a high

boiling point polar solvent (co-solvent) which makes

PEDOT:PSS more conductive (Kim et al. 2013). The

amorphous nature of the PSS ion added to the

PEDOT:PSS dispersion makes carrier transport within

the polymer system difficult thereby reducing con-

ductivity (Liu et al. 2015). Addition of high boiling

point solvents remove the excess PSS ions and

improve the crystal order and conductivity (Kim

et al. 2011).

PEDOT:PSS has become the standard for conduct-

ing polymers for applications in printing, coatings,

spinning, organic electrodes, solar cells, and light-

emitting diodes (Kayser and Lipomi 2019). Flexible

electrically conductive threads based on PEDOT:PSS

have attracted researchers due to its high conductivity,

high stability in the p-doped form, and good film

forming properties for several decades (Romyen et al.

2013). PEDOT:PSS based fibres have many advan-

tages, such as low cost processes, flexibility, and

lightweight compared to other conducting fibres

(Cheng et al. 2013; Kim et al. 2014). PEDOT:PSS

have been used to produce the highly conductive and

stretchable sensors for various applications such as

garments, carpets, blankets and automotive seats

(Moraes et al. 2017); knee sleeve prototype (personal

training and rehabilitation following injury) (Seyedin

et al. 2015).

Conducting inks

Direct write printing technique has equipped with the

electron devices on any substrate involving generally

nanostructured inks. The conductive print quality of

conductive textiles depends on the availability of

nanotechnology-based functional nanoparticle inks

such as copper (Cu), silver (Ag) and gold (Au). The

application of copper ink causes some difficulties such

as thermodynamically unstable in atmospheric condi-

tions due to oxidation. Moreover gold ink is very

expensive compared to other inks. So silver based ink

is the best option for applying on textile substrates. If

the silver ink is compared with copper and gold, it has

more electric conductivity and a lower affinity for

oxygen and also relatively cheaper than gold (Rajan

et al. 2016). The conductive ink which is applied in

screen printing contains a dispersion of metal particles

and suitable resins in any solvent (organic or inor-

ganic). Silver (Ag) nanoparticle ink is a widely used

ink in direct write printing and is considered one of the

most promising inks for creation of printable electron-

ics. The ink is relatively low cost, and it exhibits anti-

oxidant properties, high electrical conductivity per

unit volume in ambient conditions. Conductive silver

ink contains conductive fillers i.e. silver particles, a

polymer matrix, additives and solvents (Merilampi

et al. 2009). The properties of silver such as being
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corrosion resistance, malleable, and not affected by

moisture have made it an important material in the

field of flexible printed electronics.

Table 5 illustrates the examples of different inks

and their applications in sensor production. Chauraya

et al. (2013) applied silver ink (U5714) on CVC (65/35

polyester/cotton) to produce antenna for wearable

communication. Aminayi et al. (2017) used InkTec-IJ-

010 on polyethylene terephthalate (PET) to produce

insulator for using in aqueous low voltage/conductive

biosensor systems Willium et al. (2014) also used

silver ink (U5714) on CVC (65/35 polyester/cotton) to

improve the robustness to bending of conductive

textile Silver based inks are mainly applied in the field

of printed electronics to produce unique products.

Textile sensor fabrication

The development of conductive textiles has drawn

attention in relation to life styles and interactions with

the environment. There are many methods to produce

conductive textiles. Approaches of producing conduc-

tive textiles can be summarised as follows:

• Adding conductive carbon or materials in different

forms such as fibres, yarns or threads.

• Coating with conductive substances/polymers.

• Printing for applying inherently conductive mate-

rials/polymers/inks.

.

Fibre spinning

Conducting fibres and yarns have drawn attention in

the field of the future generation of wearable elec-

tronics, as they allow integration of electronic function

seamlessly into one of the most widely used form of

materials: textiles. For producing filament/yarn, and/

or fibre spinning, a method which involves three steps

(1) preparation of a spinnable liquid, (2) extruding the

liquid to form a jet, and (3) jet hardening. This liquid

may be in the form of polymer melt or a solution.

When spun from solution, the jet hardening can take

place in hot air (dry-spinning) or in a coagulant bath

(wet spinning), or in a combination of air-gap spinning

and gel spinning. Melt spinning, the process by which

the continuous filament or fibre is produced from

melted polymer chips by extruding. It is the most

Table 5 Commercial conductive ink used for inkjet printing

Ink Substrate structure Inkjet

printer

Droplet

volume

(pl)

Drop

spacing

(lm)

Curing

parameter

End use/application References

Silver ink

(U5714)

CVC (65/35

polyester/cotton)

Diamatix

DMP

2831,

USA

10 Between

5 and

254 lm

150 �C
for 10

min

Producing antenna for

wearable

communication

Chauraya

et al.

(2013)

Silver ink

(U5714)

CVC (65/35

polyester/cotton)

Dimatix

DMP-

2831

USA

10 60 150 �C
for 10

min

To improve the robustness

to bending

Willium

et al.

(2014)

PANI or PPy

deposition

Various fabrics ReaJet SK

1/080,

Germany

30 100 dpi N/A To achieve a good EMI

shielding effectiveness

Stempien

et al.

(2015)

InkTec-IJ-010 Polyethylene

terephthalate (PET)

Dimatix

DMP-

2800

USA

10 15–20 135 �C
for 17

min

Insulator for use in

aqueous low

voltage/conductive

biosensor systems

Aminayi

et al.

(2017)

Graphene

based silver

nanoparticle

ink

100% Cotton, 100%

polyester and 65/35

cotton/polyester blend

Dimatix

DMP-

2800

USA

10 254 N/A To pretreat those

substrates for increasing

the fabric tensile

strength

Karim

et al.

(2019)
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economic choice for producing conductive fibres/

threads based on conjugated polymers, conducting

carbon materials such as graphene and carbon nan-

otube (Lund et al. 2018). Generally these conductive

fibres are normally produced using thermoplastic

polymers such as polypropylene (PP), polylactic acid

(PLA), polycaprolactone (PCL), polyamide, polyur-

ethane (PU) and polyester. The electrical and mechan-

ical properties of a conducting fibres depend on the

materials as well as methods used to produce them.

Jain et al. (2010) grafted poly (ether ketone) (PEK)

onto few walled carbon nanotube (FWNT) applying

in-situ-polymerisation of 4-phenoxybenzoic acid (4-

PBA) in poly (phosphoric acid) (PPA), and fibres were

produced using dry-jet wet-spinning. Applying 20%

and 10% FWNT, electrical conductivity (S/cm) was

2.4 and 0.25 respectively. Seyedin et al. (2016)

produced polyurethane (PU) fibres based on various

conducting fillers such as carbon black (CB, 17%),

single-walled carbon nanotubes (SWCNTs, 5%), and

graphene (12.5%) by wet-spinning. Strååt et al. (2011)

developed conducting polymeric composite contain-

ing carbonaceous filler such as multi-walled carbon

nanotube (MWCNT, 4%) with polyethylene (PE)

using melt spinning and gained conductivity was only

0.1 S/cm.

In case of the thermoplastic polymer, melt spinning

is the automatic choice for higher conductive fibre

production available in current technology. Using melt

spinning, it is possible to produce any shaped fibres

such as circular, triangular, and hollow fibres. Fila-

ments of blends of polypropylene (PP) with polyani-

line (PANI) (20 wt%) and multi-walled carbon

nanotubes (7.5 wt%) were prepared by melt spinning

and showed maximum conductivity about 0.16 S/cm

(Soroudi and Skrifvars 2010). Gordeyev et al. (2001)

produced conductive fibres based on blends of

polypropylene and carbon fibres (15 wt% and 10

wt%) and achieved electrical conductivity 0.45 S/cm

and 0.015 S/cm respectively.

Coating

To achieve different properties and surface appear-

ances, textiles are frequently coated by various

conducting substances. By coating the fibre surfaces

with thin layers of conducting polymers, a novel and

technically interesting textile material with electrical

properties can be produced with environmental issues

(Dall’Acqua et al. 2006; Varesano et al. 2016).

Various coating techniques are available depending

on the type of fibre or textile substrates being treated.

There are different methods applied in chemical

polymerisation such as in-situ polymerisation (Kincal

et al. 1998), two-step polymerisation (Ferrero et al.

2006), dip coating (Sadi et al. 2019a), emulsion

polymerisation (Lekpittaya et al. 2004), and vapour

phase polymerisation (Dall’Acqua et al. 2006). Coat-

ings have drawn attention in the area of smart textiles

(Schwarz et al. 2016), and the measurement of vital

signs such as ECG or pulse (Aumann et al. 2014; Silva

et al. 2009), pressure (Meyer et al. 2010) and/or

elongation (Atalay et al. 2017; Schäl et al. 2018a).

Table 6 shows different coating materials on various

substrates and the technique of application. Polypyr-

role (PPy), Polyaniline, PEDOT, PEDOT:PSS coated

conductive fabrics have shown various properties

related to the chemical structure of the polymer, such

as flame resistance, antibacterial activity (Varesano

et al. 2015), hydrophobicity (Varesano et al. 2013).

Many different fibres such as cotton (Zhu et al. 2014),

viscose and Lyocell (Bashir et al. 2011), wool

(Varesano and Tonin 2008), silk (Hosseni and Peyrovi

2005), polyamides (Mosnáčková et al. 2013; Varesano

et al. 2010), poly-acrylonitrile (Oroumei et al. 2012),

and polyester (Yildiz et al. 2012) have been coated

with polypyrrole. PEDOT and PPy were applied on a

polyester textile by chemical and electrochemical

oxidation (Kim et al. 2003). Sahito et al. (2015)

developed graphene oxide (GO) coated cotton fabric

by dipping method and chemical reduction process

was conducted to achieve electric conductive textiles

for using in dye-sensitized solar cells as counter

electrodes. Houshyar et al. (2019) developed a deto-

nated nanodiamond coated plain woven cotton fabric

via dip coating and improved the functionalities such

as strength, elongation, thermal stability and surface

energy of nanodiamond. Xiang et al. (2011) developed

conductive graphene nanoribbon and carbon nanotube

coated Kevlar fibres applying spray coating and used

in battery-heated armors and wearable electronics

with 60 S/cm conductivity. Shateri and Yazdanshenas

(2013) coated cotton fabric by GO using the dip-pad-

dry method to develop super hydrophobic lotus-like

structure and conductive textile structures. Kim et al.

(2018) developed highly durable and water proof rGO/

SWCNT cotton fabric based multifunctional textile

sensors for tiny human motion detection. Textile
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coatings typically suffer from low washing and

abrasion resistance, so these sensors should be made

robust enough to sustain in daily use.

Karim et al. (2017b) developed graphene-based

stable wearable E-textiles via pad-dry technique

which can act both as strain sensor to monitor the

human activities and flexible heating element is shown

in Fig. 4. This graphene based sensor is wash durable,

scalable, cost-effective, robust, flexible, and bendable.

This sensor also exhibits a significant increase in the

fabric tensile strength and strain%which is suitable for

actual real world applications.

Table 6 Textile substrates with different coating materials

Coating

material

Substrate Application method Stimulus/application References

PEDOT:PSS Spandex knit (50% nylon, 50%

polyurethane) and woven fabric

Soaked in aqueous

dispersion

To increase the conductivity of

electrochromic textiles

Ding et al.

(2010)

PEDOT:PSS/

PVA

Kapton (flexible substrate) Electro-spun nanofibers Strain sensing to detect tiny and quick

human actions e.g. bending of a finger

Liu et al.

(2011)

PPy/Nylon

Lycra

Nylon 80%, Lycra� 20% Chemical

polymerization

Monitoring breast motion Campbell

et al.

(2007)

PPy/PET

Spandex

Polyester 97% spandex 3% Chemical and

electrochemical

polymerization

Strain sensing for large deformation Kim et al.

(2003)

Polyaniline Polyurethane fibre In situ chemical

oxidative

polymerization

Strain sensing Fan et al.

(2012)

Fig. 4 Schematic illustration of the fabrication process of graphene-based wearable e-textiles (Karim et al. 2017b). Copyright (2017)

ACS Nano, American Chemical Society
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Printing

Printing, a versatile fabrication method that is enhanc-

ing and revolutionising the field of flexible electronics

sensors by supplying cost-effective routes for pro-

cessing (Yang et al. 2013). Screen-printing and stencil

printing are the widely used means for printing

conductive materials to different substrates including

textiles (Gordon et al. 2014). Screen printing is a low

cost, high efficiency method of depositing thick ink

film (Virkki et al. 2015). Lightweight conductive

coated textiles can be integrated into smart textiles and

also on glass, paper, ceramics, metal, polyethylene,

polypropylene, and wood by the screen printing. For

textile applications, this screen printing technique is

appropriate for the production of lightweight compo-

nent, ground planes and different flexible patch

antennas (Ilda et al. 2012). Conductive silver based

inks can be applied using screen printing onto different

woven and nonwoven fabric substrates to monitor

various vital signs (Yang et al. 2010).

Sadi et al. (2019b) developed multifunctional

wearable weft knitted cotton fabrics via screen print-

ing of carbon nanotube (CNT) ink for wearable

electronic devices, smart displays and cold weather

conditioners. There are some challenges and limita-

tions of screen-printed conductive textiles such as

poor abrasion resistance, and dry out of the ink on the

mask that damages the designs of the screen (Yang

et al. 2013). This printing technique is not suitable for

one-off production compared to direct write printing

technique (Torah et al. 2015).

Digital or direct printing technology is a method for

developing the conductive materials at low cost and

high quantity (Fukuda and Someya 2017). Ink-jet

printing is a means of direct writing patterns onto

substrates. Inkjet printing is a simple term which can

be defined as drops of colorant as ink jetted into

specific positions to form printed design on textile

substrate with a defined resolution (Aleksander et al.

2017). Low fabrication cost, no masking, feasibility of

non-contact, less materials consumption, low temper-

ature and simple processing steps of inkjet printing

have drawn attention for the cost-effective manufac-

turing (Søndergaard et al. 2013). Advantages and

challenges of screen printing and inkjet printing

techniques are outlined in Table 7. Screen printing is

capable of laying down any kind of ink on any type of

substrate. But inkjet printing has less ink consumption,

lower material wastage, and specific droplet ejection.

Inkjet printing technique offers a wide range of

advantages over different conventional production

techniques including simple patterning techniques,

reduced material wastage, simplified processing steps,

and low fabrication costs (Alena et al. 2016). As the

technique of inkjet printing requires no mask and

minimal material consumption, the printing design can

be changed easily (Singh et al. 2010). The major

benefit of inkjet printing over other techniques (coat-

ing) is the ability to deposit ink on the surface of the

substrates only where required (Karim et al. 2017a;

Scidà et al. 2018).

Factors affecting the development of textile sensors

The wearable e-textile production is a research effort

and also an industrial production challenge (Gon-

çalves et al. 2018). It is important to develop new ones

that are able to scale up production, ensuring the

behaviour and performance of produced sensor. But

there are some critical factors that affect the perfor-

mance of textile based sensors such as durability, and

washability. The main challenges of conductive

textiles are abrasion, bending, stretching, confiden-

tiality security, gap between laboratory and practical

life.

Durability

Sensors with superior sensitivity, sufficient robustness

and high durability to harsh environments are impor-

tant parameters for industrial processes. But still now

the practical application of textile sensors is still

limited in wearable devices due to their poor cyclic

stability and long term durability. Due to the mechan-

ical properties of the textile sensors, it is a great

challenge to fabricate a durable, washable, flexible, air

and/or water permeable sensor. The challenges for

printed textile sensors are wash durability, bending,

and stretching (Yang et al. 2013). Stretchability which

enables the sensor to stretch and flex or bend during

the movements of the body without any damage, is a

crucial property of the textile based wearable sensors.

Textile based sensors are prone to damage due to

washing, heat cycling over time, dust, and sweat

(Hasan et al. 2018). It is very essential to seek an

economical method to produce high conductive and
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long term durable conductive sensor which is the most

critical element for the commercialization of wearable

devices and electronics. Karaguzel et al. (2009)

discussed the degradation in conductivity when

washing screen-printed textile transmission lines were

applied a breathable coating in order to make textile

electronics more durable. It is still challenging to

obtain a sensor with superior sensitivity and durability

that can work well in a harsh condition at high

humidity (Park and Gong 2017) and high temperature

(Zhuang et al. 2017). The base substrates, the

conductive layer material, the printed pattern geom-

etry, and the protective layer have a great effect on the

durability of the conductive textile based sensor

(Kazani et al. 2013). The fabric should have a flat

and smooth surface. An interface layer is highly

recommended for getting the high printing quality.

This layer acts as a barrier to protect the conducting

paste/ink by preventing water penetration into the

paste during washing. The conducting material such as

paste must have high stability and flexibility which

generally offers high durability with regard to bending

Table 7 Benefits and challenges associated with inkjet and screen printing

Type of

printing

Benefits Challenges References

Inkjet 1. Lower viscosity of ink is required

compared to other printing forms

2. Precise deposition of droplets on

substrates

3. Specific droplet ejection using

different actuation phenomena

4. Requires no mask/screen

5. Minimal material consumption,

lower material wastage

6. Ability to deposit only where

required on the substrates

7. Requires less physical effort and has

smart functionalities

1. Higher investment cost

2. Lower speed and less production

than screen printing

3. Requires multi nozzles in parallel

4. Misfiring and clogging in nozzle

head.

5.Coffee ring effect due to unequal

distribution of dried solute

Bucella et al. (2013), Jayasinghe and

Townsend (2006), Kang et al. (2013),

Khan et al. (2012), Park et al. (2007),

Siden and Nilsson (2007), Singh

et al. (2010) and Smaal et al. (2012)

Screen 1. Most mature conventional printing

method

2. Lower investment cost

3. Capable of printing any kind of ink

on any type of substrate

4. Desired pattern defined by open area

of mesh

5. Specific and control paste deposition

with fast speed and versatile

6. Easy to obtain lightweight

conductive coated textiles that can be

integrated into smart textiles and on a

whole range of materials, such as

ceramics, glass, super capacitors,

polyethylene, polypropylene, paper,

metal and wood

7. This technique is only suitable for

rather high-viscosity inks with

thixotropic (shear-thinning)

behaviour

1. Lower viscosity of ink not

suitable as ink will run out through

the screen

2. Drying of solvents in mask

deteriorates printing patterns

3. Dry out of masks when inks are kept

for a long time

4. High resolution of pattern lines

(\ 30 lm) is not possible

5. High wet thickness of films and high

rough fabric surfaces

6. Extra care is essential to control the

printing parameters such as squeegee

force, printing speed and off-contact

distance on printing quality

7. Less well suited to one-off

production compared to direct

writing i.e. inkjet printing.

8. Requires more physical effort and

large space for production

9. Higher labour and space cost

Abdelkader et al. (2017), Krebs et al.

(2009), Moonen et al. (2012), Shi

et al. (2011), Søndergaard et al.

(2013), Soukup et al. (2012) and

Tobjörk and Österbacka (2011)
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and washing (Zhong et al. 2018). Kim et al. (2018)

produced high durable and waterproof rGO/SWCNT

fabric based multifunctional humanmotion sensor and

the device showed particularly high mechanical sta-

bility and flexibility during 100,000 bending tests. Wu

et al. (2016) has developed highly stretchable and

wash durable strain sensor with good reproducibility

over 10,000 cycles. Luo et al. (2017) also fabricated a

novel multifunctional spider silk-like single-walled

carbon nanotubes (SSL-SWNTs) strain and tempera-

ture sensor which can withstand against over 10,000

cycles. Yin et al. (2017) developed a highly durable

strain sensor based on polydimethylsiloxane (PDMS),

carbon black (CB) and multi-walled carbon nanotubes

(MWCNTs) for health monitoring and it showed

excellent durability over 100,000 stretching releasing

cycles under tensile tests.

Washing stability

From the launching of wearable sensor technology

embedded circuits into clothing, one enquiry that

consistently asked to designers and researchers is Can

I wash it? (Zeagler et al. 2013). Textiles with electro-

conductive characteristics for clothing need to be

robust against laundering or dry cleaning. Lamination

can be applied to prevent the substrates from creasing

during laundering (Singha 2012). Many researchers

have tried to prove the wash stability by cleaning

sensors. The washing stability of textile sensors might

be improved by polyurethane (PU) sealing (Cho et al.

2007), pre-treatment with Bovine Serum Albumin

(BSA) (Yun et al. 2017) and post-treatment with

polydimethylsiloxane (PDMS) (Liu et al. 2017), a

screen printed polyurethane (PU) interface layer

(Willium et al. 2014) onto the textile surfaces. The

wash durability of graphene-based e-textiles was

improved by a thin layer of a microcircuit encapsulant

PE773 applying a simple hand screen printing method

(Afroj et al. 2020). Varesano et al. (2015) developed

silver and polypyrrole coated cotton fabric to enhance

the antibacterial property on Gram-positive bacteria

and washed five times according to ISO 105-C01

(domestic laundering) and ISO 105-X05 (dry-clean-

ing). Polypyrrole and silver coated fabrics attained an

excellent bacterial reduction of 98% and 99% or

higher respectively. Cleaning of conductive textiles is

shown in Table 8. Schäl et al. (2018a) produced as

sensor by graphite/polyurethane coating and adhesive

tape glued onto 100% cotton plain fabric and washed

this sensor 10 times at 40 �C with 1400 RPM. After 10

wash cycles, no graphite flakes were visible anymore.

The surface of cotton fabric was smoother than before

wash but some fine defects were visible due to

collisions with rough materials during washing. The

electric resistance was also increased. Li et al. (2018)

made a conductive textile of 100% polyester fabric

which was loaded with TiO2 nanoparticles (TiO2 NPs)

by a high temperature pressure exhaustion process and

washed this sensor according to ISO 105-C10:2006

and found improved self-cleaning performance. Fili-

powska et al. (2016) produced a sensor by screen

printing with metallic silver on 100% cotton and 100%

polyester plain fabric and washed five times according

to the PN-EN ISO 6330:2012 at 40 �C using a standard

detergent without an optical brightener to evaluate the

durability of printed sensor. With consecutive washes,

the resistance increased by 56% (approximately) on

the cotton woven fabric and 40% (approximately) on

polyester-cotton woven fabric.

Ryan et al. (2017) submerged the PEDOT:PSS

dyed silk yarns in water for up to 4 days and

PEDOT:PSS did not detach. Then the dyed yarns

were washed in a standard household washing

machine and fount that no change in electrical

conductivity after four washing cycles. Dry cleaning

was also carried out without loss of conductivity. Yang

et al. (2018) has produced a strain motion sensor by

treating elastic knitted cotton fabric in a CNT suspen-

sion applying the dip and dry process and washed this

strain sensor by AATCC Test Method: 61-2006 to

evaluate the durability to water washing. After wash-

ing it was found that the electrical resistance increased

slightly from 1.55 to 1.81 kX/sq after three cycles. The
electrical resistance remained lower than 2.1 kX/sq
even after eight washing cycles. So it can be indicated

that the number of washing cycles did not influence the

conductivity of the sensor. Choi et al. (2017) produced

highly durable electronic textiles simply coating the

surface of Kevlar thread with conductive PEDOT: PSS

via dip-coating and washed using detergent solution

according to AATCC Test Method 61-2006. The

resistance of the PEDOT:PSS-coated Kevlar thread

increased by about 14% after 4 wash cycles. Zhu et al.

2014) produced the polypyrrole coated cotton fabric

using a mist polymerisation technique which exhibited

good wash resistance after washing ten cycles in a

home laundering machine operating an accelerated
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wash cycle. The resistivity of all the samples increased

by 10–15% after first two washing cycles and was

increased by less than 5% during remaining washing

cycles. So it is confirmed that washing has a great

impact on the conductivity of textile sensors.

Cetiner (2014) washed PPy coated conductive

100% cotton interlock composites at 40 8C 9 300 in
washing machine by soap solution. After washing the

electrical conductivity, dielectric constant, dielectric

loss and dissipation factor decreased significantly.

Hasan et al. (2018) washed the screen printed micro-

strip patch antennas according to ASTM C1120/

C1120M-98 for 15 cycles washing and drying. After

15 washes, it was found that there was no change in

resistance after the harsh mechanical washing process

and subsequent drying as the polyurethane (PU)

encapsulate protected the silver conductor from abra-

sion. Yan et al. 2018a) removed the sizing materials

from the plain woven fabric by desizing process before

stabilization and carbonization as stabilization and

carbonization may improve the conductivity of fabrics

significantly. Then the produced flexible strain sensors

showed excellent sensitivity over a high sensing range

(within 12% strain) and high durability and stability

more than 1000 stretching cycles at 5% strain.

Ageing/storage effect

Ageing has a great impact on the shelf-life of

conductive textiles. The durability, performance, and

storage effect on the conductivity of conductive

textiles should be analysed and compared. Till now

information about the storage effect on electric

conductivity is unavailable. The conductive textiles

should be stored for some weeks at different atmo-

spheric conditions and conductivity of these sensors

should be measured and also compared with each

temperature. The loss of electrical conductivity on

Table 8 Cleaning of conductive textiles

Cleaning details Method of sensor production Encapsulation References

10 times washing at 40 �C 9 1400

RPM

Graphite/polyurethane coating and adhesive tape

glued onto 100% cotton plain fabric

N/A Schäl et al.

(2018a)

N/A By stirring the wool yarn in a highly conductive

GNPs and CB hybrid ink

N/A Souri and

Bhattacharyya

(2019)

Washed at 40 8C 9 300 in washing

machine

PPy coated conductive 100% cotton interlock

composites produced by in situ chemical oxidative

polymerisation

N/A Cetiner (2014)

N/A 100% cotton plain fabric polypyrrole coating by In-

situ polymerisation

N/A Tunáková et al.

(2018)

ISO 105-C10: 2006 100% polyester fabric was loaded with TiO2

nanoparticles (TiO2 NPs) by a high temperature

pressure exhaustion process

N/A Li et al. (2018)

N/A Inkjet print by PANI and PPy on 100% polyester 1/1

twill fabric

N/A Stempien et al.

(2015)

Washed five times according to the

PN-EN ISO 6330:2012 at 408C
Screen printing by metallic silver on 100% cotton

and 100% polyester plain fabric

N/A (Filipowska

et al. 2016)

N/A Dielectric interface layer by screen printing and the

conductive printing is accomplished using an inkjet

printer

N/A Krykpayev et al.

(2017)

Washed and dried the fabric before

producing the sensor. But sensor

was not washed.

Using thermoplastic polyurethane and carbonised

PNY woven fabric was obtained through

stabilisation and carbonisation

N/A Yan et al.

(2018a)

15 cycles washing and drying Screen print by DuPont 5064H silver conductor on

EvolonTM (Nonwoven-30% polyamide 70%

polyester) to produce micro-strip patch antennas.

Hydrophobic

coatings as an

encapsulation

layer

Hasan et al.

(2018)
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ageing should be measured in every week. By

measuring this electrical conductivity, the effect of

atmospheric ageing can be assessed. Knowing the

extent of variation of conductivity of sensors is very

important to determine the shelf-life of the developed

conductive textile sensors.

Microencapsulation of the conductive textiles

Microencapsulation, a technology consists of a core

encircled by a physical barrier of uniform or non-

uniform thickness for protecting the core compound

and the other components of the product. Encapsula-

tion can be applied on any textile substrates to protect

the conductive printed arrays by vapour polymerisa-

tion, spray chilling or drying, spray cooling, extrusion

coating, fluidized bed coating, padding, impregnation,

bath exhaustion, and during the rinse cycle of a

washing machine. Microencapsulation can be used for

conductive textile connection, not always with the

sensing element of a sensor. In particular for chemical

sensors, in which the sensing element has to be in

contact with the body or skin. But there is no much

information about microencapsulation for protecting

the sensors during usage and cleaning repeatedly.

Researchers have overlooked this encapsulation which

could increase the longevity of the sensors. Conduc-

tive tracks which have not been encapsulated cannot

survive machine washing (Yang et al. 2017). This is

likely due to the combined effects of mechanical

stresses, detergent and water which affect both the

substrate and the conductive polymer applied to the

surface.

A few researchers have used lamination instead of

encapsulation after printing. The lamination process

requires much raw materials for laminating the whole

substrate. The laminated substrate needs to be cut into

pieces before using it depending on the lamination

process. As whole substrates are laminated during

lamination which is the limitation of laminating

process. Moreover, lamination makes the fabric sur-

face stiff and the hard outer layer makes the fabric

uncomfortable and difficult to fit a curved shape (Liu

et al. 2014). So to overcome the limitations of

lamination, encapsulation can be applied after sensor

production instead of lamination. Microcapsule

releases the core material under proper conditions of

pressure, temperature and radiation (Sánchez-Silva

et al. 2012). In case of microencapsulation, only the

printed and/or conductive area should be encapsu-

lated. This encapsulation technique reduces not only

the use of raw materials (such as conducting polymer/

ink) but also protects the conductive textiles during

washing. For example, the uncapsulated and encap-

sulated of graphene coated e-textiles showed & 10

times higher electric resistance and only 3.5 times

higher resistance after 10 washing cycles respectively

(Afroj et al. 2020). After 10 washing cycles, the

uncapsulated fibres were prone and lost more electric

conductivity due to aggressive mechanical agitation

compare to encapsulated fibres. From SEM images of

encapsulated fibres, it is seen that microencapsulation

created an insulating layer on the cotton fibre surface

which protected this graphene coated cotton fibre after

10 washing cycles. So it is confirm that encapsulation

has a great impact on the wash stability of wearable

sensors.

Flexibility of the textile sensors

Flexibility and stretchability are the most essential

requirements of wearable textile sensors for applying

in healthcare applications, daily activity monitoring,

robot interaction control, and intelligent control (Chen

et al. 2019; Zhang et al. 2020). Textile sensors should

exhibit high flexibility, compressibility and bendabil-

ity after repeated washing cycles. Researchers are

trying to develop ultra-flexible and stretchable skin-

mounted strain sensors to monitor the tiny movement

of human motions (Büscher et al. 2015; Zhang et al.

2020). Büscher et al. (2015) developed a flexible and

stretchable fabric based dataglove tactile senor

(Fig. 5.) which is capable to cover the curved body

parts of human and robot.

This tactile senor is very robust and can withstand

against applied forces. Wang et al. (2018) fabricated a

flexible strain sensor for monitoring the human motion

and this sensor showed good durability and stability

(stretch/release test of 6000 cycles). Afroj et al. (2020)

has demonstrated a multifunctional, highly conduc-

tive, ultra-flexible, scalable and washable graphene

based e-textiles for wearable electronic applications

such as supercapacitor and strain sensing including

human motion, finger joint and wrist joint detection.

This graphene based wearable textiles showed excel-

lent mechanical capability and stability even after 100

times bending-unbending cycle movement. So all

textile sensors should be flexible and stretchable for
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the multifunction of wearable medical equipment,

human prosthesis and the next-generation robot.

Future perspective

The wearable textile sensors have great potential

applications in various fields including real-time

health monitoring, prosthetics, automotive, mobile

devices and robotics due to their sensing properties,

flexibility, self-healable, stretchability and environ-

mental friendliness. Smart textiles and/or intelligent

textiles are capable to integrate new sensing function-

alities into convention textiles applying various

methods including spinning, weaving, knitting,

embroidery, digital printing and stitching. Smart

textiles can be powered by rechargeable batteries to

develop alternative lightweight storage devices. Tex-

tile sensors can be used in the fashion industries for

producing lightening effects to provide visual com-

ponents to garments for event wear and light treat-

ment. Automotive smart textiles is also a promising

source of providing heating in car seats to increase

wearer’s comfort. Smart textile switches can be

integrated into dashboard lighting and car steering

wheel. Considering the advantages of wearable smart

textiles, commercial textile sensors will be novel

solutions for generating new ideas and integrating

electronics into conventional textiles for unusual

environment.

Conclusion

The growth and application of wearable textile based

sensors in particular e-textiles require a new way of

thinking. There is a growing demand of flexible smart

textiles to meet the special functionalities with new

opportunities in various areas such as sports and

healthcare. This review paper has presented informa-

tion about textile based sensors, textile substrates such

as 100% cotton, 100% polyester, 100% wool and

blend substrates, and various ways of substrates

processing for surface modification before producing

the conductive textiles. Application of different con-

ducting polymers and inks with benefits and limita-

tions have been summarized. It has also indicated the

different factors affecting the durability and cleaning

performance of conductive textiles. The latter is an

essential area of study for future work, in order to

improve the properties, performance and the extension

of wearable e-textile lifetime.
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