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Abstract Global air pollution poses a serious risk to

human health. Among the variety of types of pollution,

inhalable particulate matter (PM 2.5) is proved to be

extremely harmful. In this work, a simple method was

designed to synthesize a novel air filter, which

composed of cellulose acetate and poly (ionic liquids)

by using the technique of macromolecular design and

electrostatic spinning process. The introduction of

poly (ionic liquids) effectively reduced the diameter of

fibers and thus obtains nano-fibrous filters. The

removal rate of PM 10 and PM 2.5 particle by the

filters reached 99.65% and 97.94%, respectively.

Furthermore, the filters exhibited excellent antibacte-

rial properties against Escherichia coli and Staphylo-

coccus aureus, and no obvious cytotoxicity was

observed in vitro culturing cell. After multiple recy-

cling, the filters still maintained excellent antimicro-

bial properties and fibrous morphology due to the

stable covalent bonds between cellulose acetate and

poly (ionic liquids). This is a novel strategy to prepare

high-quality air filters, which have great potential

applications in air purification.

Graphic abstract We fabricated a kind of green

electrospinning material with stable antibacterial

properties through organic synthesis and molecular

design. The introduction of poly (ionic liquids)

effectively reduces the diameter of fibers and thus

obtains nano-fibrous filters. The removal rate of PM 10

and PM 2.5 particle by the filters reached 99.65% and

97.94%, respectively. Furthermore, the filters exhibit

excellent antibacterial properties against E. coli and S.

aureus, and no obvious cytotoxicity is observed

in vitro culturing cell. After multiple recycling, the

filters still maintain excellent antimicrobial properties

and fibrous morphology.
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Introduction

Global air pollution poses a serious risk to human

health, climate, and ecosystems (Lu et al. 2017; Fan

et al. 2018). Among the variety of types of pollution,

particulate matter 2.5 (PM 2.5) (an aerosol particle

with an aerodynamic diameter of less than or equal to

2.5 lm) is proved to be extremely harmful, because it

is particularly prone to penetrating human lungs

(Wang et al. 2014), bronchi and even through the

bloodstream (Zhang et al. 2016). Toxicological and

epidemiological studies have indicated that long-term

exposure to high levels of PM 2.5 pollution result in

serious physical diseases, such as respiratory and

cardiovascular diseases and even mental functions

decline (Brook et al. 2010; Raaschou-Nielsen et al.

2013; Hu et al. 2017). Many effective strategies have

been developed and applied to relieve the PM 2.5

pollution, such as improving the material-fuel quality,

using better combustion technology to increase the

combustion efficiency, and driving down the PM 2.5

emission by vehicle lightweight strategies (Li et al.

2016; Shanmugam et al. 2019). However, these

strategies are usually expensive and technically diffi-

cult to implement (Jing et al. 2016; Zhang et al.

2019a, b). In addition, it is really long and complex to

change the long-term hazy weather that has already

became a considerably serious problem in many

metropolis like Beijing and Shanghai (Zhu et al.

2018a, b). Therefore, it is an urgent solution to cut the

PM 2.5 level of the individual’s living environment

which could protect them from the PM 2.5 exposure

(Zhu et al. 2018a, b)

Filtration is one of common and effective methods

for PM 2.5 removal and air purification to improve the

individual’s living environment (Xiong et al. 2017)

Air filters have been widely applied in various

applications, including in disposable respirators (Tan

et al. 2019), indoor air purification (Khalid et al. 2017;

Zhang et al. 2019a, b), industrial gas cleaning (Liu

et al. 2018) and automotive engine intake filters

(Osaka et al. 2019). Currently, commercial air filters

are usually fabricated using microfibers, which have a

low air resistance and a maximal capacity of pollutant,

but their removal efficiencies of fine particles are

usually limited (Wang et al. 2016). To improve

filtration efficiency, the electrospun nano-fibers air

filter display an excellent performance compared with

those of microfibers (Tort and Acarturk 2016; Tan

et al. 2019; Zhu et al. 2019). The sinuous and

connected channels of nano-fibers are beneficial for

the low air resistance and high filtration efficiency,

simultaneously (Zhang et al. 2019a, b). Electrostatic

spinning is the main method to obtain nano-fibers (Zhu

et al. 2017). A viscoelastic polymer and/or biomacro-

molecule solution with sufficient conductivity can be

electrospun into micro- and nanosized diameter fibers

by releasing from a spinneret and collecting on a
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grounded collector surface (Xue et al. 2019). Based on

the electrostatic spinning technology, a large amount

of nano-fibers have been prepared for PM 2.5 air filters

with high filtration performance (Li et al. 2019; Zhu

et al. 2019). However, some polymer-based nano-

fibers lack biological compatibility and environmental

friendliness (Zhang et al. 2016; Gu et al. 2017; Wang

et al. 2018a, b). In addition, air filters are prone to be

contaminated by microorganisms after long-term use,

which is very negative for human health (Han et al.

2019). In recent years, many strategies are employed

to improve antimicrobial ability of air filters, such as

mixed antibacterial metals, antibacterial nano-parti-

cles and antibacterial polymer (Ma et al. 2018).

Among these antimicrobial materials, poly (ionic

liquids) materials are potential candidates because of

their excellent antimicrobial properties, processabil-

ity, and flexibility (Wang et al. 2019). The antimicro-

bial mechanism of poly (ionic liquids) materials is

similar to that of natural macromolecule chitosan

(Fang et al. 2019). The poly (ionic liquids) materials

have numerous active chemical groups with positive

charge, which effectively destroy the phospholipid

bilayer membrane of bacteria, thereby killing bacteria

(Elshaarawy et al. 2019). However, poly (ionic

liquids) material with the excellent solubility and

hydrophilicity is easily lost in the application process,

which makes it impossible to recycle (Cheng et al.

2018). Consequently, it is highly desirable to fabricate

air filters with low air resistance (Fan et al. 2018), good

biocompatibility (Zhu et al. 2018a, b), environmen-

tally friendly properties (Wang et al. 2018a, b),excel-

lent antimicrobial properties (Zhu et al. 2018a, b), and

flexibility for the removal of PM 2.5 (Ma et al. 2019).

Cellulose as the first most abundant natural polymer

in the plant cell has received increasing attention for

the use in renewable adhesive (Arca et al. 2018),

coating (Napso et al. 2018), engineering plastic (Song

et al. 2017), and hydrogels (De France et al.

2019).Unique advantages of cellulose, including low

cost (Yang et al. 2019), renewability (Sobhanadhas

et al. 2019), and environmentally friendly properties

(Song et al. 2017), make it an attractive choice as an

idea material for air filters (Sobhanadhas et al. 2019).

However, cellulose nano-fibers have a low removal

efficiency for PM 2.5, which is due to the lack of active

chemical groups on the surface of cellulose nano-

fibers (Jiang et al. 2013). In this work, we designed a

simple method to synthesize a novel air filter, which

composed of cellulose acetate and poly (ionic liquids)

by using the macromolecular design technique and

electrostatic spinning process. The ionic liquids con-

taining olefin group could copolymerize with the

modified cellulose to obtain the electrostatic spinning

dope. The stable covalent bonds between poly (ionic

liquids) and cellulose acetate is beneficial for reduce

the loss of the poly (ionic liquids). In the process of

electrostatic spinning, the introduction of poly (ionic

liquids) could effectively increase the tensile force in

electrostatic field, and then the diameter of electro-

static spinning fibers will be further reduced to obtain

nano-fibrous filters (Seo et al. 2009; Lopez et al. 2018;

Bazbouz et al. 2019). The removal rate of PM 10 and

PM 2.5 particle by the filters reached 99.65% and

97.94%, respectively. Furthermore, the filters exhib-

ited excellent antibacterial properties against E. coli

and S. aureus, and no obvious cytotoxicity was

observed in vitro culturing cell. After multiple recy-

cling, the filters still maintained excellent antimicro-

bial properties and fibrous morphology attributed to

the stable covalent bonds between cellulose acetate

and poly (ionic liquids). This is a novel strategy to

prepare high-quality air filters, which have great

potential applications in air purification.

Experimental section

Materials

Cellulose acetate (CA) and methacryloyl chloride

were purchased from Aladdin Industrial Corporation

(Shanghai, China). N, N-dimethylformamide (DMF)

and 2, 20-azobis (isobutyronitrile) (AIBN) were pro-

cured from Da Mao Reagent (Tianjin, China). N-butyl

bromide was purchased from Shanghai Macklin

Biochemical Industry Co., Ltd., China. 1-vinylimi-

dazale was kindly provided by Energy Chemical

(Shanghai, China). Ethyl acetate was obtained from

Da Mao Reagent (Tianjin, China). Acetic acid was

purchased from Tianjin Kermel Chemical Reagent

Co., Ltd., China. Both the E. coli (ATCC 25922) and

S. aureus (MCCCB 26003) strains were purchased

from Shanghai Luwei Technology Co. Ltd (Shanghai,

China). Mouse osteoblast cell line was obtained from

the Cell Bank of Type Culture Collection of the

Chinese Academy of Sciences (Shanghai, China). All

123

Cellulose (2020) 27:3889–3902 3891



chemicals were used as received without further

purification.

Synthesis of 1-vinyl-3-butylimidazale bromide

The synthetic route for 1-vinyl-3-butylimidazale bro-

mide was shown in the Scheme 1a. 6.85 g n-butyl

bromide and 4.70 g 1-vinylimidazale (molar ratio =

1:1) were added to a 10 mL vial and then mixed with

1 mL ethyl acetate. The mixture was magnetically

stirred at room temperature for 5 days. Finally, the

product 1-vinyl-3-butylimidazale bromide was

obtained (yield: 92%).

Synthesis of modified cellulose acetate nano-

fibrous filters

The synthetic route for the cellulose acetate modified

by poly (ionic liquids) was shown in the Scheme 1b.

Cellulose acetate (CA, 4.0 g) and triethylamine

(0.4 g) were dissolved in N, N-dimethylformamide

(DMF, 30 mL) in a 50 mL three-necked flask under

stirring at 80 �C to form a homogenous solution. Then,

methacryloyl chloride (0.4 g) with DMF (10 mL) was

added dropwise into the three-necked flask under

stirring for 2 h. And [VBIm]Br (1.0 g) and 2, 20-azobis
(isobutyronitrile) (0.02 g) were added in the flask

under stirring at 70 �C for 8 h. The mixture was added

dropwise into the water with a vigorous stirring

process, and white solid was formed. The solid was

suction filtered and freeze-dried to obtain the CA

modified by poly (ionic liquids) (yield: 83%).

Cellulose acetate modified by poly (ionic liquids)

(2.0 g) or cellulose acetate (2.0 g) was dissolved in

acetic acid (24 g) and stirred at 30 �C. Then, this
solution was poured into 20 mL plastic syringe as the

electrospinning fluid. Plastic syringe fixed on the

slipway, with a controllable feed rate of 0.5 mL/h for

electrospinning. The tip to-collector distance should

be keeping in 20 cm. The potential difference of

spinning machine was 20 kV (? 15 kV and - 5 kV).

Finally, the sample was vacuum-dried at 60 �C for 2 h

to obtain the cellulose acetate modified by poly (ionic

liquids) nano-fibrous filters (MCA-PILs-1). Similarly,

MCA-PILs-2 (4.0 g CA, 0.4 g methacryloyl chloride,

and 2.0 g [VBIm]Br), MCA-PILs-3 (4.0 g CA, 0.4 g

methacryloyl chloride, and 3.0 g [VBIm]Br) and

MCA-PILs-4 (4.0 g CA, 0.4 g methacryloyl chloride,

and 4.0 g [VBIm]Br) were synthesized according to

the process above, with different introduction contents

of the [VBIm]Br monomer.

Characterization

The UV–Vis absorption spectra were measured on a

Perkin-Elmer LAMBDA35 (USA). The chemical

structures of CA, MCA-PILs-1, MCA-PILs-2, MCA-

PILs-3 and MCA-PILs-4 were examined by Fourier

transform infrared spectroscopy (FT-IR). FT-IR spec-

tra were obtained using a Perkin Elmer spectrometer

(PerkinElmer, Norwalk, CT, U.S.A.) in the wavenum-

ber range from 4000 to 400 cm-1. 1H NMR spectra

were recorded by a Bruker AVANCE 400 MHz

spectrometer. The morphology and structure of fibers

were examined using a JEOL JSM 7800F electron

microscope (JEOL, Tokyo, Japan) with the primary

electron energy of 15 kV. The chemical components

of CA, MCA-PILs-1, MCA-PILs-2, MCA-PILs-3 and

MCA-PILs-4 were investigated using an Oxford

X-Max 50 energy dispersive X-ray spectrometer

(EDS).

PM generation and efficiency measurement

The PM particles used in the experiments were

obtained by burning Jade sandalwood in a glass battle.

The sample was cut into a circle that was larger than

the size of the glass battle in order to fix the air filter to

the glass bottle mouth at an appropriate size. The

bottle was inverted on the incense bottle for 5 min. PM

particle number concentration was measured by a

particle counter (DT-9881 M, CEM).

Antibacterial assays

Antibacterial activity of CA, MCA-PILs-1, MCA-

PILs-2, MCA-PILs-3 and MCA-PILs-4 were used the

following methods for the quantitative evaluation:

E. coli (50 lL) and S. aureus (50 lL) were respec-

tively transferred into 8 mL of sterile Luria-Bertani

(LB) broth (10 g/L tryptone, 5 g/L yeast, 10 g/L

sodium chloride). The sample (0.15 g) was sterilized

under UV-A light for 1 h and then placed them in the

above contain strain Luria-Bertani (LB) broth. After

12 h of incubation in a shaker-incubator (at 150 rpm

and at 37 �C). All of bacterial suspensions after

shaking (20 lL) were individually obtained 500 lL
and then diluted to be 10-6 times were separately
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spread on the solid nutrient agar plates and incubated

at 37 �C for 12 h. Finally, the number of the colony-

forming units was calculated.

Cytotoxic activity

It is critical that air filters are of good biocompat-

ibility, because they have the opportunity to contact

human skin directly (Zarrintaj et al. 2018). In our

current work, the in vitro toxicity of the prepared

nano-fibrous membranes was determined by observ-

ing the growth of mouse osteoblasts in the nano-

fibrous membrane through the MTT test (Li et al.

2017). First, the nano-fibrous membranes samples

were soaked in deionized water for 2 days. Then,

the treated nano-fibrous membranes were transferred

into a 12-well culture dish and 1 9 104 cells were

seeded onto every nano-fibrous membrane specimen

and cultured for 24 h. Subsequently, the culture

medium was removed.

The each well was added 5 mg mL-1 MTT solu-

tion (20 lL) and medium (180 lL) and putted them

into an incubator at a temperature of 37 �C with 5%

CO2 for 4 h to form formazan. To dissolve the above

formazan, we added 150 lLDMSO into each well and

the plate was kept in an incubator for 2 h (at 37 �C and

5% CO2). As the control group, 1 9 104 cells were

seeded into an empty culture plate without nano-

fibrous membrane. All experiments were in quintupli-

cate. The optical density (OD) was usually used to

reflect the level of cell viability, thus the OD values of

the formed formazan was quantified by using an

enzyme-linked detector (BIOBASE-EL10A) at

570 nm.

Results and discussion

Synthetic mechanism of MCA-PILs nano-fibrous

filters

Fibrous filter was a typical air filter, especially nano-

fiber filters, which are attracting great attention

(Malviya 2018). However, most spinning materials

were expense and environmentally unfriendly (Jing

et al. 2016). Moreover, fibrous filters were highly

susceptible to bacterial pollution (Yoon et al. 2016).

Therefore, molecular design technology had been

applied in this work in order to solve the above

problems. The idea of molecular design was shown in

Scheme 1 a Synthesis route of 1-vinyl-3-butylimidazale bromide ([VBIm]Br); b The idea of molecular design
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the Scheme 1b. A large amount of hydroxyl groups on

the surface of CA (green line) could be modified by

methacryloyl chloride. Modified CA contained a large

number of olefin groups (yellow sphere), which could

be initiated by free radicals. Subsequently, the

[VBIm]Br monomer containing olefin group was

initiated by AIBN to covalently bind (blue line) CA

and form polymers (purple line, poly (ionic liquids)).

The poly (ionic liquids) containing a large number of

positive charges could effectively destroy the phos-

pholipid bilayer membrane of bacteria, thereby killing

bacteria. In addition, the covalent bonds effectively

increased the interaction between poly (ionic liquids)

and CA, thus reducing the loss of functional polymers.

It not only effectively improved the filtration effi-

ciency, but also ensured no release of materials in the

application process.

Characterization of MCA-PILs nano-fibrous filters

The FT-IR spectra of CA, MCA-PILs-1, MCA-PILs-

2, MCA-PILs-3 and MCA-PILs-4 were shown in

Fig. 1a. A strong characteristic absorption peaks at

3435 cm-1 could be attributed to the O–H (stretching)

and N–H (stretching) vibrations, and the characteristic

absorption peaks at 2962–2857 cm-1 were attributed

to -CH3 (stretching) and -CH2 (stretching), and the

typical vibrational absorption band of C=O at

1650 cm-1. Compared with CA, the MCA-PILs

appeared the characteristic peaks at

1550–1580 cm-1, which was assigned to the stretch-

ing vibration of imidazolium cation. With the increase

of [VBIm]Br monomer content, the intensity of the

imidazolium cation absorption peaks got stronger. The

peak at 1435 cm-1 was attributed to the C–N stretch-

ing vibrations. The 1H NMR spectra of CA, MCA-

PILs-1, MCA-PILs-2, MCA-PILs-3 and MCA-PILs-4

were shown in Fig. 1b. The 1H NMR spectra were

normalized by characteristic peaks based on CA

(2.0 ppm). It was obvious that there was no charac-

teristic peak in the 1H NMR spectrum of CA at

7.3 ppm (this nuclear magnetic peaks position was

consistent with that the [VBIm]Br monomer’s peaks

position in the literature). With the increase of

[VBIm]Br monomer content, the characteristic peak

area at 7.3 ppm increased significantly. This result

suggested that the poly (ionic liquids) content in

MCA-PILs was consistent with the feeding ratio of the

[VBIm]Br monomer. The thermal stability of CA,

MCA-PILs-1, MCA-PILs-2, MCA-PILs-3 and MCA -

PILs-4 was examined by a thermogravimetric ana-

lyzer (TGA) from 0 to 700 �C (under nitrogen

atmosphere). As shown in Fig. 1c, the initial thermal

decomposition temperature of CA, MCA-PILs-1,

MCA-PILs-2, MCA-PILs-3 and MCA-PILs-4 were

around 280 �C and the rate of decomposition

increased substantially in the region of 280–380 �C.
After 380 �C, the weight loss stabilized again, result-

ing in a slow decrease to 700 �C. This result indicated
that the nano-fibrous filters had good thermodynamic

stability, and thermal environment would not cause

weight loss of the nano-fibrous filters in practical

application. It was noteworthy that the thermogravi-

metric curves had only one major weight loss region

(280–380 �C), indicating that CA and poly (ionic

liquids) had been covalently bonded to form a

macromolecule.

Morphology of MCA-PILs nano-fibrous filters

The SEM images of CA, MCA-PILs-1, MCA-PILs-2,

MCA-PILs-3 and MCA-PILs-4 were shown in Fig. 2,

revealing the randomly arranged three-dimensional

nano-fiber structures, which could be applicable for

the requirement of complex structure for particle

interception and air circulation. The average diameter

of CA, MCA-PILs-1, MCA-PILs-2, MCA-PILs-3,

MCA -PILs-4 was 680 ± 20, 519 ± 22, 446 ± 18,

410 ± 27, and 399 ± 37 nm, respectively. Obvi-

ously, the average diameter of CA fibers was bigger

than the MCA-PILs fibers. With the increase of

[VBIm]Br monomer content, the average diameter

of MCA-PILs fibers was drastically decreased from

680 nm of the original fibers to 399 nm of the MCA-

PILs-4 fibers. Besides, the diameter of fibers also

became uniform. In addition the average void diam-

eter of MCA-PILs fibers was drastically decreased and

narrow distribution of fiber diameter of air filters could

effectively increase the specific surface area (Fig.S2).

These phenomena were mainly attributed to the

introduction of poly (ionic liquids), effectively

increased the conductivity of the spinning solution,

thereby increasing the tensile force in electrostatic

field. Small average diameter and concentrated diam-

eter distribution were of positive significance for

improving air filtration efficiency.

The EDS results of the CA, MCA-PILs-1, MCA-

PILs-2, MCA-PILs-3 andMCA-PILs-4 were shown in
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Table 1. It confirmed the presence of C, N, O, and Br

element. The content of Br element increased gradu-

ally, which was consistent with the changing trend of

feeding [VBIm]Br monomers.

Filtration performance of MCA-PILs nano-fibrous

filters

A simple device was used to characterize the PM

removal capacity of MCA-PILs nano-fibrous filters.

As shown in Fig. 3, the as-prepared nano-fibrous

filters were cut into a circular shape. The filters were

placed at the mouth of a glass bottle with burning

wood strips. Burning wood strips would produce a

large amount of white smoke, which had a lower

density and would rise spontaneously (Fig. 3c). Sub-

sequently, another clean glass bottle was placed over

the device. It could be clearly found that the top glass

bottle was clear and transparent. This phenomenon

indicated that the nano-fibrous filters effectively

reduced the diffusion of the smoke (gases containing

PM particles) from the bottom glass bottle to the top

glass bottle (Fig. 3d).

PM removal capacity of MCA-PILs nano-fibrous

filters was systematically measured by comparing PM

2.5 and PM 10 concentrations. As shown in Fig. 3e,

the CA nano-fibrous filter intercepted large particle

(PM 10) effectively, while the ability to capture fine

particles (PM 2.5) was poor. With the introduction of

[VBIm]Br monomers, the filtration efficiency of PM

10 increased from 94.22 to 99.18% and the filtration

efficiency of PM 2.5 increased from 27.14 to 91.56%

(MCA-PILs-1). With the increase of [VBIm]Br

monomer content, PM 2.5 and PM 10 removal

capacity of MCA-PILs nano-fibrous filters were still

improved (PM 10: from 99.18 to 99.65%, PM 2.5:

from 96.78 to 97.94%). This phenomenon may be

accounted for by two main factors: the average

diameter of electrostatic spinning fibers and the charge

on the surface of fibers. The removal of PM particles

by filters was a dynamic process of adsorption and

desorption, meaning that more opportunities for

interaction and stronger interaction forces between

filters and PM particles leaded to high particle removal

efficiency. The small fiber average diameter and

narrow fiber diameter distribution of air filters could

effectively increase the specific surface area, which

would increase the interaction probability between

PM particles and filters. Positive charged filters could

interact strongly with negatively charged PM parti-

cles, thus increasing the filtering effect of filters.

Anti-bacteria activity and cytotoxicity of MCA-

PILs nano-fibrous filters

It was reported that the pollutant particles also

included a variety of bacteria (Sidheswaran et al.

2012), such as E. coli and S. aureus, etc. These

bacteria were responsible for the infection of air filters

(Yoon et al. 2016). The bacterial-infected air filters

would cause serious health problems. Therefore, it is

urgently desired to develop air filters with antibacterial

properties. The poly (ionic liquids) containing a large

number of positive charges could effectively destroy

the phospholipid bilayer membrane of bacteria,

thereby killing bacteria. In addition, the covalent

bonds effectively increased the interaction between

poly (ionic liquids) with CA, thus reducing the loss of

functional polymers. The antibacterial ability of

MCA-PILs nano-fibrous filters was determined by

the colony counting method (the bacteriostatic circle

test could not be used to characterize their antimicro-

bial activity, because the MCA-PILs nano-fibrous

filters did not release any antimicrobial substances).

Fig. 1 a FT-IR spectra, b 1H NMR spectra and c the TGA curves of CA, MCA-PILs-1, MCA-PILs-2, MCA-PILs-3 and MCA-PILs-4
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Fig. 2 SEM images of a CA, b MCA-PILs-1, c MCA-PILs-2, d MCA-PILs-3, and e MCA-PILs-4 nano-fibrous filter; histogram

represents the fiber diameter distribution of the CA and MCA-PILs nano-fibrous filters

Table 1 The EDS data of

C, O, N, Br element content

in the the CA and MCA-

PILs nano-fibrous filters

Sample/element (wt%) CA MCA-PILs-1 MCA-PILs-2 MCA-PILs-3 MCA-PILs-4

C 72.77 72.14 79.23 74.60 74.37

O 27.23 26.49 17.98 17.17 16.86

N 0.00 0.74 1.66 5.04 4.33

Br 0.00 0.64 1.13 3.18 4.46

Total 100.00 100.00 100.00 100.00 100.00
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The photographs of agar plates were shown in Fig. 4a

and b. The MCA-PILs nano-fibrous filters exhibited

obvious antibacterial activities against both E. coli and

S. aureus, while CA nano-fibrous filters had no

significant antibacterial activity against all strains. It

is worth noting that there was an obvious correlation

between the degree of antibacterial activity and the

[VBIm]Br monomer content of the nano-fibrous

filters. With the increase of [VBIm]Br monomer

content, antibacterial activity of MCA-PILs nano-

fibrous filters improved significantly. Notably, 100%

of the bacteria were killed after contacting with MCA-

PILs-4 for 24 h.

The antibacterial properties of the MCA-PILs

nano-fibrous filters furthermore were confirmed by

OD data of bacterial suspension after 24 h incubation

growth using OD600 measurement. As shown in

Fig. 4c and d, the E. coli and S. aureus suspension for

CA nano-fibrous filters were opaque and turbid, and

the OD data was high, indicating that the microbial

activity had not been inhibited in CA nano-fibrous

filters system. With the introduction of [VBIm]Br

monomer, OD data of E. coli and S. aureus suspension

obviously reduced, and the transparency increased

significantly. It is noteworthy that MCA-PILs nano-

fibrous filters inhibited S. aureus activity at lower

[VBIm]Br content (MCA-PILs-1), and inhibition

ability on E. coli had the same trend. MCA-PILs-4

had the best ability to inhibit microbial activity, which

was in accordance with the results of the colony

counting method.

Because air filters had the opportunity to contact

human skin directly, the toxicity of MCA-PILs nano-

fibrous filters was an important property in practical

applications As shown in Fig. S1, the MCA-PILs

nano-fibrous filters didn’t significantly influence the

cell growth, implying that theMCA-PILs nano-fibrous

filters did not release harmful substances, and it was

non-cytotoxic for MC3T3-E1 cells. To assess the

cytotoxicity of MCA-PILs-n nano-fibrous mem-

branes, the toxicity in vitro of all the MCA-PILs-n

nano-fibrous membranes were evaluated against

mouse osteoblasts (MC3T3-E1) by the MTT test.

Recycling experiment of MCA-PILs nano-fibrous

filters

Recycling of air filters was important in practical

application. It effectively reduced the using cost of the

air filters and the loss of resources. In order to prove

the recyclability of MCA-PILs nano-fibrous filters, the

used CA, MCA-PILs-1, MCA-PILs-2, MCA-PILs-3

and MCA-PILs-4 nano-fibrous filters were sterilized

in a sterilization high temperature sterilizer at 120 �C
for 40 min and then immerse them in ultra-pure water

for 24 h. Finally, vacuum dried them at 60 �C for

120 min. The above process was repeated 20 times.

For the antibacterial experiment, the MCA-PILs nano-

fibrous filters still exhibited obvious antibacterial

activities against both E. coli and S. aureus, while

CA nano-fibrous filters had no significant antibacterial

activity against all strains (Fig. 5a and b). As shown in

Fig. 5c and d, with the increase of [VBIm]Br content,

the number of colonies decreased, and the removal

efficiency of the bacteria increased. The antibacterial

efficiency of the MCA-PILs nano-fibrous filters still

Fig. 3 a The as-prepared nano-fibrous filter; b top view of the

nano-fibrous filter covering the mouth of the bottle; c the glass
bottle without nano-fibrous filter on the left, the glass bottle with

nano-fibrous filter on the right; d the as-prepared nano-fibrous

filter is used for blocking the diffusion of smoke from the bottom

bottle to the outer space; e the removal efficiencies by the CA

and MCA-PILs nano-fibrous filters for PM 2.5 and PM 10
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Fig. 4 Photographs of bacterial colonies of a S. aureus and b E. coli treated with the CA and MCA-PILs nano-fibrous filters; OD data

of c E. coli and d S. aureus suspensions, the inserted photographs are their corresponding bacterial suspension after 24 h incubation

Fig. 5 Photographs of the repeated antibacterial colonies of

a S. aureus and b E. coli treated with the CA and MCA-PILs

nano-fibrous filters; the line chart graphs are the colony number

and antibacterial rate of c S. aureus and d E. coli treated with the
CA and MCA-PILs nano-fibrous filters
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maintained after recycling. The results suggested that

the MCA-PILs nano-fibrous filters had good stability

and could be recycled. The prolonged high tempera-

ture (120 �C), ultra-pure water immersion and ultra-

violet irradiation did not decrease antimicrobial

activity of MCA-PILs nano-fibrous filters. This result

was mainly attributed to the chemical bond connection

between poly (ionic liquids) and CA, which was

beneficial to reduce the loss of the poly (ionic liquids).

Practical application of MCA-PILs nano-fibrous

filters

The main limitation of electrospinning nano-fibrous

filters in practical application was that the fiber felt

was too dense, which was not conducive to human

normal breathing. Therefore, the application of elec-

trospinning nano-fibrous filters as fillers in commer-

cial mask filters was of great significance. The MCA-

PILs nano-fibrous filters were disintegrated with a

Deflaker in deionized water. Dispersed MCA-PILs

nano-fibrous filters were dripped onto the gauze. As

shown in Fig. 6a, the MCA-PILs nano-fibrous filters

were easily processed to the surface of the gauze.

Dispersed MCA-PILs nano-fibrous filters were white

flocculent, much like cotton. Furthermore, the MCA-

PILs nano-fibrous filters were easily processed into

commercial masks (Fig. 6b). The morphologies of

dispersed MCA-PILs nano-fibrous filters were shown

in Fig. 6c. It was observed that the CA, MCA-PILs-

1,MCA-PILs-2, MCA-PILs-3 and MCA-PILs-4 nano-

fibrous filters all maintained their original filamentous

morphologies after dispersion and processing.

Conclusions

In this work, we designed a simple method to

synthesize a novel air filter, which composed of

cellulose acetate and poly (ionic liquids). The intro-

duction of poly (ionic liquids) effectively reduced the

diameter of fibers and thus obtains nano-fibrous filters.

The removal rate of PM 10 and PM 2.5 particle by the

filters reached 99.65% and 97.94%, respectively.

Furthermore, the filters exhibited excellent antibacte-

rial properties against E. coli and S. aureus, and no

obvious cytotoxicity was observed in vitro culturing

cell. After multiple recycling, the filters still maintain

excellent antimicrobial properties and fibrous mor-

phology. This result is mainly attributed to the

covalent bonds between cellulose acetate and poly

(ionic liquids). This is a novel strategy to prepare high-

quality air filters, which have great potential applica-

tions in air purification.
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