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Abstract Predictive models for simulation of drug

release from tablets containing lignin as excipient

were developed in this work. Two predictive models

including Artificial Neural Network (ANN) and

hybrid ANN-Kriging were developed to simulate the

tablet dissolution. Measured data was collected on the

release rate of aspirin tablets prepared by dry granu-

lation via roll compaction followed by milling and

tableting. Two formulations were considered, one with

lignin and one without. The main aim is to show the

effect of lignin as a bio-based natural polymer in tablet

manufacturing to control drug dissolution. For the

ANN model development, process and formulation

parameters including roll pressure and lignin content

were considered as the input, while API dissolution

was considered as response. The predictions were

compared with measured data to calibrate and validate

the model. To improve the predictability of the model,

Kriging interpolation was used to enhance the number

of training points for the ANN. The interpolated data

was trained and validated. The final concentration and

the dissolution rate were predicted by ANN as well as

ANN-Kriging models, and the R2 of greater than 0.99

for most cases was obtained. The validated model was

used to evaluate the effect of process parameters on the

release rate and it was indicated that the tablets

containing lignin have higher release rate compared to

tablets without. Also, it was revealed that process

parameters do not have significant effect on the tablet

release rate, and the tablet release rate is mainly

affected by the lignin content. The results indicated

that ANN-based model is a powerful tool to predict the

API release rate for tablets containing various formu-

lations, and can be used as a predictive tool for design

of controlled release systems.
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Introduction

Most drugs are administered in solid phase, such as

crystalline particles which are processed into tablets or
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capsules by adding excipients (Siepmann and Siep-

mann 2013). In pharmaceutical manufacturing of

solid-dosage oral formulations, there are different unit

operations such as blending, granulation, drying,

tableting, and coating among which granulation is

the key processing step as the tablet properties depend

on the granules attributes such as size, API content,

porosity, etc. (Hansuld and Briens 2014; Shirazian

et al. 2018; Suresh et al. 2017; Vervaet and Remon

2005). In granulation processes, pharmaceutical gran-

ules are formed from fine powder (e.g. excipient and

API) using various methods such as roller compaction,

high-shear wet granulation, twin-screw granulation,

fluidised bed granulation, and hot melt extrusion

(Asada et al. 2018; Hansuld and Briens 2014; Ko et al.

2018; Passerini et al. 2010; Walker et al. 2007). The

main reason for granulation is to improve the powder

flowability as well as tablet properties. Among various

granulation processes developed so far, dry granula-

tion is a suitable process for moisture and heat

sensitive formulations, as no binder is used in the

process. Dry granulation is usually carried out using

roller compaction process in which the formulation is

first compacted to produce ribbons, and then granules

are produced by milling the ribbons. The critical

process parameters in roller compaction process

include roll pressure, roll speed, roll gap, and screw

feeder speed (Al-Asady et al. 2015; Omar et al. 2016).

Understanding the relationship between process

parameters of the roll compaction process and tablet

properties is of great importance for development of

pharmaceutical manufacturing and implementing

Quality-by-Design (QbD) approach. The effect of

process parameters and material properties on critical

quality attributes of ribbons and granules have been

reported in literature. Both experimental (Khorasani

et al. 2015, 2016) and theoretical studies (Loreti et al.

2017; Pérez Gago et al. 2016; Reynolds et al. 2010;

Souihi et al. 2015) have been conducted to understand

the roller compaction process. In terms of modelling

studies, Johanson has proven to be a robust and

rigorous mechanistic model for better understanding

of roller compaction process (Reynolds et al. 2010).

Although, previous studies reveal the correlation

between critical process parameters and granules/

ribbons properties in roller compactor processes

(Pishnamazi et al. 2019a), understanding the relation-

ship between process parameters and tablet dissolution

still remains a challenge and opportunities arise in

helping to improve tablet dissolution rate by tuning

formulation and process parameters.

Drug dissolution is an important quality attribute of

pharmaceutical tablets in which the kinetics and

equilibrium concentration (solubility) of Active Phar-

maceutical Ingredient (API) release from the tablets is

of utmost importance (Siepmann and Siepmann 2013).

The main focus of controlled release systems is to

manipulate the release rate of APIs through different

techniques such as incorporating into polymeric

matrix (Castro-Dominguez et al. 2017), and loading

drug in stimuli-responsive nanocarriers (Fleige et al.

2012), and therefore enhancing bioavailability for

poorly water soluble APIs. Nowadays, a big challenge

facing the pharma industry is poor solubility of newly

produced drugs in the body, i.e. bioavailability.

According to Biopharmaceutics Classification Sys-

tem, BCS Class II and BCS Class IVmany drugs are of

poor solubility and bioavailability (Daousani and

Macheras 2016). It has been recognised that seven

out of ten of drugs never reach the patients. Develop-

ment of solid dispersions have been reported to be

effective in improving the solubility of BCS Class II

drugs (Van den Mooter 2012). Amorphous solid

dispersions provide high dissolution rates because of

their disordered structure and higher Gibbs free energy

compared to crystalline APIs (Ziaee et al. 2017).

Recently, lignin has attracted much attention as it

may be used to improve the release of bio-active

compounds (Chowdhury 2014; Collins et al. 2019).

Lignin is a cross-linked natural polymer, cheap, and

available (Culebras et al. 2018). Due to amorphous

nature of lignin which has higher free energy, it can be

used as modifier to enhance the bioavailability of

poorly soluble APIs. However, understanding the

effect of lignin on dry granulation using roller

compactor, and finding a correlation between lignin

content and tablet dissolution rate remains a big

challenge. Developing a robust predictive model for

designing controlled release systems based on natural

polymers is of great importance for pharmaceutical

industry.

Therefore, there is a definite need for a compre-

hensive study to correlate the critical process param-

eters of roller compactor as well as formulation with

tablet dissolution as the key critical quality attribute. A

powerful tool is the development of a process model

where inputs and outputs can be correlated. Different

models have been used for pharmaceutical
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manufacture such as mechanistic models (Sajjia et al.

2017; Shirazian et al. 2018) and soft computing

approaches (Mustafa et al. 2017; Shirazian et al.

2017). Artificial Neural Network (ANN) is a soft

computing method which is capable of predicting the

process and making correlation between process

inputs and outputs (Ismail et al., 2019a, b). Applica-

bility, robustness, and reliability of ANN in pharma-

ceuticals have been verified in the literature (Das and

Chakraborty 2016; Mustafa et al. 2017; Shirazian et al.

2017).

The main objective of the current study is the

development of a comprehensive ANN-based model

for prediction of dissolution rate of tablets prepared by

roller compaction followed by milling and tableting.

In order to enhance the bioavailability of API, lignin is

used as excipient and the tablet dissolution rate is

measured for tablets containing lignin and without

lignin. Aspirin is used as model API in this study.

Experiments

Materials and methods

Two different formulations containing API and excip-

ients were considered in this study for preparation of

tablets. The excipients used include microcrystalline

cellulose (MCC 102, SANAQ�), lactose monohydrate

(Lennox USP, NF, BP, Ph, pure pharma grade), and

Alcell lignin (Tecnaro, Germany). More details on the

lignin used in this study can be found elsewhere

(Culebras et al. 2018). Acetylsalicylic acid (Alfa

Aesar, 99% C9H8O4) was utilised as API in both

formulations. Magnesium stearate (Sigma-Aldrich,

Ph. Eur., BP, C 90%) was used as lubricant for the

compaction experiments, and Croscarmellose sodium

(CCS) (IMCD NF, PH.Eur., JP) was used as disinte-

grant in both formulations. The percentage of the

materials used in two different formulations are listed

in Table 1. To prepare the mixture, all the materials

were blended using a Morphy Richards Stand Mixer.

HCl acid (ACS, ISO, Reag. Ph Eur, Hydrochloric acid

fuming 37%) was used for preparation of buffer

solutions for dissolution tests. For preparation of the

mobile phase for analysing the API concentration with

HPLC, Ortho-phosphoric acid (analytical reagent

grade, Fisher Scientific UK) and acetonitrile, HPLC

grade, 99.7 ? %min Liquid (Alfa Aesar) were mixed

together.

Equipment and instruments

Dry granulation method was utilised to produce the

tablets for two different formulations. In order to do

dry granulation process, roller compaction was carried

out. The roller compactor, (‘‘Freund TF-MINI’’), with

roll diameter of 100 mm and width of 25 mm

integrated with a vertical screw feeder was used to

produce ribbons. The roll pressure was changed

between 30 and 50 bar in the experiments. A conical

mill (Laboratory Comil 193 AS) with a screen (mesh

size of 813 lm) and impeller speed of 3000 rpm was

used to produce the granules from the ribbons. The

considered process parameters included screw speed

(SS) and roll pressure (RP), while roll speed was kept

constant at 4 rpm. The screw speed was changed

between 10 and 14 rpm, and roll pressure was changed

between 30 and 50 bars in the ribbon production

experiments.

For tableting process, a single punch tablet press

(Gamlen Tableting GTD-1 D series) was applied. For

preparation of each tablet, 100 mg of granules of each

formulations were measured and compacted to pro-

duce tablets in a 6 mm die. The tablet compression

was carried out at 180 mm/min speed under fixed load

of 400 kg.

Dissolution procedure

For the dissolution analysis, buffer solution at pH =

1.2, including 0.1 N HCl (ACS, ISO, Reag. Ph Eur,

Hydrochloric acid fuming 37% wt.) was prepared as

dissolution medium. 500 ml of the dissolution test

chamber was filled with the buffer solution, with the

Table 1 Different formulations used in this work

Material (% w/w) Formulation 1 Formulation 2

Acetylsalicylic acid 5 5

Alcell lignin 20 0

Lactose 20 20

MCC 102 51 71

Croscarmellose sodium 3 3

Magnesium stearate 1 1
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constant temperature at 37 ± 0.5 �C and 75 rpm

stirrer speed. The experiment was run for 120 min,

and the samples (Three mL) were withdrawn from the

dissolution chamber at 5, 10, 20, 30, 40, 50, 60,

120 min. Afterward, the samples were filtered and the

concentration of API was measured using HPLC at

wavelength of 200 nm. The dissolution tests were

carried out in triplicate, and the average values were

used for modeling.

High-Performance Liquid Chromatography

(HPLC) was used to measure the API concentration

in each samples via an Agilent (Agilent Technologies,

Waldbronn, Germany) 1260 Infinity II HPLC system.

The HPLC setup consisted of a quaternary pump

G1311B, a diode array detector G1315D set at

wavelengths of 200 nm for acetylsalicylic acid, auto-

sampler G1329 B and a thermostated column com-

partment G1316A set at temperature of 25 �C. The

system operated under isocratic flow at 0.75 mL/min

using mobile phases consisting of A) 0.1% Ortho-

phosphoric acid; B) acetonitrile; A/B = 50/50, v/v.

The injection volume was 10 mL. The total run time

was 10 min, and the type of column used was

Kromasil 5C18 (250 9 4.6 mm) (Pishnamazi et al.

2019b).

Model development

ANN structure

In order to develop a predictive model, artificial neural

network (ANN) approach was used in which the

process parameters and material properties are corre-

lated with critical quality attributes. Roll pressure,

screw speed, and lignin content in the formulation

were considered as the inputs, whereas the kinetics and

final API dissolution were considered as outputs for

developing ANN. The preliminary results indicated

that screw speed has negligible effects on the quality

attributes of ribbons, therefore, screw speed was

omitted from the process parameters. An ANN model

consisting of two hidden layers was developed as

shown in Fig. 1. JMP Pro 14 software was used for

developing the ANN model and analysing the results.

To find the optimum ANN structure, different

transfer functions were tested, and the best results

were obtained for the structure consisting of 6 non-

liner (hyperbolic tangent), 2 liners, and 2 Gaussian

functions in the first layer; with 6 non-linear nodes for

the second layer (see Fig. 1). In ANN modelling using

JMP, the linear combination of input variables (roll

pressure and lignin content) are not transformed when

using the linear activation function, while for the non-

linear function, the hyperbolic tangent term is used as

follows (SAS_Institute 2016; Shirazian et al. 2017):

e2z � 1

e2z þ 1
ð1Þ

where z is a linear combination of input variables.

In order to build ANN model, 60% of the measured

data was used to train the network, while 40% was

used for model validation and testing the developed

model in prediction of the API release rate. The

network was trained to predict the concentration of

API at different sampling time intervals, as function of

lignin content and roll pressure of roller compactor.

The developed ANN model was used for prediction of

API release rate, in which the predictive behaviour and

accuracy of the model is assessed by comparing the

predicted values and the measured values. The coef-

ficient of determination (R2) which indicates the

goodness of fitting is calculated as (Barrasso et al.

2015; Shirazian et al. 2017):

R2 ¼ 1�
P

i fi � yið Þ2
P

i �yi � yið Þ2
ð2Þ

where f refers to the predicted points, and y refers to

the observed values. i denotes the set of experimental

run. Also, root-mean-squared error (RMSE) is calcu-

lated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i fi � yið Þ2

n

s

ð3Þ

where n denotes the number of measurements.

ANN-Kriging hybrid model

In order to improve the predictability of the developed

ANNmodel for API dissolution, Kriging interpolation

method was used to enhance the number of training

and validating points for the ANN. Ordinary Kriging

interpolation was developed based on two inputs and

eight outputs which are the dissolution percentage at

various times. Kriging method predicts a response yk
at an interpolated point xk as a weighted sum of the
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observed responses (y1, y2…yn) where xk falls in the

neighbourhood of their corresponding sampling points

(x1, x2, x3…xn) (Boukouvala et al. 2011):

yk ¼ f xkð Þ ¼
Xn

i¼1

wif xið Þ ð4Þ

wi is the weighted sum (kriging weights) which

depends on the Euclidian distance h:

h = xi - xj
�
�

�
� ð5Þ

In Kriging algorithm, the main objective is to

calculate the set of Kriging weights assigned to each

group of n clustered points in the neighbourhood of xk
where the derived variogram model leads the sum of

the weights to unity. In calculating the interpolated

prediction f xkð Þ at xk, the observed responses (y1,

y2…yn) for sampled points (x1, x2, x3…xn) that are in

the neighbourhood and nearer to xk will have more

influence on predicting f xkð Þ. Indeed, the higher

number of neighbouring points and the nearer these

neighbouring points are to xk, f xkð Þ will be calculated
with more confidence (Ismail et al., 2019a, b).

In ordinary kriging interpolation, the experimental

variogram is calculated from the experimental data

points to statistically quantify the dataset in a form that

fits statistical equations (exponential, Gaussian, cubi-

c…etc.). After fitting the experimental and theoretical

variograms, kriging weights are then calculated to

determine the interpolated response.

A two-dimensional kriging interpolation was con-

ducted on the experimental data obtained from the

dissolution experiments to predict the dissolution of

API at new data points. The reliability and validity of

the hybrid ANN-kriging has been proved in our

previous works (Ismail et al., 2019a, b). Ordinary

Kriging interpolation was performed inMatlab where

the lignin content (%) and roller pressure (bar) were

taken as input parameters and API dissolution at 5, 10,

20, 30, 40, 50, 60 and 120 min as output parameters.

Fig. 1 Structure of

developed ANN for

prediction of drug release
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Interpolation was conducted at 10 new points for each

dimension in which 121 points were obtained after

applying Kriging. The interpolated kriging data was

used to improve the empirical ANN model prediction

compared to using just experimental data.

The structure of the developed ANN-Kriging is

shown in Fig. 2. As seen, the hybrid model contains

two hidden layers, each layer constitutes of three

nodes which makes the model simpler and faster to

solve. Also, a combination of linear and nonlinear

transfer functions has been used for the hybrid model

to train the network for prediction of data.

Results and discussion

ANN model

The developed ANN model was first trained using the

experimental data collected on the release rate of

tablets containing aspirin. The trained network was

then used to validate the model. The results of training

and validation are listed in Table 2 for the concentra-

tion of API at different times, and the final concen-

tration of API at the time of 120 min (final). As seen,

the model is very well trained with the experimental

data, and the R2 of 1 is obtained for all points, while for

the validation R2 of 0.99 is obtained for most cases

except for predicting the concentration of API after

5 min which could be attributed to high release rate at

the beginning of the dissolution test. It is clearly

observed that the model can predict the release rate of

API with high accuracy, and can be used as a powerful

predictive tool for the design of release systems based

on lignin. However, it should be pointed out that there

might be a risk of over-prediction in this system as

small number of experimental points are used. There-

fore, Kriging approach was used to train the network

for more data points and prevent the risk of over-

prediction.

ANN-Kriging model

The predicted release rate versus the measured values

for both training and validation for the hybrid ANN-

Kriging model are depicted in Fig. 3. Moreover, the

statistical data of the calibration and validation for the

hybrid ANN-Kriging is listed in Table 3. After

Kriging, the number of data points are increased to

121 points to make a more robust predictive model.

Fig. 2 Structure of

developed ANN-Kriging

hybrid model for prediction

of drug release
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1/3 of the data points were used for validation, while

2/3 were used for training the network. It is clearly

seen that the model is well trained for all the training

points and the cross validation can confirm the model

can be used for prediction of the dissolution. Also,

similar to the ANN model, some deviations are

observed for the dissolution data after 5 min, however

R2 has been significantly improved for 5 min data

from 0.52 to 0.67 for the validation stage.

Simulation of the release rate using ANN model

The validated model was used to simulate the release

rate of API for the tablets prepared with two formu-

lations. The experimental and predicted release rates

for the tablet without lignin, and the tablets containing

lignin are represented in Figs. 4 and 5, respectively.

The graphs of release rate indicate that the release rate

is very high at the beginning of dissolution test, and

more than 60% of the API is released after 5 min.

After 20 min, the drug concentration in the solution

reaches the highest values, and then decreases, and

finally become plateau which is considered as the

equilibrium point. The reason for reduction in the

concentration of API after 20 min could be attributed

to the dissociation of aspirin which undergoes hydrol-

ysis during the dissolution test. Aspirin is partially

hydrolysed to salicylic acid and acetyl salicylic acid

upon exposure to aqueous solutions (Pishnamazi et al.

2019b).

It is also observed in Figs. 4 and 5 that the release

rate of aspirin is higher in the tablets containing lignin

such that higher dissolution rate is observed in the

dissolution test of tablets containing lignin. This could

be due to amorphous nature of lignin which enhances

the dissolution of aspirin. It is observed that the model

is robust and can predict the release rate and the final

concentration as well.

Design space for the API release

The developed model was used to understand the

effect of process parameters of roll compaction as well

as formulation on the release rate of API. In roller

compaction process, roll pressure is the most impor-

tant parameter compared to other parameters such as

screw speed and roll speed (Pishnamazi et al. 2019a).

The effect of roll pressure and lignin content on the

equilibrium concentration of API in the buffer solution

is shown in Fig. 6. The roll pressure was considered

between 30 and 50 bar, and the lignin content between

0 and 20 wt%. It is indicated that by increasing the

lignin content in the formulation, the dissolution of

API increases significantly which consequently can

Table 2 Statistical data of ANN calibration and validation

Times (min) Data set R2 RMSE Mean Abs Dev -LogLikelihood SSE Data points

5 Training 1 8.7e-13 7.5e-13 - 105.4 3.0e-24 4

Validation 0.52 2.6 1.9 4.8 14.0 2

10 Training 1 2.1e-13 1.8e-13 - 110.9 1.9e-25 4

Validation 0.99 0.2 0.2 - 0.2 0.1 2

20 Training 1 3.7e-13 3.2e-13 - 108.8 5.6e-25 4

Validation 0.99 0.5 0.4 1.5 0.5 2

30 Training 1 4.3e-13 3.7e-13 - 108.2 7.3e-25 4

Validation 0.99 0.6 0.6 1.7 0.6 2

40 Training 1 4.3e-13 3.7e-13 - 108.2 7.5e-25 4

Validation 0.99 0.4 0.4 1.1 0.4 2

50 Training 1 2.9e-13 2.4e-13 - 109.8 3.3e-25 4

Validation 0.91 1.5 1.4 3.7 4.7 2

60 Training 1 4.1e-13 3.5e-13 - 108.4 6.7e-25 4

Validation 0.99 0.1 0.1 - 0.9 0.04 2

120 Training 1 4.0e-13 3.3e-13 - 108.5 6.4e-25 4

Validation 0.99 0.3 0.3 0.6 0.2 2
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enhance the bioavailability of API. Also, it is seen that

by increasing the pressure, the dissolution decreases,

however the effect of roll pressure on the dissolution is

not significant compared to the effect of lignin content

because the dissolution of API is highly dependent on

the chemistry of formulation and the dissolution

medium. It is observed that increasing roll pressure

decreases the equilibrium concentration of API which

is attributed to the size of granules. As the roll pressure

increases, denser ribbons are produced, which results

in formation of larger granules in the milling step.

Larger granules in the prepared tablets results in lower

Fig. 3 Actual versus predicted values of drug release for the hybrid ANN-Kriging model
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dissolution as the surface area of the granules

decreases and reduce the surface energy and

dissolution.

Conclusions

A new formulation containing lignin was designed in

this work to enhance the bioavailability of drugs. The

tablets were prepared using dry granulation method

followed by milling and tableting. In order to design

and predict the release rate of API, an artificial neural

Fig. 3 continued
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Table 3 Statistical data of hybrid ANN-Kriging calibration and validation

Times (min) Data set R2 RMSE Mean Abs Dev -LogLikelihood SSE Data points

5 Training 0.69 0.98 0.68 135.83 93.45 97

Validation 0.67 0.89 0.71 31.15 18.84 24

10 Training 0.99 0.34 0.27 32.50 11.10 97

Validation 0.99 0.30 0.26 5.54 2.23 24

20 Training 0.99 0.13 0.09 - 60.92 1.62 97

Validation 0.99 0.14 0.10 - 12.88 0.48 24

30 Training 0.99 0.07 0.05 - 113.76 0.54 97

Validation 0.99 0.07 0.06 - 27.58 0.14 24

40 Training 0.99 0.07 0.057 - 116.05 0.52 97

Validation 0.99 0.07 0.05 - 27.56 0.14 24

50 Training 0.99 0.10 0.07 - 83.30 1.02 97

Validation 0.99 0.12 0.08 - 16.13 0.36 24

60 Training 0.99 0.06 0.05 - 133.06 0.36 97

Validation 0.99 0.06 0.05 - 31.47 0.10 24

120 Training 0.99 0.07 0.05 - 120.85 0.47 97

Validation 0.99 0.07 0.05 - 29.28 0.12 24

Fig. 3 continued
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network (ANN)model was developed considering two

hidden layers and combining various activation func-

tions, i.e. linear, hyperbolic tangent, and Gaussian.

The ANN model as well as hybrid ANN-Kriging were

developed to predict the dissolution of the drug. Two

formulations, one containing lignin, and the other one

without lignin were considered to investigate the

effect of lignin on the API release rate. The results of

release rate indicated that the tablets containing lignin

have higher release rates of API. The results of

simulation revealed that the developed model can

predict the release rate with high accuracy and

R2= 0.99 was obtained for most cases. The model

was used to predict the kinetics and equilibrium of the

release rate and great agreement was obtained between

the predicted and measured data. The validated model

was then used to understand the effect of process

parameters on the release rate, and it was revealed that

increasing roll pressure decreases the release rate,

because larger granules are produced which in turn

results in lower release rate.
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Fig. 4 Comparison between simulated and measured values of

drug release. Tablets with no lignin. ANN model
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drug release. Tablets with lignin. ANN model
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