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Abstract A series of high dielectric composite films

based on low-cost and eco-friendly titanium dioxide

(TiO2) and cellulose nanofibril (CNF) was prepared

under a facile condition. The relative dielectric

constants (er) and dielectric loss (tan d) were studied

as the function of frequency and filler content. The er
of CNF/TiO2 composite film was 19.51 (at 1 kHz)

with a relatively low dielectric loss. Compared with

pure CNF films (er = 6.92 at 1 kHz), the er of the

composite film was improved about three times with

the dielectric loss increased slightly. The effects of

TiO2 addition and hot-press treatment on microstruc-

ture, thermal stability, and dynamic mechanical prop-

erties of the composite films were also analyzed. It was

found that the addition of TiO2 particles reduces the

cellulose–cellulose bonding so generates more pores

in the films, which has significant impacts on both

dielectric and physical strength properties.

J. Tao � S. Cao (&)

School of Power and Mechanical Engineering, Wuhan

University, Wuhan 430072, Hubei, China

e-mail: 13807138268@163.com

W. Liu � Y. Deng (&)

School of Chemical and Biomolecular Engineering and

Renewable Bioproducts Institute, Georgia Institute of

Technology, Atlanta, GA 30332-0620, USA

e-mail: yulin.deng@rbi.gatech.edu

123

Cellulose (2019) 26:6087–6098

https://doi.org/10.1007/s10570-019-02495-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10570-019-02495-w&amp;domain=pdf
https://doi.org/10.1007/s10570-019-02495-w


Graphical abstract

Keywords Film capacitor � Cellulose nanofibril �
High dielectric � Titanium dioxide

Introduction

With the fast-growing of advanced electronics and

electric power system, soft film capacitors with both

high-power and high-energy density at the same time

have drawn more and more attention (Dang 2018).

This film capacitors (TFCs) usually request high

capacity density, large breakdown strength [typically

exceeds 300 MV m-1 (Paniagua et al. 2014)], high-

frequency response, fast charge/discharge speed, low

dissipation, and long lifetime. Compared with elec-

trochemical capacitors and batteries, the charge/

discharge speed of capacitors depends on their polar-

izations, which are contributed by the orientation of

dipoles and deformations of atoms and molecules and

are much faster and less influenced by high frequency

than charge carriers transport. With higher dielectrics,

the capacitors with same capacitance can be smaller in

size and lighter in weight, thus have higher capacity

density. Polymer-based dielectrics surpass ceramics

by its higher breakdown strength, lower dissipation,

easier preparation and longer lifetime.

The most commonly used dielectric polymers for

TFCs mainly are non-biodegradable and nonrenew-

able thermoplastic polymers, such as polypropylene

(PP) (Kumari and Ghosh 2018; Lay et al. 2018),

polyethylene terephthalate (PET) (Tang et al. 2018;

Topala et al. 2007), polyethylene naphthalate (PEN),

polyphenylene sulfide (PPS), polytetrafluoroethylene

(PTFE) (Thomas et al. 2008; Wang and Dang 2018;

Yuan et al. 2014, 2018) and polystyrene (PS). Besides,

other polymers include polyimide (PI) (Chang et al.

2009; Feng et al. 2013, 2014; Ishmael et al. 2014;

Kizilkaya et al. 2012; Koytepe et al. 2008; Lay et al.

2018; Lee et al. 2009, 2012; Lee and Wang 2010; Lin

et al. 2017; Lu et al. 2017; Meena et al. 2012; Olariu

et al. 2017; Wang et al. 2018, 2010b; Wu et al. 2017;

Yin et al. 2014; Zha et al. 2010a, b), polyamide (PA)

(Novac et al. 2017; Qi et al. 2017, 2018), and

polyvinylidene fluoride (PVDF) (Al-Saygh et al.

2017; Alam et al. 2017; Deshmukh et al. 2017; Dou

et al. 2017; Gan and AbdMajid 2014; Park et al. 2013;

Prabakaran et al. 2014; Rekik et al. 2013; Ribeiro et al.

2018; Su et al. 2016; Wang et al. 2010b; Yang et al.

2016) are also studied. PI-based nanocomposites are

reported to have enhanced corona aging performance

(Lin et al. 2017; Lu et al. 2017; Yin et al. 2014; Zha

et al. 2010a), but their relative dielectric constant is

generally below 6 (1 kHz) (Feng et al. 2013, 2014;

Lay et al. 2018; Wang et al. 2018). Qi et al. prepared

polyamide11 (PA11)/BaTiO3/carbon nanotube (CNT)

ternary nanocomposites with 3D segregated percola-

tion routes, the relative dielectric constant is 16.2 with

a dielectric loss of * 0.08 (1 kHz) (Qi et al. 2018).

Alam et al. (2017) put titanium dioxide (TiO2)

nanoparticles into c-phase containing PVDF, and the

dielectric constant of the nanocomposite film reaches

32 with a dielectric loss of 0.25 (1 kHz). Recently,

low-cost and eco-friendly cellulose nanofibrils are

being increasingly explored as a candidate to replace

some conventional dielectric materials (Abdel-karim

et al. 2018; Al-Saygh et al. 2017; Bonardd et al. 2018;

Chiang and Popielarz 2002; Gaspar et al. 2014; Inui
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et al. 2015; Jayaramudu et al. 2018b; Le Bras et al.

2015; Madusanka et al. 2016, 2017; Milinskii et al.

2018; Milovidova et al. 2014; Poyraz 2018; Poyraz

et al. 2017b; Rajala et al. 2016; Shi et al. 2018; Yagyu

et al. 2017; Zeng et al. 2016; Zhou et al. 2018).

Cellulose nanofibril (CNF) has a low density and

coefficient of thermal expansion (CTE)

(12–28.5 ppm K-1), high mechanical strength

(200–400 MPa) and Young’s modulus (7.4–14 GPa),

excellent thermal stability ([ 180 �C) and chemical

durability, and it is an almost inexhaustible green

material (Du et al. 2017; Fujisaki et al. 2014). The

relative dielectric constant (er) of traditional paper

prepared from micro-sized cellulose is in the low

range of 1.3–4.0, resulting from the porous

microstructure (Inui et al. 2014; Inui et al. 2015).

With a densely packed nanostructure, the er of

nanocellulose paper reaches 5.3 (at 1.1 GHz) (Inui

et al. 2014, 2015) with a breakdown strength of

613.8 kV cm-1 (Zeng et al. 2016), making it a

promising candidate for the dielectric matrix. Com-

paring to regenerated cellulose films that usually need

toxic and expensive solvent, nanocelluloses can be

made from pure mechanical grinding so toxic solvent

is no longer needed. Furthermore, the dispersibility of

TiO2 nanoparticles in regenerated cellulose/solvent is

poor, and phase separation between nanoparticles and

cellulose occurs during film preparation. However,

CNF is a nanofibrils rather than soluble molecules so

the phase separation between TiO2 particles and

nanofibril network could be effectively prevented.

However, the hydroxyl-richen cellulose shows strong

hydrophilicity, which inevitably results in high elec-

tric leakage, high dielectric loss, low breakdown

strength and low energy densities in humid environ-

ments (Shimizu et al. 2016; Yang et al. 2018a, b).

Many studies have tended to focus on further

improving the dielectric constant of cellulose nanopa-

pers by introducing conductive fillers (Inui et al. 2015;

Ji et al. 2017; Kafy et al. 2015b; Milovidova et al.

2014) but little attention has been paid on reducing

dielectric loss.

Herein, we prepared a high dielectric composite

film based on TiO2 and CNF by a solution casting

method. TiO2 has a high dielectric constant (er = 63.7

at 1 MHz), low dielectric loss (tan d\0:051)

(Wypych et al. 2014) and is stable in a broad

temperature range (\ 1000 �C). Besides, the hydro-

philic property of TiO2 offers a way out for

homogeneous mixing with CNF suspension. Thus,

TiO2 is a promising candidate for CNF based

dielectrics. Homogenous composite films were made

by mechanically mixing TiO2 nanoparticles with

CNF. The relative dielectric constant (er) and dielec-

tric loss (tan d) were studied as the function of

frequency and filler content. The effects of hot-press

treatment on dielectric properties, microscopy, ther-

mal stability, dynamic mechanical properties, and

hydrophilicity of composite films were also studied.

Experimental

Materials

Both CNF slurry and 2,2,6,6-tetramethylpiperidi-

nooxy (TEMPO)-oxidized CNF (TCNF) slurry were

purchased from the University of Maine, with solid

content of 3.4 wt% CNF and 1.1 wt% TCNF, respec-

tively (Fukuzumi et al. 2010; Isogai et al. 2011; Kumar

et al. 2014; Osong et al. 2016; Postek et al. 2013; Sacui

et al. 2014; Saito et al. 2009; Stelte and Sanadi 2009).

TiO2 nanoparticles of diameter * 21 nm (P25) were

purchased from Nippon Aerosil Co. Ltd.

Preparation of CNF/TiO2 composite film

The purchased CNF and TCNF were diluted into

0.34 wt% and 0.30 wt% respectively by distilled

water. According to the dry weight percentage, a

certain amount of TiO2 was added, then the solution

was stirred homogeneously by a homogenizer for

10 min before poured into a petri dish. The dried film

was obtained after being put in a fume for 2–4 days.

After being hot-pressed under 80 �C and 1.1 MPa for

3 h, light yellow, flat and thin films were obtained. At

least three samples were prepared for each composi-

tion. The thickness of the sample films was in the

range of 30–100 lm. Figure 1 shows the flow diagram

of the preparation of the CNF/TiO2 composite film.

Characterizations

Morphologies of both surface and cross-section of the

composite films were analyzed by thermally assisted

field emission scanning electron microscope (TFE-

SEM, LEO 1530, Germany) at an accelerating voltage

of 10 kV. The composite films were sputtered with
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gold in vacuum to avoid accumulation of charge

before observation.

Thermogravimetric analysis and differential scan-

ning calorimetry (TGA–DTA) was performed on a

simultaneous thermal analyzer (PerkinElmer

STA6000, USA), ranging from 35 to 700 �C with a

heating rate of 10 �C min-1 under nitrogen atmo-

sphere and hold at 105 �C for 10 min before heading

to a higher temperature.

The dielectric properties of sample films were

measured by an LCR meter (Keysight E4980 with a

16451B fixture, USA) in the frequency range of

20 Hz–2 MHz. The test for each sample film was

repeated at least five times. The thickness of the

sample film was measured by a micrometer and was

averaged over seven measurements on each sample.

Unless otherwise stated, the dielectric constant of a

material refers to the relative dielectric constant,

which is the ratio of its absolute dielectric constant to

the dielectric constant of vacuum. The relative

dielectric constants (er) of the sample films were

calculated by Eq. (1)

C¼e0er
A

d
ð1Þ

where C is the capacitance; e0 is the absolute dielectric
constant of vacuum, e0¼ 8:854� 10�12 F/m; A is the

electrode area, A ¼ 1:963� 10�12 m2; d is the thick-

ness of the sample film.

Tensile strength and ultimate elongation were

studied with a dynamic mechanical analyzer DMA

(Q800, TA Instruments, New Castle, DE, USA) with a

test rate of 10% min-1 at room temperature. The film

specimens were 5 mm wide and 20 mm long. At least

four specimens were tested for each sample.

The densities of the sample films were calculated

by Eq. (2)

d ¼ m

A� t
ð2Þ

where d is the density, m is the weight, A is the surface

area, and t is the thickness.

Results and discussion

Microscopy

Figure 2 shows the surface and cross-section mor-

phologies of pure CNF and TiO2 (50 wt%)/CNF

composite film. The CNF was typically dozens of

micrometers long with a diameter lower than 0.3 lm,

and part of CNFs aggregated with each other (as

shown in red circle). However, unlike normal paper

which has a porous structure, no obvious pore was

observed in pure CNF film. Figure 2b shows some

level laminated structures with obvious layer gaps that

might result from the peeling during the sample

Fig. 1 The flow diagram illustrates the preparation of CNF/TiO2 composite film
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preparation. A dense layer and much smoother surface

were observed, and it might result from the hot-press

treatment. Figure 2d illustrates the distribution of

TiO2 in CNF. Because of the poor capability between

the inorganic filler and organic matrix, there were

some small pores, which had great influence on the

properties of the composite film.

Dielectric properties

Prior to study the dielectric properties, a series of

dielectric tests with different levels of oscillation

signal (OSC level) was conducted. As shown in Fig. 3,

the OSC level was adjusted in the range of 0.1–2 V. At

lower OSC level of 0.1–1.5 V, the dielectric constant

increased with the increase of OSC level, and the

growth rate was decreased. After OSC level reached

2.0 V, the dielectric constant started to decrease. The

same results were obtained in other composite films

with different TiO2 content. It illustrated that the

testing electric field starts to overpass the breakdown

strength of the films. Higher OSC level brings a higher

risk of breakdown. Thus, the following dielectric tests

were conducted with OSC level at 1.0 V.

Figure 4 shows the influence of frequency and filler

content on relative dielectric constant (er) and dielec-

tric loss (tan d). With the increase of frequency, both er

Fig. 2 Cross-section and surface SEM images of pure CNF (a, c) and hot-pressed CNF/TiO2 (50 wt%) (b, d)

Fig. 3 The influence of OSC level on the dielectric test

(50 wt% TiO2/TCNF)

123

Cellulose (2019) 26:6087–6098 6091



and tand decreased. In the lower range of 20–100 kHz,

sharp reductions were observed. It was caused by the

electrode polarization which took place at the interface

between metal electrode and samples, and Maxwell–

Wagner–Sillars interfacial polarization which can be

observed at the interface between CNF and TiO2 in

inhomogeneous materials (Emmert et al. 2011; Lu and

Zhang 2006; Samet et al. 2015; Anju and Naraya-

nankutty 2016; Mohiuddin et al. 2015). Resulted from

the interfacial polarization, the test results of er and
tand at the point of 20 Hz were abnormally high

(several hundred or even higher) and were not showed

in Fig. 4. In the higher frequency range of above

500 kHz, the reduction of both er and tand tended to be
flatter and showedmuch less dependence on frequency

and filler content, which indicated that electronic and

atomic polarization and orientation polarization

started to play a predominant role.

The dielectric properties of the composite films can

be explained by the multi-layered core model (Tanaka

et al. 2005). According to this model, the interface of

filler particle is chemically consisting of a bonded

layer, a bound layer, a loose layer, and an electric

double layer overlapping the above three layers. The

Fig. 4 The influence of frequency and filler content on the dielectric constant and dielectric loss
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addition of nano-sized TiO2 has contradicted effects

on the dielectric properties. On the one hand, nano-

sized TiO2 introduced large surface areas for interfa-

cial polarization compared with micro-sized TiO2

(Kafy et al. 2015a), resulting in an extraordinary

increase of both er and tand in the low frequency range.

On the other hand, the bonded layer and bound layer of

the nanoparticles impair the motion of dipoles, leading

to a reduction of er and tand. And the dipoles and ionic
carriers in the loose layer may act inversely. The far-

field effect caused by the double electric layer makes

the neighbored nano-particles collaborate with each

other. The imperfection of heterogeneous structures

can increase er and tand. With the interfacial polar-

ization becoming weak in the high frequency range,

TiO2 content showed less effect. In the case of micro-

sized TiO2, the increased er is usually explained in

term of the Lichtenecker–Rother logarithmic law of

mixing (Tanaka 2005).

The er of CNF/TiO2 increased with the increasing

of TiO2 content in the range of 0–50 wt%. The

maximum dielectric constant was 19.51 (at 1 kHz) at

50 wt%. As the TiO2 content continued to increase,

the dielectric constant decreased. It was caused by the

aggregation of TiO2 and the appearance of pores, as

shown in SEM images. In the range of 0–70 wt%, the

dielectric loss showed less dependency on TiO2

content and fluctuated in the range of 0.51–0.81 (at

1 kHz). The er of TCNF/TiO2 increased with TiO2

content in the range of 10–70 wt% and reached the

maximum value of 47.15 (at 1 kHz) at 70 wt%. The

dielectric loss of TCNF/TiO2 composite films also

showed less dependency on TiO2 content and was

fluctuated in the range of 2.57–3.32 (at 1 kHz).

Generally, the dielectric loss of TCNF/TiO2 compos-

ite films was three times higher than CNF/TiO2

composite films, which was caused by the residual

ions after TEMPO oxidation treatment of CNF. Thus,

from the perspective of reliability and energy saving,

CNF/TiO2 was better than TCNF/TiO2. Compared

with other reported CNF based dielectrics, our CNF/

TiO2 showed a much lower dielectric loss.

Thermal properties

In order to study the thermal stability of the composite

films, TGA–DTA measurements were conducted on a

series of CNF/TiO2 composite films with the TiO2

content in the range of 10–50 wt%. Figure 5a, b shows

the typical TGA–DTA curves for pure CNF and CNF/

TiO2 (50 wt%) composite film after hot-press treat-

ment, respectively. In the low temperature region

below 105 �C, weight losses of 5.66–2.95% on the

TGA curve and an endothermic peak at 41 �C on the

DTA curve were observed. It was caused by water

evaporation (Chenampulli et al. 2019; Hassan et al.

2019; Jayaramudu et al. 2018a; Lizundia et al. 2016;

Poyraz 2018; Poyraz et al. 2017a; Raghunathan et al.

2017; Zeng et al. 2016). The temperature was held at

105 �C for 10 min, and it was showed obviously on

the DTA curve as a marked drop. The 5% decompo-

sition temperature of the sample films was

291–302 �C, which indicated that the TiO2/CNF has

a low water absorption and good thermostability. The

fluctuation of the DTA curve and sharply loss of

weight around 400 �C showed the decomposition of

CNF. At 700 �C, for the composite films, the residual

weight percentage of sample films was per the TiO2

content, which indicated that CNF had been com-

pletely decomposed at this temperature. However, for

pure CNF, the weight percentage was 15%. It

indicated that the addition of TiO2 accelerates the

thermal degradation of CNF.

Dynamic mechanical property

Figure 5c shows the DMA test results of CNF/TiO2

composite films. All the stress–strain curves show ‘‘S’’

shape, suggesting that with the increase of strain, the

stress first increased slowly, then sharply, and turned

to be slow again, and finally the sample broke down,

which is a typical property of flexible films. For pure

CNF, hot-pressing treatment improved the strain at

break from 7.65 to 10.92% with the stress slightly

decreased from 76.91 to 76.59 MPa, which was

resulted from better bounding between CNFs after

hot-pressing treatment. However, CNF/TiO2

(50 wt%) composite film has a contract result. After

hot-pressing, the strain at break decreased from 5.45 to

2.63%, and the stress increased from 12.68 to

17.71 MPa, which may be caused by the weak

bonding between TiO2 particles and CNFs.

Density

Figure 5d shows the densities of untreated and hot-

pressed (HP) CNF films. Pure CNF films have higher

densities than CNF/TiO2 (50 wt%) although the
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density of TiO2 is much higher than cellulose. Because

the poor bonding between CNF and TiO2, a looser

structure of the films was obtained by adding TiO2

particles, which is confirmed by SEM images shown in

Fig. 2. Hot-pressing could improve the density of CNF

films, and the rise of pure CNF is much higher than

that of CNF/TiO2 (50 wt%), suggesting that the pores

in the CNF/TiO2 films are hardly be removed by

physical treatment.

Conclusions

In conclusion, a high dielectric film was prepared

under facile condition. The relative dielectric constant

of CNF/TiO2 composite film reached 19.51 (at 1 kHz).

Compared with pure CNF films (er = 6.92 at 1 kHz),

the er of composite films was improved about three

times. It was also illustrated that hot-pressed CNF/

TiO2 had good flexibility and thermal stability. The

addition of TiO2 particles reduces the cellulose–

cellulose bonding so generates more pores in the

films, which has significant impacts on both dielectric

and physical strength properties.

Fig. 5 a TGA–DTA curves of pure CNF film. b TGA–DTA

curves of CNF/TiO2 (50 wt%) composite film after hot-press

treatment. cDynamic mechanical properties of hot-pressed (HP)

and untreated CNF/TiO2 composite films with different TiO2

content. d Densities of untreated and hot-pressed (HP) CNF

films
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