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Abstract Recently, cellulose films or nanopapers

have aroused great attention due to their potential for

utilization in photoelectric materials. In this study,

transparent cellulose films were prepared from

TEMPO-oxidized cellulose fibers by the casting

method after they were ultrasonicated to improve the

light transmittance and haze. It was found that

powerful ultrasonication initiated severe cellulose

fiber flattening, fibrillation, and breakage. Therefore,

films with compact structures and smooth surfaces

could be prepared, resulting in high transparency and

tensile strength. However, excessive ultrasonic treat-

ment caused transmittance haze loss. By controlling

the ultrasonic power within the range of 180–360 W,

transparent films (transmittance of * 90%) with

51–76% haze were obtained.
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Introduction

Optoelectronic substrates including silicon, glass and

polymer film, are traditionally used in electronic

devices such as organic solar cells, organic light-

emitting diodes (OLED), transistors and circuits

(Fujisaki et al. 2014; Hsieh et al. 2013; Krishna et al.

2000; Scardaci et al. 2010; Sriprapha et al. 2008; Yu

et al. 2011, 2015; Zardetto et al. 2010; Zhou et al.

2013; Zhu et al. 2013a). In recent years, environmen-

tally friendly cellulose-based materials have attracted

increasing attention and are being studied widely due

to their excellent optical properties, low cost, renewa-

bility and biocompatibility for the development of

optoelectronic substrates (Dai et al. 2018; Preston

et al. 2014; Zhou et al. 2013; Zhu et al. 2013a, b; Nogi

et al. 2009, 2015; Okahisa et al. 2009). In those

studies, transparent nanopaper substrates have been

fixed onto the glass substrate to fabricate solar cells

(Hu et al. 2013; Nogi et al. 2015). It was found that the

power conversion efficiency of these solar cells

prepared from highly transparent cellulose film was

not high. Efficiency in solar cell substrates requires

high optical transparency, but also prefer high haze to

increase the light scattering and consequently the

absorption by the active materials (Fang et al.

2014a, b). For this purpose, the highly- hazy and

transparent cellulose nanopaper was usually prepared

by rational mixture of cellulose fiber and NFC (nano-

fibrillated cellulose). In this case, NFC was used as

filler to fill the pores of the fiber to make the cellulose

film with a certain level of light transmittance while

the light scattering from the surface of the raw

cellulose fiber gave it a certain level of haze (Hsieh

et al. 2017; Fang et al. 2014a, b; Chen et al. 2018).

There was a kind of transparent nanopaper with high

optical transparency (96%) and haze (60%) prepared

by this method (Fang et al. 2013). It was shown that the

cellulose fiber dimensions directly influenced the

fabrication of nanopaper with optical properties (Zhu

et al. 2013a). In addition, the thickness also plays a

vital role in the optical haze of the nanpaper. The haze

of the nanopaper tended to increase with adding

nanopaper thickness while the transmittance increased

slightly with a decrease in nanopaper thickness (Fang

et al. 2014a). For the above method, NFC was usually

prepared by the homogenizing processes which is

energy-intensive and tends to clog the equipment. In

contrast, ultrasound technology is a ‘‘green chem-

istry’’ technique; it features low energy consumption,

no pollution, safety, and low cost. More importantly, it

is efficient for cellulose fibers fibrillation. The cavi-

tation process transfers energy to the cellulose

molecular chain that can destroy the hydrogen bonds

and van der Waals forces between the microfibrils of

the plant fibers, causing cellulose to separate and

breakage (Mishra et al. 2011; Syafri et al. 2018; Wang

and Cheng 2009). Additionally, filtration is the most

widely used method for nanopaper formation; the

micro-structure membrane application will inevitably

cause some fines loss and cost much time for fiber-

water separation.
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In this work, we applied ultrasonic treatment to

fibrillate fiber and thus adjusted the size of cellulose

fiber and attempted to prepare hazy transparent

cellulose film by the solution casting method. To

facilitate the individual macro- and micro-fiber sepa-

ration, anionically charged functional groups are

introduced via TEMPO oxidation onto the cellulose

fiber surface to form strong electrostatic repulsion

(Isogai et al. 2011). Moreover, the effects of the

ultrasonic power on the optical, mechanical properties

were investigated. The hazy transparent film could be

directly fabricated by oxidative cellulose fiber via

ultrasonic treatment; moreover, the haze and trans-

parent could be easily adjusted by ultrasonic power.

Experimental

Materials

Caribbean Pine dissolving pulp with the degree of

polymerization (DP) of 480 was used as the starting

cellulose material and provided by a local pulp mill.

The cellulose oxidation procedure was described in

detail in our previous work (Lin et al. 2018); to be

different, the dosage of the NaClO was set at

4.5 mmol/g. The oxidized cellulose with DP 112.4

and carboxyl group 0.73 mmol/g was used for the

subsequent fibrillation and film preparation.

Fibrillation of the TEMPO oxidized cellulose fiber

and film preparation

A 1 wt% suspension of TEMPO oxidized cellulose

fiber was agitated at 15,000 rph for 2 min and then

sonicated with an ultrasonic processor (FS-1200N) at

20 kHz for 15 min with various ultrasonic power (60,

120, 180, 240, 300, 360, 420, 480, 540, 780 and

1200 W) to fibrillate the cellulose fiber. 50 mL

anhydrous ethanol was added into the above treated

fibers solution 100 g (1 wt%). The mixture was

magnetically stirred for 20 min to ensure the complete

separation and then followed by a reduced pressure

distillation until the mass was 75 g (- 0.1 Mpa,

70 �C, 80 r/min). 20 g solution was casted onto a

glass with a diameter of 90 mm. The filled glass was

air dried in a constant temperature and humidity

chamber (25 �C, 50% humidity) and finally a film was

formed. The end samples were differentiated by the

ultrasonic power, and marked with P-60, P-120,

P-180, P-240, P-300, P-360, P-420, P-480, P-540,

P-780 and P-1200, respectively.

Characterization of fibrillated oxidized cellulose

fiber

The relative size of the TEMPO oxidized cellulose

fiber was determined by Malvin particle size analyzer

(Mastersizer 3000, England) and the fiber after

ultrasonic was determined by Malvin particle size

analyzer (Zetasizer Nano-ZS90, England).

The surface morphology of the fibrillated cellulose

fiber was observed by a SEM (FEI Nova Nano SEM

230, FEI, USA) after platinum sputtering at 20 mA for

120 s. Ten microliter drops of supernatant suspensions

(0.01 wt%) were placed on FORMVAR-coated cop-

per grids (300 mesh).

Characterization of film

The thickness of the film was determined by a Paper

Thickness Gauge. Each sample was measured 5 points

randomly, and the average value of thickness was

obtained. The density of cellulose films was calculated

by the ratio between weight and the area of the film.

The morphology of the film was observed using

SEM (FEI Nova Nano SEM 230, FEI, USA) after

platinum sputtering at 20 mA for 120 s. The surface

roughness was obtained by an AFM (Multimode 8,

Bruker) in tapping mode. The light transmittance and

haze of the films was measured by using a UV–Vis

spectrometer (Lambda 750, Perkin Elmer) from 200 to

1000 nm. The data was correlated based on the

thickness using the Lambert–Beer’s Law.

Results and discussion

The size and morphology of the oxidized cellulose

fiber after ultrasonication

The size of the nanofibers including the diameter and

length are always determined by TEM or SEM

equipped with an image processing software (Johnson

et al. 2009; Saito et al. 2007). It was reported that the

nanofibrils from wood pulp ranged from 3 to 5 nm in

width and several hundred nanometers to a few

microns in length (Johnson et al. 2009). In this study,
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the Malvin particle size analyzer was used to evaluate

the relative size of the oxidized fiber and the treated

fibers. The relative size of the TEMPO oxidized

cellulose fiber was determined to be 116.7 lm.

Figure 1 shows that the average size of TEMPO

oxidized cellulose fiber was gradually decreased with

an increase in ultrasonic power from 60 to 480 W.

After the sonication power of 480 W, the particle size

was not further decreased; the average size of the

fibers decreased to be * 500 nm. The reduction in

size was probably due to the high fission through

interparticle collision or the collapse of cavitation

bubbles formed on the fiber surface (Yunus et al. 2010;

Pinjari and Pandit 2010). The asymmetrical collapses

of the cavity on the surface of the fiber surface

produces a high velocity liquid jet pointed towards the

surface which results into an action similar to liquid jet

cutting. In addition, the shock wave initiated by the

cavity collapse travels through liquid media generat-

ing local pressure and fluid shear causing fiber size

reduction (Pinjari and Pandit 2010).

The morphology of the original oxidized cellulose

fiber and the fibers after ultrasonic treatment have been

shown in Fig. 2. It was revealed that all the oxidized

fibers were well separated and the length of the

original oxidized cellulose fiber was hundreds of

micro meters or longer. The fibers without ultrasonic

treatment had a folded ribbon like shape and the

surface was intact, compact and almost smooth. After

ultrasonic treatment, the morphology of the fiber

changed greatly; some erosion and large number of

cracks on the surface of the fiber became apparent and

therefore the fibers tended to be flat and thin. With

increasing ultrasonic power, the fibers were com-

pletely shattered into small fiber films and some

debris. The structural damage of cellulose fibers
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Fig. 1 Ultrasonic power effects on the relative size of the

oxidized cellulose fiber

Fig. 2 SEM images of the surface of the TEMPO-oxidized cellulose fiber after various ultrasonic power
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caused by the ultrasound wave could be explained by

the cavitation mechanism: the shock wave generated

from sudden collapse of bubbles or cavities leads to

considerable erosion of cellulose surface (Zhang et al.

2013; Shi et al. 2013). Also, the ultrasonic treatment

promotes longitudinal fibrillation (Zhang et al. 2013),

resulting in cellulose fiber with a larger width and a flat

structure. After ultrasonic treatment, the hollow

structure of the raw fiber changed to be compact flat

structure, which would be important for the film.

The morphology of the film

The SEM image of the cellulose film shown in Fig. 3

indicates that all the film displayed a relatively

homogeneous microstructure and these were smooth

and dense. With the increase of ultrasonic power, the

film tended to be much smoother (Fig. 3 left) as

revealed by the decrease in roughness (Fig. 3 right). In

addition, the thickness of the film increased and the

structure was much tighter and compact (Fig. 3

middle); the results were consistent with the thickness

and density data shown in supplementary materials in

Table S1. The ultrasonic treatment might facilitate the

interaction between cellulose, and might be favorable

to construct more compact and tight film.

The optical properties of the film

From above Fig. 4a, c, the light transmittance of all the

films are above 80% (at 550 nm), rising the ultrasonic

power from 60 to 180 W, the transmittance could be

Fig. 3 SEM and AFM images of the film prepared from TEMPO oxidized cellulose (left: surface, middle: cross section; right AFM

images. a p 60, b p 420, c p 780. Increased ultrasonic treatment facilitates the compact and tight film formation
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increased to be up to approximate 90%. Further

increase in the ultrasonic power did not have any effect

on the enhancement of light transmittance. The fibers

with small size and flat structure made a denser film

(Fig. 3), which are favorable for transmittance

improvement (Zhu et al. 2013c).

In contrast, the haze of the film was at a maximum

level (84%) when the ultrasonic power was the

minimum; the increase of the ultrasonic power

significantly declined the haze, where the haze value

rapidly dropped from 84 to 1%. Fortunately, the haze

could be controlled beyond 50–76% at a high trans-

mittance (* 90%) by adjusting the ultrasonic power

between 180 and 360 W. Generally, the ultrasonic

treatment reduced the size and flattened the TEMPO-

oxidized cellulose fibers and thus produced a densely

laminated film. That allowed most of the light to

propagate through and retained an appropriate level of

light scattering (Chen et al. 2018; Hu et al. 2013). The

haze was probably related to the surface conditions

and the size of cellulose fibers. The rough surface

might contribute to large light scattering and therefore

high haze, and the decrease of the size of cellulose

fibers would reduce light scattering of cellulose fibers,

thus the haze of filmwould be lower (Zhu et al. 2013c).

It was reported that the light scattering could be

increased by wider cellulose nanofibers or by lower

density of nanopapers (Zhu et al. 2013c; Hsieh et al.

2017). In addition, the haze was also affected by the

film thickness; the haze of film increased with an

increasing thickness of nanopaper while the thickness

had a slight effect on the nanopaper transmittance

(Fang et al. 2014b). From discuss mentioned above,

thickness, density, size of the fiber and surface
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Fig. 4 UV-vis transmittance (a) and haze (b) of TEMPO

oxidized cellulose films with different ultrasonic power. c The

relationship between ultrasonic power and transmittance and

haze at 550 nm. d Visual appearance of the hazy transparent

films placed close to and away from the school emblem
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morphology are the factors influencing the optical of

the film. However, based on the given preparation

method, the referred parameters varied with the

ultrasonic power. The haze and transparent can be

easily adjusted by ultrasonic power. Fang presented a

facile method for fabrication of highly transparent

paper (90%) with a tunable transmission haze (up to

60%) by rationally managing the ratio of nanoscale

cellulose fibers to macroscopic cellulose fibers (Fang

et al. 2014a). In our study, the haze could be

significantly enhanced to 76% with an equivalent

transmittance.

The mechanical strength of the film

Shown in Fig. 5 are the ultrasonic power effects on the

mechanical strength of the film; it was apparent that

ultrasonic power affected the mechanical strength

significantly. Slight ultrasonication could result in a

weak film, the rise of ultrasonic power from 60 to

420 w enhanced the tensile strength from 2.8 to

22 MPa; further ultrasonication up to 1200 w was not

favorable for strength improvement. It is widely

accepted that the mechanical strength of the paper is

primarily dependent on the hydrogen-bonding

strength of neighboring individual fibers despite of

the high strength of individual fiber. The ultrasonica-

tion initiated cellulose fiber flattening, fibrillation, and

breakage, which would improve the area of contact

and potential bonding sites between fibers. However,

the severe ultrasonication might initiate great break-

age and fragmentation of the fiber but did not

contribute to the breaking of interfiber bonding to

same extent. In addition, the compact structure might

also affect the mechanical strength of the cellulose

film. As shown in Table S1 and Fig. 5, the film with

relative low density was extremely weak; slightly

increase of density was favorable for strength

enhancement. However, the strengths of the films

prepared in this study were lower than those of the

nanopapers prepared from cellulose nanocrystals,

cellulose nanofibrils and TEMPO-oxidized cellulose

nanofibrils (Chen et al. 2018). In this study, solution

casting process used for film preparation retained all

the fiber fragments, inclusive of the fines which would

be removed by filtration method. As mentioned above,

the fiber debris is detrimental for film strength.

Furthermore, the density of the film prepared from

casting method was much lower than that from

filtration, the relative loose structure might attribute

to the weak strength. In addition, ethanol application

in this casing method tends to facilitate film prepara-

tion process (Fig. S1). Fortunately, the transparent

substrates also have been fixed onto the glass substrate

to fabricate solar cells; the strength is not so much of a

problem.

Conclusions

A novel method integrated with ultrasonication and

solution casting was presented for fabrication of hazy

transparent cellulose film. The transparent film not

only exhibits a high transmittance of over 90% due to a

high packing structure and also showed excellent

optical haze after a concise control of ultrasonic

treatment; the haze could be up to 78%. This work

opens a new avenue for the development of excellent

photoelectric materials.
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