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Abstract In this paper, a fluorescent and antibacte-

rial nanocomposite film based on Zinc sulphide (ZnS)

quantum dots, cellulose nanocrystals (CNCs) and

polyvinyl alcohol (PVA) was successfully synthe-

sized. CNCs were first decorated in situ with ZnS

quantum dots, which were then introduced into a PVA

matrix to prepare nanocomposite films with good

fluorescent and antibacterial properties. The X-ray

diffraction and scanning electron microscope analysis

indicated that ZnS nanoparticles were well-dispersed

and randomly coated on the CNCs with uniform

particle size. The visible emission peak in the ZnS/

CNCs nanocomposites was 473 nm with an excitation

wavelength of 350 nm. The CNCs loaded with ZnS

quantum dots exhibited bright blue fluorescence under

the ultraviolet light. Additionally, CNCs/ZnS

nanocomposite films also had good antibacterial

properties (bacterial inhibition rate = 78.25%).
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Introduction

In the recent years, the worldwide environmental

pollution and resources shortage have attracted con-

siderable attention (Xue et al. 2017; Zheng et al. 2016;

Ma et al. 2016). Therefore, considerable research

efforts have been aimed at developing environmen-

tally friendly and green materials derived from the

renewable resources (Arevalo-Gallegos et al. 2017;

Ramesh et al. 2017; Dubey et al. 2017; Colmenares

et al. 2016; Doudin et al. 2016). Cellulose nanocrystals

(CNCs), highly crystalline nanomaterials that can be

obtained from the renewable plants, have been widely

used in composite reinforcements, nanomaterials, and

flexible electronics (Geng et al. 2016; Jin et al. 2016;

Molnes et al. 2016; Miao and Hamad 2016a, b). Its

abundant reserves, recyclability, good biocompatibil-

ity and good mechanical properties, and nano-size

effects make it one of the most useful bio-based

materials (Lizundia et al. 2016; Chen et al. 2016; da

Silva Souza et al. 2016).

Quantum dots (QDs) are one kind of small crystals

with good fluorescence performance, long fluores-

cence lifetime, and continuous excitation spectrum

(Lyons et al. 2017; Zhang et al. 2017; Lai et al. 2017).

Among them, ZnS is one of the most used wide band

gap fluorescence materials and is widely applied for

various applications (i.e., sensing material, solar cell

and light-emitting diode) due to its many excellent

properties (i.e., good optical properties, wide forbid-

den band gap and low toxicity) (Bwatanglang et al.

2016; Chantada-Vázquez et al. 2016; Li et al. 2013;

Chuang et al. 2014).

Currently, many works have been reported on the

synthesis of the ZnS QDs based nanocomposites (Xiao

et al. 2014; Bruno et al. 2013;Wang et al. 2004). Some

studies that focus on the effective dispersion of the

ZnS QDs and retaining the original properties of the

ZnS QDs have also been reported (Niu et al. 2014;

Luna-Martinez et al. 2011; Chang et al. 2009). Niu

et al. (2014) prepared ZnS/cellulose composites by

blending natural cellulose nanofibers with ZnS QDs

with the hydrothermal method. Luna-Martı́nez et al.

(2011) reported that ZnS/sodium carboxymethyl cel-

lulose nanocomposites and films with fluorescence

properties were synthesized by blending ZnS nanopar-

ticles with sodium carboxymethyl cellulose in situ;

Chang et al. (2009) prepared CdSe/ZnS/cellulose

hydrogels by the chemical cross-linking method.

CNCs, which are extracted from plants by controlled

acid hydrolysis and has many beneficial properties,

could be a potential biomaterial for the preparation of

CNCs/ZnS QD nanocomposites in situ (Ng et al. 2015;

Cheung et al. 2013; Valentini et al. 2013; Zhu et al.

2014).

In this paper, we investigated a fluorescent

nanocomposite film based on ZnS QD-decorated

CNCs with the in situ hydrothermal method. This

present preparation method is simple and does not

require additional surface modification. The
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fluorescence properties of QDs were investigated by

means of Fourier transform infrared spectrophotome-

ter (FT-IR), X-ray diffraction (XRD), X-ray photo-

electron spectroscopy (XPS), scanning electron

microscope (SEM), and photoluminescence spec-

troscopy (PL). Polyvinyl alcohol (PVA) is a biocom-

patible, water-soluble synthetic polymer with

excellent film forming and mechanical properties,

which has been widely used as the matrix for preparing

CNC based composites (Niu et al. 2015). PVA can

also form strong interactions with CNCs via hydrogen

bonding (Zheng et al. 2013). In this work, by blending

the CNCs/ZnS composites with PVA, the CNCs/ZnS/

PVA composite films can be synthesized. In addition,

the mechanical, fluorescent, and antibacterial proper-

ties of the CNCs/ZnS/PVA composite films were also

studied.

Experimental

Materials

All chemicals used in this research, including sul-

phuric acid (H2SO4), PVA, zinc chloride (ZnCl),

sodium sulfide (NaS) and polyethyleneimine (PEI)

were analytical grade and purchased from a chemical

supplier (Shanghai Macklin Co., Ltd. (Shanghai,

China)). Microcrystalline cellulose was used as the

raw material and obtained from a chemical supplier

(Sigma–Aldrich, USA). High purity Millipore water

was used in this study.

Synthesis and purification of CNCs (Jin et al. 2016;

Luna-Martinez et al. 2011)

60 mL of 64% sulfuric acid was added into a beaker

and heated at 45 �C using water bath, and then 6 g

dried microcrystalline cellulose was added in the

beaker and stirred for 40 min. After that, the obtained

suspension was poured into a 600 mL beaker that

contains distilled water and then left standing for 8 h.

Afterward, the suspension was transferred to a

centrifuge (rotational speed = 10,000 r/min, temper-

ature = 25 �C) for 15 min, and then the supernatant

was removed. The above operation was repeated

several times. The obtained suspensions (CNCs) were

collected and then neutralized by dialysis (final pH

value = 7). Finally, The CNCs were stored in erlen-

meyer flask at 4 �C.

Preparation of the CNCs/ZnS nanocomposites

The CNCs/ZnS nanocomposites were prepared by

using the hydrothermal method. 0.500 g of polyethy-

leneimine (PEI), 0.136 g of zinc chloride (ZnCl),

0.078 g of NaS and 70 mL homogeneous prepared

CNCs were added into a beaker (100 mL), after

stirring for 30 min, the mixture solution was poured

into a hydrothermal reactor and heated at 180 �C for

8 h. After the reaction completed, the mixture solution

was cooled to room temperature and then yellow

dispersion with no apparent sediment was obtained.

Thus, the CNCs/ZnS nanocomposite was synthesized.

The partial suspension was freeze-dried for the

subsequent testing and the remaining dispersion was

stored in erlenmeyer flask at 4 �C.

Preparation of CNCs/ZnS/PVA nanocomposite

film

For the preparation of the CNCs/ZnS/PVA nanocom-

posite films, a predetermined amount of CNCs/ZnS

suspension was mixed with the PVA. PVA (2.0 g) was

dissolved in the prepared CNCs/ZnS suspension with

vigorous stirring at 90 �C. After PVA was completely

dissolved in the suspension, the mixture solutions

were poured onto a polytetrafluoroethylene Petri dish

with a diameter of 10 cm, and then were dried in the

vacuum oven at 60 �C for 48 h. CNCs/ZnS/PVA

nanocomposite films with 1, 2, 3, 4 and 5 wt% of

CNCs/ZnS composites were prepared and coded as

C-1, C-2, C-3, C-4 and C-5, respectively. Thus, the

CNCs/ZnS/PVA nanocomposite films were obtained.

Figure 1 shows the synthesis procedures of the CNCs/

ZnS/PVA nanocomposite film that contains ZnS QDs.

Characterizations and measurements

The infrared spectra of CNCs and CNCs/ZnS

nanocomposite were recorded using FT-IR (Nicole,

NEXUS 670). The sample was ground and mixed with

dried potassium bromide (KBr) powder and com-

pressed, and then was subjected to analysis. The

experiments were performed in the range of

400–4000 cm-1 for each sample. The resolution and

scanning time were 4 cm-1 and 32 times, respectively.
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The UV–vis spectra and the transmittance of CNCs/

ZnS/PVA nanocomposite films were recorded using

UV–vis absorption spectroscopy (Shimadzu, UV-

1800). The photoluminescence (PL) characterizations

of samples were performed using a FluoroMax-4

fluorescence spectrometer.

The morphology of CNCs and CNCs/ZnS

nanocomposites were evaluated by scanning electron

microscope (SEM, LEO 153 VP). A freeze–dried

CNCs/ZnS composite was coated with gold palladium

by a PolaronE 5100 coater and then analyzed with an

accelerating voltage of 5 kV.

The elastic modulus and tensile strength of CNCs/

ZnS/PVA nanocomposite films were tested by using a

universal testing instrument (Instron5565 Material

Test System). The dimensions of the samples to be

measured were 15.0 mm width and 50.0 mm length.

XRD patterns of the samples were identified by a

Rigaku D/max-1200 X-ray diffractometer with a Cu-

Ka radiation, and the step scanning was done at a

scanning rate of 2�/s ranging from 4� to 70� (2 h

angle).

XPS analysis was performed by using Kratos Axis

Ulra DLD. The X light source (Mono AlKa) at the
energy of 1486.6 eV was used, with a beam spot size

of 700 9 300 lm, a full spectrum scanning energy of

160 eV, and a narrow spectrum scanning energy of

40 eV.

The antibacterial activitiy of CNCs/ZnS/PVA

nanocomposite film against Escherichia coli (E. coli)

were assessed by the bacterial inhibition rate method

(Sawai 2003; Zhang and Xiao 2013). 9.0 mL of

0.03 mol/L phosphate buffered saline (PBS) solution

was added in a flask containing 1.0 mL of E. coli

solution, and 0.2 g of CNCs/ZnS/PVA nanocomposite

film (CNCs/ZnS content = 3%) or blank film (pure

PVA film) was placed into the above flask. Afterward,

the flask was immersed in a water bath shaker and

shaken at 37 �C for 1 h. 0.2 mL of each solution was

added and seeded on an agar culture medium (in petri

dish), and then the petri dish was placed in an

incubator and incubated at 37 �C for 24 h. The

bacteria concentration in the petri dish was calculated

before and after 24 h of incubation, and then the

bacterial inhibition rate can be obtained. The number

of colonies was recorded. The bacteria concentration

can be calculated by the following equation:

K ¼ Z � R ð1Þ

where K represents the concentration of bacteria

(CFU/mL) in each sample, Z represents the average

number of two plate colonies and R represents the

dilution factor.

The bacterial inhibition rate against E. coli can be

calculated as:

Y ¼ Kt � K0

Kt

� 100% ð2Þ

where Y, Kt and K0 represent the bacterial inhibition

rate of the film sample, the concentration of bacteria

(CFU/mL) in CNCs/ZnS/PVA nanocomposite film

sample and the blank sample (pure PVA film without

adding CNCs/ZnS) after 24 h of incubation,

respectively.

Fig. 1 Synthesis procedures of the CNCs/ZnS/PVA nanocomposite film
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Results and discussion

Characterization of the CNCs/ZnS

nanocomposites

FTIR characterization

In order to study the structural characteristics of CNCs

and CNCs/ZnS nanocomposites and the interaction

between ZnS and CNCs, FTIR testing were conducted.

Figure 2 showed the FTIR spectra of the CNCs and

ZnS/CNCs nanocomposites. It can be seen that the

peak at 3415 cm-1, corresponding to the –OH

stretching vibrational absorption (Zhao et al. 2014),

moved slightly to the higher wavenumber

(3428 cm-1). The data indicated that the hydroxyl

groups (-OH) was the active sites in the CNCs/ZnS

nanocomposite preparation and there was an interac-

tion between –OH and ZnS QDs. The peaks at 1639

and 1060 cm-1, corresponding respectively to the

C=O and C–O–C stretching vibrational absorption

(Dong et al. 2012), moved slightly to the lower

wavenumbers (1632 and 1057 cm-1 respectively).

However, the peak at 1429 cm-1, corresponding to the

stretching vibrational absorption of –CH2– (Cao et al.

2014), moved to the higher wavenumber (1461 cm-1),

which also indicated the interaction between CNCs

and ZnS QDs.

XRD analysis

The crystal structures of the CNCs and CNCs/ZnS

nanocomposite were analyzed by XRD. Figure 3

showed the XRD patterns of pure CNCs and CNCs/

ZnS nanocomposite. There were three broad peaks

(2h) at about 15.0�, 16.5� and 22.5� in the pattern of

CNCs, which were assigned to the (1–10), (110) and

(200) plane in CNCs (i.e., cellulose Ib) crystalline

structure, respectively (French 2014). In addition,

three similar XRD diffraction peaks can be observed

in the pattern of the CNCs/ZnS nanocomposite. The

typical cellulose crystalline structure of CNCs/ZnS

nanocomposite showed that the structure of CNCs in

CNCs/ZnS were not destroyed under the conditions of

the in situ hydrothermal method. The other diffraction

peaks of CNCs/ZnS nanocomposite were at 28.6�,
47.8�, and 56.7�, which correspond to the crystal

planes of the (1 1 1), (2 2 0) and (3 1 1) of the cubic

structure of ZnS (JPDS: 65-9585), respectively (Leng

et al. 2014). The results showed that the ZnS QDs were

loaded on the CNCs matrix, and the newly generated

QDs exhibited a true crystalline structure.

XPS analysis

The XPS analysis was carried out to obtain the

information about the related functional groups of

CNCs/ZnS nanocomposites. The peaks of the related

atoms (O, C, S, Zn, and N) in the nanocomposites were

observed in the XPS spectra are illustrated in Fig. 4a.

Fig. 2 FT-IR spectra of CNCs and CNCs/ZnS nanocomposites Fig. 3 XRD spectra of CNCs and CNCs/ZnS nanocomposites
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The signal of nitrogen (N 1s) indicated that the

existence of PEI in the CNCs/ZnS nanocomposites

was confirmed (Stankovich et al. 2006). PEI was used

to improve the stability and promote adhesion to the

negatively charged surface of CNCs/ZnS nanocom-

posites (Gu et al. 2010). Figure 4b illustrated the C

1s XPS spectra of CNCs/ZnS nanocomposites, which

proved that the existence of three kinds of carbons: C–

C (284.2 eV), C–N (285.9 eV), and C=O (288.3 eV)

was confirmed, indicating that PEI was successfully

grafted to CNCs (Johansson et al. 2005). The Zn

2p XPS spectra of CNCs/ZnS nanocomposites in

Fig. 4c showed the exhibition of Zn 2p3/2 and Zn 2p1/2
peaks, and the binding energies of the two peaks were

at 1019 eV and 1043 eV, respectively, indicating the

characteristic peaks of Zn ions in CNCs/ZnS

nanocomposites. The S 2p XPS spectrum of CNCs/

ZnS nanocomposites in Fig. 4d showed the exhibition

of S 2p peak, and the binding energy of this peak was

at 162.1 eV, which indicated the characteristic peaks

of S2- in CNCs/ZnS nanocomposites.

SEM

The morphology images of CNCs/ZnS nanocompos-

ites were characterized by SEM. From Fig. 5a we can

find the three-dimensional (3D) porous network

structure of CNCs. This mesoporous structure pro-

vides a good tunnel for the adsorption of Zn2?, so that

Zn2? is uniformly distributed on the CNCs. Figure 5b

showed the SEM image of CNCs/ZnS nanocomposites

and can be seen that ZnS QDs were well-dispersed and

Fig. 4 a XPS spectrum of CNCs/ZnS nanocomposite; b high-resolution XPS scan for C 1s of CNCs/ZnS nanocomposite; c high-

resolution XPS scan for Zn 2p of CNCs/ZnS nanocomposite; d high-resolution XPS scan for S 2p of CNCs/ZnS nanocomposite
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randomly coated on the CNCs with uniform particle

size and the particle diameter of QDs in the CNCs/ZnS

nanocomposites was approximately 15 nm.

Fluorescence properties of CNCs/ZnS

nanocomposites and CNCs/ZnS/PVA

nanocomposite films

The PL properties of CNCs and CNCs/ZnS compos-

ites were measured by a fluorescence spectropho-

tometer (excitation wavelength = 350 nm). As

illustrated in Fig. 6, a visible emission peak was

occurred at 473 nm in the PL spectrum of the ZnS/

CNCs nanocomposites. The PL spectrum of the ZnS/

CNCs nanocomposites also had a broad fluorescent

emission spectral band. However, there were no

emission peaks in the PL spectrum of original CNCs,

which indicated that the structure of CNCs are a

suitable substrate for the assembly of ZnS QDs.

Figure 7 showed the reflection of the CNCs/ZnS

nanocomposites under the irradiation of the fluores-

cent lamp and the ultraviolet lamp. It can be seen that a

light yellow color can be observed in the CNCs/ZnS

nanocomposites under the irradiation of fluorescent

lamp, and a bright blue fluorescence can be observed

under the irradiation of ultraviolet lamp. The deco-

rated CNCs/ZnS particles were added to PVA to form

CNC/ZnS/PVA composite films. The fluorescence

properties of CNCs/ZnS/PVA nanocomposite films

were also studied. Figure 8 showed the fluorescence

spectra of CNCs/ZnS/PVA composite films with

different CNCs/ZnS additions (an excitation wave-

length of 350 nm and a slit of 1 nm), from which can

be seen that the fluorescence intensity increased with

Fig. 5 SEM images of a CNCs and b CNCs/ZnS

nanocomposites

Fig. 6 Fluorescence spectra of CNCs and CNCs/ZnS

nanocomposites

Fig. 7 CNCs/ZnS nanocomposites under a the fluorescent light
and b ultraviolet light. (Color figure online)
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the increase of the CNCs/ZnS nanocomposite content.

The increasing trend was more obvious when the

content of the CNCs/ZnS nanocomposite reached 4%.

Light transmittance of CNCs/ZnS/PVA

nanocomposite films

The light transmittance of CNCs/ZnS/PVA nanocom-

posite films was assessed by the UV–vis spectroscopy.

Figure 9 showed the light transmittance of CNCs/ZnS/

PVA nanocomposite films with different CNCs/ZnS

contents. As seen, the light transmittance of the CNCs/

ZnS/PVA nanocomposite films decreased with the

increase of the CNCs/ZnS content and were below

40%. According to the previous papers (Moon et al.

2013; Araki et al. 2014), the decrease of the trans-

parency may be due to the high haze of the films.

Mechanical properties of CNCs/ZnS/PVA

nanocomposite films

The mechanical properties (elastic modulus and

tensile strength) of the CNCs/ZnS/PVA nanocompos-

ite films were measured by a universal testing

instrument. All testing were repeated for four time.

Figure 10a and b showed the effect of CNCs/ZnS

nanocomposite content on the elastic modulus and

tensile strength of CNCs/ZnS/PVA films, respec-

tively. From which can be seen that the elastic

modulus of the films gradually increased with the

increase of the CNCs/ZnS content. The tensile
Fig. 8 Fluorescence spectra of CNCs/ZnS/PVA nanocompos-

ite films

Fig. 9 Light transmittance of of CNCs/ZnS/PVA nanocom-

posite films

Fig. 10 a Elastic modulus of CNCs/ZnS/PVA nanocomposite

films; b Tensile strength of CNCs/ZnS/PVA nanocomposite

films
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strength of the nanocomposite films increased at first,

and then had a decrease trend after the addition of

CNCs/ZnS nanocomposites reached 3%. The reason

for the decrease in tensile strength may be that the

CNCs suspensions flocculate more easily when the

CNCs content increase.

Antibacterial properties of CNCs/ZnS/PVA

nanocomposite film

The bacterial inhibition rate was used to measure the

antibacterial activity of CNCs/ZnS/PVA composite

film (CNCs/ZnS content = 4%). After 24 h of incu-

bation (at 37 �C), the bacteria concentration in the

CNCs/ZnS/PVA composite film sample was com-

pared with that of the blank sample (pure PVA film

without adding CNCs/ZnS). Figure 11a and b showed

the bacterial colonies formed by E. coli in the blank

sample and CNCs/ZnS/PVA nanocomposite film

sample, respectively. It can be seen that there were a

large number of bacterial colonies on the blank sample

(without CNCs/ZnS composites), while the number of

bacterial colonies on the CNCs/ZnS/PVA nanocom-

posite film sample was greatly reduced. The results

showed that the average number of bacterial colonies

on the CNCs/ZnS/PVA nanocomposite film sample

was 152, and the blank sample was 699. And then the

bacterial inhibition rate of the CNCs/ZnS/PVA

nanocomposite film can be calculated by using

Eq. (2) and is 78.25%, which indicated that the

CNCs/ZnS/PVA nanocomposite film had the

antibacterial effect on E. coli. In the CNCs/ZnS/PVA

nanocomposite film, ZnS is one of the most stable zinc

compounds and is much more stable than the organic

fungicides. The electrostatic interaction between

CNCs/ZnS/PVA and the bacterial cell membrane

may be the major reason for the antibacterial effect

of the nanocomposite film. In addition, the composite

film had a large contact area with the E. coli due to the

roughened surface of the film, which increased the

surface adhesion and interaction between the film and

E. coli, leading to better antibacterial properties of the

CNCs/ZnS/PVA nanocomposite film.

Conclusions

In this study, a fluorescent and antibacterial nanocom-

posite film based on CNCs/ZnS QDs was successfully

prepared. The unique 3D porous structures of CNCs

make CNCs the effective nanoreactor for the in situ

preparation of ZnS nanoparticles. The results from

XRD and SEM indicated that ZnS QDs were well-

dispersed on the CNCs through adsorption of the

cationic fixing agent PEI. The CNCs/ZnS/PVA

nanocomposite film had a smooth PL spectrum, which

indicated that the nanocomposite film had few impu-

rities and good fluorescence properties. The CNCs

loaded with ZnS QDs exhibited bright blue fluores-

cence under the UV light. The CNCs/ZnS/PVA

nanocomposite films also showed good antibacterial

properties (bacterial inhibition rate = 78.25%).

Fig. 11 a Photo images of bacterial colonies formed by E. coli on blank (without CNCs/ZnS composites) sample and b CNCs/ZnS/

PVA nanocomposite film sample
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