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Abstract The anniversary of the journal ‘‘Cellulose’’

is an opportunity to review innovations that were

introduced during the past 25 years. Of these, from our

perspective, the development of solvents that dissolve

cellulose physically, i.e., without formation of cova-

lent bonds is most relevant. The reasons are that

cellulose can be regenerated from these media in

different shapes and transformed into many important

derivatives. Twenty-five years is a long time-span! As

the volume of information on the applications of the

above-mentioned solvents in cellulose chemistry is

extensive, we made choices to reach a balance between

the amount of material covered and the length of the

review. Consequently, we focus on cellulose deriva-

tization under homogeneous reaction conditions to

produce selected derivatives. We dwell on the latter

because a comprehensive discussion was recently

published on derivatization under heterogeneous and

homogeneous conditions (Heinze et al. in Cellulose

derivatives, Springer, Cham, pp 259–292, 2018a). The

derivatives selected are esters of organic acids, ionic

and nonionic ethers because of their tremendous

commercial and scientific importance. Cellulose

derivatization in homogeneous media is advantageous

because of much better control of product properties

relative to those obtained under the heterogeneous

counterparts. These properties include degree of sub-

stitution in the anhydroglucose unit and along the

biopolymer back-bone, and regioselectivity. Thus,

novel cellulose derivatives were prepared that are not

accessible under heterogeneous conditions. The

requirement to dissolve cellulose physically is to

disrupt hydrogen bonding and hydrophobic interac-

tions. Thus, the solvents employed to dissolve cellu-

lose are usually composed of strong electrolytes whose

cations and anions interact preferentially with cellu-

lose. These electrolytes are used pure or as solutions in

water or dipolar aprotic solvents. Salient examples

include LiCl/N,N-dimethylacetamide, tetra(n-

butyl)ammonium fluoride�3H2O/dimethyl sulfoxide,

ionic liquids, salts of quaternary amines and super-

bases. We discuss briefly the essentials of each solvent

in terms of its mechanism of cellulose dissolution and

show the most relevant results regarding its application

for obtaining esters and ethers and back the discussion

with relevant references. This information is summa-

rized at the end of the review. We hope that this

historical perspective shows the innovations made

since the first publication of ‘‘Cellulose’’ and points out

to future possibilities—with potential industrial appli-

cation—of this renewable raw material and its bio-

compatible and biodegradable derivatives.
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Abbreviations

AcO Acetate

AGU Anhydroglucose unit

[AlMeIm]Cl 1-Allyl-3-methylimidazolium

chloride

BC Bacterial cellulose

[BuMeIm]Cl 1-(n-Butyl)-3-methylimidazolium

chloride

CDI Carbonyldiimidazole

CT Cellulose tosylate

CHPTMA Cl (3-Chloro-2-

hydroxypropyl)trimethyl-

ammonium chloride

DAS Dipolar aprotic solvent

DBN 1,5-Diazabicyclo[4.3.0]non-5-ene

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC N,N0-Dicyclohexylcarbodiimide

DLS Dynamic light scattering

DMAc N,N-Dimethylacetamide

DMF N,N-Dimethylformamide

DMSO Dimethyl sulfoxide

DP Average degree of polymerization

DS Average degree of substitution

EPTMA Cl (2,3-

Epoxypropyl)trimethylammonium

chloride

ET(30) Solvent empirical polarity parameter

(in kcal mol-1) as determined by the

solvatochromic probe 2,6-diphenyl-

4-(2,4,6-triphenylpyridin-1-ium-1-

yl)phenolate

[EtMeIm]AcO 1-Ethyl-3-methylimidazolium

acetate

HEC Hydroxyethyl cellulose

HPC Hydroxypropyl cellulose

Ic Index of crystallinity

IL Ionic liquid

ImIL Imidazolium based IL

log P Partition coefficient of a substance

between (mutually saturated) n-

octanol and water

MALS Multiangle light scattering

MC Methyl cellulose

MD Molecular dynamic simulations

MM Average molar mass5

MS Average degree of molar

substitution

[N2228]Cl Triethyl(n-octyl)ammonium

chloride

NMMO N-Methylmorpholine-N-oxide

QAE Quaternary ammonium electrolyte

SA Solvent Lewis acidity

SB Solvent Lewis basicity

[TBA]F�3H2O Tetra(n-butyl)ammonium fluoride

trihydrate

TC Trityl cellulose

TsCl Tosyl chloride

Requirements for cellulose dissolution

The dissolution of cellulose occurs either physically or

chemically. The latter strategy leads to formation of

covalent bonds, i.e., the formation of cellulose deriva-

tives that are usually soluble in the medium. Chemical

dissolution is used in commercial processing of

cellulose, in particular the viscose process (Heinze

et al. 2018b), and will not be dealt with in this review.

At the outset, we use the term ‘‘solvent’’ to denote

both single- and multi-component systems. Example

of the former are ionic liquids (ILs), whereas the latter

is usually composed of a strong electrolyte in a dipolar

aprotic solvent (DAS), LiCl/N,N-dimethylacetamide

(DMAc), and tetra(n-butyl)ammonium fluoride trihy-

drate ([TBA]F�3H2O)/dimethyl sulfoxide (DMSO).
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Dissolution of cellulose occurs if the dissolved state

is associated with lower free energy than the solid

state. Consequently, we should consider the contribu-

tions of the enthalpy and entropy terms of Gibbs free-

energy equation (Burchard 2003). In view of the

strong intra- and intermolecular hydrogen bonding in

cellulose (Fig. 1), much emphasis was placed on the

ability of the solvent to break these hydrogen bonds

(i.e., dissolution enthalpy) as the essential criterion for

cellulose dissolution.

However, cellulose is not soluble in water,

although the energies of hydrogen bonding between

cellulose molecules, water molecules and cellulose/

water are not very different. Hence, the energy

required to break hydrogen bonding is only a

fraction of the total free energy necessary to dissolve

cellulose. The remaining part is needed to break the

hydrophobic interactions, because cellulose has

amphiphilic character, with polar (OH) and nonpolar

(CH) patches. A consequence of this amphiphilicity

is that cellulose chains can stack via hydrophobic

interactions to form sheet-like structures that should

be disrupted for dissolution to occur (the entropy

term) (Lindman et al. 2017). A schematic represen-

tation of the cooperative effects of these two types

of interactions is shown in Fig. 2. The latter was

suggested (based on molecular dynamic, MD, sim-

ulations) for the formation of regenerated cellulose

from aqueous cellulose solutions (Miyamoto et al.

2009). To follow the argument more easily, how-

ever, we inverted the steps, i.e., fibrous cellu-

lose ? dissolved biopolymer. We start from

cellulose with crystalline and amorphous regions.

On contact with the solvent that dissolves the

biopolymer physically, the tightly packed aggre-

gates, made of stacked chains, start to separate into

smaller sheets with some degree of order, i.e., still

Fig. 1 Intra- and

intermolecular hydrogen

bonding in cellulose.

Reprinted with permission

from (Pinkert et al. 2010),

copyright (2010) American

Chemical Society

Fig. 2 Schematic representation of the structures formed

during cellulose dissolution in aqueous environment: a semi-

crystalline cellulose; b breakdown into smaller sheets held by

hydrogen bonding and hydrophobic interactions; c formation of

the molecular sheets held by van der Waals force; d dissolved

cellulose. Adapted from (Miyamoto et al. 2009), copyright

(2009), with permission from Elsevier
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containing crystalline and defective regions. As

dissolution proceeds, this ‘‘peeling’’ process contin-

ues. Finally, the sheets disintegrate into solvated

chains or, most probably, smaller solvated cellulose

aggregates. The evidence for dissolved cellulose

aggregates is based on light scattering data demon-

strating that dissolved cellulose is not monomeric in

efficient solvents, including LiCl/DMAc (Röder

et al. 2001), and ILs (Trulove et al. 2009; Kuzmina

et al. 2010).

The above remarks show the relevance of under-

standing cellulose dissolution to its derivatization. We

develop our discussion, therefore, in terms of the

solvent employed, evidence for its mechanism of

action, followed by its application in the synthesis of

esters and ethers. Our aim is to demonstrate how the

introduction of novel solvents contributed to cellulose

chemistry during the last 25 years, e.g., by making

reactions selective, efficient with satisfactory atom

economy and regioselectivity. The selected solvent

classes shown below were the most relevant ones

developed during this time span:

1. Strong inorganic electrolyte in DAS, LiCl/DMAc;

2. Quaternary ammonium electrolytes with inor-

ganic counter-ions in DAS, e.g. [TBA]F�3H2O/

DMSO;

3. Aqueous alkali solutions without and with hydro-

tropes (urea, thiourea); aqueous quaternary

ammonium hydroxides, e.g. [NR4]OH;

4. Quaternary ammonium electrolytes (QAEs) with

organic counter-ions in DASs, e.g. [NR4]AcO;

5. Imidazole-based ILs alone and as solutions in

DASs.

Cellulose pretreatments

Depending on the solvent employed it is necessary, or

convenient to submit cellulose to a pretreatment

before dissolution. For efficient dissolution in LiCl/

DMAc the cellulose sample should be ‘‘activated’’, a

pretreatment introduced to remove adsorbed water

from cellulose and enhance its solubility in the

medium (Ishii et al. 2008). The following strategies

were employed: substitution of water by organic

solvents ending with DMAc, e.g. (wa-

ter ? methanol ? DMAc); distillation of a fraction

(25 vol%) of DMAc; heating of a mixture of cellulose

and LiCl under reduced pressure (El Seoud et al.

2013). The first strategy is laborious (requires ca. one

day), expensive (144 mL of methanol plus DMAc/g

cellulose) and is recommended where cellulose dis-

solution without degradation in essential (Dupont

2003). The second strategy does not eliminate water

completely leading, e.g., to consumption of a part of

the acylating agent (Marson and Seoud 1999). More

importantly, however, this activation is associated

with biopolymer degradation due to its reaction with

the strongly electrophilic species N,N-dimethylketen-

iminium ion [CH2=C=N?(CH3)2] formed by dehy-

dration of the enol tautomer of DMAc at the b.p. of the

solvent (Potthast et al. 2003; Rosenau et al. 2006).

Thermal activation of a mixture of cellulose and LiCl

under reduced pressure does not cause biopolymer

degradation, but DMAc should be introduced before

reestablishing atmospheric pressure to avoid cellulose

hornification (Regiani et al. 1999). This activation

strategy is probably most convenient because the

biopolymer and LiCl are dried in situ, simultaneously.

Cellulose dehydration is not required for its dissolu-

tion/derivatization in [TBA]F�3H2O/DMSO; ILs and

their solutions in DAS (Wu et al. 2004; Kostag et al.

2013). Thus, sample of cellulose acetate with the same

DS were obtained by acetylation of microcrystalline

cellulose (MCC) by acetic anhydride in 1-allyl-3-

methylimidazolium chloride [AlMeIm]Cl without and

with prior activation (Fidale et al. 2009). Examples are

known where the removal of water is not even

essential for the success of the reaction of water-

sensitive reagents. The reason is that the water activity

in IL is greatly reduced (Amigues et al. 2006). A note

on the solvent [TBA]F�3H2O/DMSO is worthwhile.

Under comparable conditions, this solvent absorbs

water even faster than LiCl/DMAc (Fidale et al. 2006).

Consequently, water uptake by the precursor elec-

trolyte ([TBA]F�3H2O) and the solvent should be

controlled because of the demonstrated deleterious

effect of water on [TBA]F/cellulose interactions

(Östlund et al. 2009).
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Another pretreatment that is used especially with

fibrous cellulose is mercerization, i.e., treatment with a

base, usually aqueous NaOH followed by base washing

and sample drying. There is a massive evidence that

this treatment produces cellulose that shows increase in

swelling and dissolution, relative to untreated cellu-

lose. The reasons for the beneficial effects of this

pretreatment include increase in cellulose accessibility

and surface area, the change of cellulose I ? cellulose

II, and partial removal of lignin and hemi-cellulose

(Heinze et al. 2018c). This pretreatment leads to

oxidative degradation, a side reaction that can be

suppressed by carrying the treatment under reducing

conditions (El Seoud et al. 2008).

Cellulose dissolution and derivatization in LiCl/

DMAc

Dissolution

The cellulose dissolving efficiency of Lithium halides/

DAS depends on the electrolyte and DAS. For the

same organic solvent, LiCl is more efficient than LiBr

or LiI; for LiCl, DMAc is a better solvent than DMF or

DMSO (Furuhata et al. 1992; Morgenstern and Berger

1993; Wang et al. 2009). Therefore, we concentrate on

LiCl/DMAc, introduced to dissolve, inter alia, chitin

(Austin 1977), cellulose (McCormick et al. 1985), and

aromatic polyamides (Kwolek et al. 1977; Morgan

1977).

A brief note about the state of cellulose aggregation

in these solutions is in order because this aggregation

affects the biopolymer reactivity, e.g., toward deriva-

tization. Obtaining clear cellulose solutions in LiCl/

DMAc and, in fact, in any solvent does not necessarily

mean that the biomacromolecule is molecularly dis-

persed. Most certainly these solutions contain aggre-

gates of still ordered cellulose molecules

(Morgenstern and Kammer 1999; Burchard 2003). In

fact, aggregate-free solutions of polysaccharides are

hard to prepare (Rinaudo 1993; Potthast et al. 2002).

The state of these aggregates, in particular the

aggregation number, depends on cellulose and elec-

trolyte concentrations, and the method of solution

preparation (Sjöholm et al. 1997; Ciacco et al. 2010).

Dynamic light scattering (DLS) data indicated that the

average lengths of dissolved MCC chains are practi-

cally equal to their persistent lengths, i.e., there is no

biopolymer chain-coiling. The flexibility of long chain

celluloses, e.g., cotton linters leads to coiling hence

formation of strong intermolecular hydrogen bonding

and van der Waals interactions. Consequently, the

properties of cellulose, e.g., its average degree of

polymerization (DP) and index of crystallinity (Ic), the

concentrations of cellulose and LiCl affect the state of

biopolymer aggregation, hence the ease of its disso-

lution and efficiency of derivatization (Strlič and

Kolar 2003; Aono et al. 2006), as evidenced by the DS

of product obtained (Ramos et al. 2011).

A major advantage of LiCl/DMAc as solvent is its

ability to dissolve celluloses of different molar masses

(MMs) and Ic, including cotton linters and bacterial

cellulose (BC). Therefore, it is frequently employed in

analytical applications, e.g., determination of the

average MM by viscosity from the Mark–Houwink–

Sakurada equation and by SEC with multiangle light

scattering (MALS) detection (Striegel and Timpa

1996; Schult et al. 2002; Potthast et al. 2015). It is also

a solvent of choice when new sample of cellulose is

tested, or new derivatization protocol is introduced.

The mechanism of cellulose dissolution by this

solvent was deduced from conductance, FTIR and

NMR spectroscopy. It is instructive to analyze this

problem in terms of the following: interactions of LiCl

with DMAc; effects of dissolving cellulose, or

cellobiose (model for cellulose) on the LiCl/DMAc

solvent. Conductivity measurements showed that LiCl

and several other strong electrolytes are weakly

Fig. 3 Scheme for the solvation of LiCl by DMAc. Reprinted

(adapted) with permission from (Zhang et al. 2014), copyright

(2014) American Chemical Society
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associated in DMAc; the Li? is strongly solvated by

the solvent whereas the Cl- is weakly solvated (Das

et al. 2002). The same conclusion was corroborated by

FTIR (mC=O of DMAc), 13C NMR (d CH3-

CON(CH3)2), and 7Li NMR (d and peak width).

These techniques also indicated the association of Li?

with the C=O group of several molecules of DMAc, as

seen in Fig. 3 (Morgenstern et al. 1992; Striegel 2003;

Zhang et al. 2014).
1H NMR studies on solutions of cellobiose (Gag-

naire et al. 1983) and cellulose (Burchard 2003)

dissolved in LiCl/DMAc revealed that all OH groups

are complexed with the solvent. The corresponding

chemical shifts increase with LiCl concentration and

decrease with temperature. The dependence on cel-

lobiose concentration of d and peak width of 35Cl

NMR confirmed that this hydrogen bonding is largely

between the hydroxyl groups and the chloride ion

(Zhang et al. 2014). 7Li NMR chemical shift and peak

width in absence and presence of cellulose indicated

that the molecular environment of Li? changes

progressively as cellulose is dissolved. This interac-

tion presumably involves weakening of Li?/DMAc

interactions or, in limiting cases, an exchange between

one DMAc molecule in the inner coordination shell of

Li? with a cellulosic hydroxyl group (Morgenstern

et al. 1992).

From the above-mentioned results, we summarize

cellulose dissolution in LiCl/DMAc as follows: cellu-

lose dissolution results in the formation of strong

hydrogen bonds between the hydroxyl groups of the

AGU and the weakly solvated Cl- as well as

Coulombic interaction with the solvated Li?. The

former hydrogen bonding is at the expense of

[Li(DMAC)n]?���Cl- electrostatic interactions. This

loss is attenuated by increasing the solvation number

of Li? by DMAc. The following dissolution

scheme (Fig. 4) is based on the work of Zhang et al.

(2014).

Few additional remarks on cellulose dissolution in

LiCl/DMAc are worth mentioning:

1. Although the above-mentioned spectroscopic

results attribute cellulose dissolution to hydrogen

bonding, contribution from the hydrophobic inter-

actions between cellulose and the methyl groups

of DMAc cannot be ruled out as shown, e.g., for

the solvation of glucose in DAS (Vasudevan and

Mushrif 2015), and by the fact that cellulose is

more soluble in LiCl/DMAc than LiCl/DMF. Note

that DMAc is more hydrophobic, although less

polar than DMF (values of log P (partition

coefficient between n-octanol and water = - 0.25

and - 1.01; values of ET(30) = 42.9 and

43.2 kcal mol-1, for DMAc and DMF,

respectively);

2. Whereas the order of the dissociation constants in

DMAc is LiI[LiBr[LiCl (Das et al. 2002) the

order of efficiency (as cellulose solvent) in the

same DAS is LiCl[LiBr[LiI. Consequently,

charge density on the anion and not the concen-

trations of free ions controls the observed elec-

trolyte efficiency;

3. The presence of adventitious water leads to

several deleterious effects: it affects the solubility

of LiCl in DMAc; decreases the solubility of

cellulose in the solvent; increases the aggregation

of dissolved cellulose (Rosenau et al. 2001;

Potthast et al. 2002) and consumes reactive

derivatizing agents, e.g., acid anhydrides and acyl

chlorides. Because the water present is tightly

Fig. 4 Schematic representation of interaction of cellulose and LiCl/DMAc during dissolution. Reprinted (adapted) with permission

from (Zhang et al. 2014), copyright (2014) American Chemical Society
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bound to the electrolyte, Karl–Fischer titration

may give false results. The concentration of water

can be quickly and conveniently determined using

solvatochromic probes (Potthast et al. 2002;

Fidale et al. 2006). In this regard, the above-

mentioned cellulose thermal activation under

reduced pressure is probably most convenient

because the biopolymer and LiCl are dried in situ,

simultaneously.

Esterification of cellulose in LiCl/DMAc

Esters of carboxylic acids

As solvent, LiCl/DMAc was successfully employed

for the synthesis of esters and mixed esters of

celluloses with different DP, some of which cannot

be obtained under heterogeneous conditions, e.g.,

long-chain fatty esters. In the account that follows, we

concentrate on the strategies employed for derivatiza-

tion and list selected results.

At the outset, the properties of LiCl/DMAc, both

macroscopic and microscopic, ensure obtaining good

yields and controlled DS for reactions where reagent

diffusion is important (as in polymer reactions) and the

transition state is more polar than the reactant state,

e.g., esterification. Regarding macroscopic properties

consider solution viscosity. According to the Stokes–

Einstein diffusion equation, lower solution viscosity

leads to higher diffusion rates of the species present in

solution, which corresponds to an increase in mass

transfer, hence increase in reaction rate/yield. This

expectation was demonstrated experimentally, e.g.,

for Diels–Alder reactions in pure ILs (Baba et al.

2006; Tiwari and Kumar 2012), and their mixtures

with molecular solvents (Khupse and Kumar 2011).

The viscosity of cellulose solutions (1 wt%) in LiCl/

DMAc are not elevated even for biopolymer samples

with high DP. For example, viscosities of 0.31 and

4.78 Pa s at 50 �C were reported for cellulose samples

with DP = 280 and 643, respectively (Wei and Cheng

2007). Under comparable conditions, the viscosity of

MCC in LiCl/DMAc is 15% that in the IL 1-allyl-3-

butylimidazolium chloride (Possidonio et al. 2010).

Solvatochromic parameters are used as indication

for microscopic properties of this, and other cellulose

solvents. Values of ET(30) of LiCl/DMAc, are rela-

tively high and increase in the sequence

(42.8 ? 47.3 ? 51.0 kcal mol-1) on going from

pure DMAc to LiCl/DMAc solutions containing 0.5,

5.0 wt% electrolyte, respectively (Spange et al. 1998).

The last ET(30) value is in the same polarity range of

2-ethoxyethanol (51.0 kcal/mol) and 1-propanol

(50.7 kcal/mol) (Reichardt and Welton 2010), i.e.,

the solvent is quite polar. As argued elsewhere, the

efficiency of a solvent in dissolving cellulose is related

to its ‘‘net or effective basicity’’, taken as the difference

between its Lewis basicity (SB) and Lewis acidity

(SA), solvents with high net basicity (SB - SA C 0.5)

are efficient (Parviainen et al. 2013). The values of net

basicity are 0.78, 1.62, and 1.49 for pure DMAc, 0.5

and 5 wt% LiCl in DMAc, respectively (Spange et al.

1998). In summary, the solvent LiCl/DMAc possess

favorable characteristics for cellulose dissolution and

derivatization, both macroscopic (low viscosity) and

microscopic (high empirical polarity and net basicity).

Cellulose esterification with carboxylic acids is

inefficient and requires drastic reaction conditions

(Thomas 1970). Therefore, esterification is usually

carried out with activated carboxylic acids; with

reactive derivatives of carboxylic acids (anhydrides

and acyl chlorides), or by transesterification with vinyl

and isopropenyl esters.

Carboxylic acids can be activated by conversion,

in situ, into anhydrides, mixed (i.e., asymmetric)

anhydrides, and N-acyl-diazole or N-acyl-benzotria-

zole. Thus, the reaction of carboxylic acid with tosyl

chloride (TsCl) leads to the formation first of

carboxylic–sulfonic mixed anhydride that further

reacts to yield acyl chloride and carboxylic acid

anhydride, both efficient acylating agents (Sealey et al.

1996). This mechanism of activation was demon-

strated with 1H NMR spectroscopy, see Fig. 5.

Carboxylic acid activation with carbonyldiimida-

zole (CDI), benzotriazole ? SOCl2, and N,N0-dicylo-

hexylcarbodiimide (DCC) converts the carboxylic

acid into N-acylimidazole, N-acylbenzotriazole, and

acid anhydride respectively.

Carboxylic acid anhydrides are used alone, or in the

presence of tertiary bases, e.g., pyridine, 4-N,N-

dimethylaminopyridine, or imidazole. The effective

acylating agent depends on the relative concentration

(tertiary base/anhydride). At low ratios (\ 2) the

reaction proceeds via anhydride plus N-acylated

pyridine or N-acylated imidazole. At higher ratios

(C 2) the anhydride is quantitatively converted into,

e.g., N-acylimidazole, whose intermediate formation
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in LiCl/DMAc was demonstrated by 1H NMR, see

Fig. 6. Mixed fatty carboxylic–acetic anhydride can

be obtained, in situ, from the (catalyzed) reaction of

fatty acid and acetic anhydride (Peydecastaing et al.

2008b, 2009), and used to esterify cellulose. Under

these conditions, the product is a mixed cellulose ester

with predominance of the acetate group, presumably

due to steric effects (Vaca-Garcia et al. 1998; Vaca-

Fig. 5 Evolution as a

function of time of the 1H

NMR spectra of acetic acid/

TsCl mixture, showing the

formation of a mixture of

acetic acid anhydride and

acetyl chloride. Reprinted

by permission from (Heinze

et al. 2006), Springer

Nature, copyright (2006)

Fig. 6 Mechanism of

imidazole-catalyzed

acylation of cellulose in

LiCl/N,N-

dimethylacetamide.

Reprinted from (Nawaz

et al. 2013), copyright

(2013), with permission

from Elsevier
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Garcia and Borredon 1999). Use of trifluoroacetic

anhydride instead of acetic anhydride and elimination

of the (labile) trifluoroacetate yields pure fatty-ester of

cellulose (Huang 2012). Cellulose mixed esters were

also prepared by the simultaneous reaction of dis-

solved cellulose with mixtures of acid anhydrides

(Liebert and Heinze 2005; Possidonio et al. 2010).

Acyl chlorides are usually employed in the presence

of a tertiary base to scavenge the produced HCl and

avoid cellulose degradation. Again, depending on the

ratio base/RCOCl, the acylating agent may be partially,

or solely the N-acylated base. This esterification was

carried out by conventional, i.e., thermal heating and

under microwave irradiation (Joly et al. 2005;

Ratanakamnuan et al. 2012; El Seoud et al. 2013).

Although the reaction of RCOCl/tertiary base with

cellulose represents a direct route to obtain esters of

long-chain carboxylic acids, the use of the vinyl and

isopropenyl esters of these acids represents an attrac-

tive alternative to the use of corrosive RCOCl. This

(catalyzed or uncatalyzed) transesterification reaction

is given by Fig. 7 for vinyl esters.

Thus, these reactions whose equilibrium constants

are not far from unity are driven to the right-hand side

by elimination of the volatile products, acetaldehyde

and acetone (Otera 1993). Cellulose acetoacetates with

DS up to 1.84 was obtained without catalysis using

2,2,6-trimethyl-4H-1,3-dioxin-4-one as reagent. Con-

trary to other procedures, a simple to handle, commer-

cially available reagent was employed. Moreover, the

synthesis requires a short reaction time to obtain pure

products that are promising starting materials for the

design of advanced cellulose-based materials. The

hydrophobic cellulose acetoacetates can be transferred

into reactive nanoparticles with particle sizes ranging

from 120 to 300 nm (Würfel et al. 2018).

After reaction mixture workup, it is necessary to

determine the yield (from product mass) and structure

of the obtained esters. Among these parameters are the

(average) DS and, where DS\ 3, the distribution of

the acyl group among O-2, O-3, and O-6 of the AGU.

Average DS can be determined by saponification with

a base, followed by back titration of the excess base

(ASTM D871 - 96 2004). Although this (standard)

method is simple, its use, even with single esters of

cellulose, presents the following limitations:

1. The method requires a large amount of sample

(1.9 g ester/run) (ASTM D871 - 96 2004);

2. For cellulose esters of fatty acids, the titration end-

point is subject to the so-called ‘‘colloid error’’ due

to the stable emulsion formed (sodium soap)

(Edgar et al. 2001; Freire et al. 2005);

3. The method is not suitable for mixed esters of two

very different acids, e.g., carboxylate–tosylate

(Casarano et al. 2011).

These problems were solved by use of several

techniques: Quantitative determination of FTIR peak

area or mC=O and comparison with (pre-established)

calibration curve (plots between peak area or mC=O vs.

DS); determination of ET(solvatochromic probe) of the

solid sample followed by determination of the corre-

sponding DS from a (pre-established) calibration curve

(ET(probe) vs. DS); transformation of the cellulose ester

into a volatile derivative (e.g., by transesterification)

followed by GC analysis of the volatile products

(Peydecastaing et al. 2008a; Fidale et al. 2013; Ferreira

et al. 2016). The distribution of the acyl group between

positions O-2, O-3 and O-6 of the AGU is readily done by
13C NMR peak integration using the inverse gated-

decoupling experiment (Berger and Braun 2004),

because dC=O of these 3 acyl groups are well separated

(167–170 ppm) (Kamide and Okajima 1981; Kamide

 

Fig. 7 Transesterification of vinyl esters in the presence of cellulose in LiCl/DMAc
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et al. 1981; Iwata et al. 1992; Regiani et al. 1999; Marson

and Seoud 1999; El Seoud et al. 2000). Additional details

on the effects of cellulose DP, acylating agents, reaction

conditions on the yields and DS values (partial and total)

of cellulose esters synthesized in LiCl/DMAc can be

found in a recent publication (Heinze et al. 2018b).

Representative examples of cellulose esterification and

etherification are listed in Table 5 at the end of this

review.

Esters of sulfonic acids

Several cellulose sulfonates are known, including

aromatic, e.g., 4-X-benzene sulfonates (X=H, CH3,

Br, and NO2) and aliphatic, e.g., methane- and

trifluoromethane esters. Of these, we dwell on cellu-

lose 4-methylbenzene sulfonates (cellulose tosylates,

CTs) because they were most extensively employed in

cellulose chemistry. Tosylation by TsCl is a regiose-

lective reaction, i.e., substitution is mostly at O-6 if the

DSTs is B 1. This behavior is exploited in making

interesting cellulose derivatives, in particular, the

6-deoxy derivatives by nucleophilic substitution (SN)

of the (good) leaving tosylate group, as shown by the

example below (Fig. 8).

Introduction of the azido group is interesting because

it can be reduced to the amino group, that can be further

functionalized, e.g., quaternized to give a cellulose

polyelectrolyte, or used in the click chemistry approach,

a term introduced to describe a group of atom efficient

reactions (Lewis et al. 2002). Figure 9 shows a typical

example for the synthesis of regioselectively substituted

CTs followed by conversion into cellulose-based poly-

electrolytes via a click chemistry (Huisgen) reaction

(Furuhata et al. 1992; Fox and Edgar 2012).

CTs were synthesized in LiCl/DMAc, e.g., with

DSTs of up to 2.4. This ester was transformed almost

completely into chlorodeoxy cellulose (DS = 2.3) by

further heating in the reaction mixture (Cl- of LiCl

acting as the nucleophile) (McCormick and Callais

1987; Rahn et al. 1996). Usually, the formation of

chlorodeoxy cellulose is a side reaction in the synthesis

of CTs whose extent is calculated from elemental

analysis (Gericke et al. 2012b; Ferreira et al. 2016).

This formation, however, can be suppressed by using

tertiary base catalysts, e.g., triethylamine or 4-N,N-

dimethyaminopyridine and low reaction temperature

(10 �C) (McCormick et al. 1990). For the reaction in

LiCl/DMAc, catalyzed by triethylamine, it was

demonstrated that the values of DSTs is a function of

the molar ratio of TsCl to AGU. The solubility of the

CTs depends on DSTs. For example, up to DSTs of 0.46,

CTs are soluble in DMAc and DMSO, 1.43 in dioxane

or acetone and 2.02 in THF (Rahn et al. 1996). CTs can

be transformed into other products without removing

the tosylate group, in particular the mixed esters such

as tosylate/carboxylates (Heinze et al. 1996; Ferreira

et al. 2016; Bioni et al. 2018), tosylate/urethanes (Tiller

O
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O
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O
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NaN3 O
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LiAlH4 O
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O
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O
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N-Carboxymethylation
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Fig. 8 Regioselective synthesis of 6-amino-6-deoxy cellulose and its N-sulfonated and N-carboxymethylated derivatives. Redrawn

from (Liu and Baumann 2002)
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et al. 2000), and tosylate/sulfates (Heinze and Rahn

1997). A recent work on the thermal behavior of

cellulose tosylate/carboxylate with fixed DSTs and

variable DSCarboxylate (acetate, butyrate and hexanoate)

showed that that the first reactions that occurs during

thermal decomposition of the mixed esters is their

deacylation. Additionally, the temperatures of the first

decomposition (splitting of the acyl group) correlate

linearly with DSCarboxylate (Ferreira et al. 2016).

In summary, CTs are usually synthesized in LiCl/

DMAc by reaction of TsCl/tertiary base, the reaction

is regioselective, and the products can be used directly

Fig. 9 Reaction scheme for

the synthesis of 6-deoxy-6-

azido cellulose and

subsequent copper(I)-

catalyzed Huisgen reaction

to produce 1,4-disubstituted

1,2,3-triazols as linker for

cellulose with

methylcarboxylate,

2-aniline and 3-thiophene

groups
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or further modified into cellulose deoxy derivatives by

SN reaction, or cellulose tosylate/second substituent

by reaction of the remaining hydroxyl groups of the

AGU.

Etherification of cellulose in LiCl/DMAc

Homogeneous alkylation of cellulose with iodo-

methane, iodoethane, bromoethane, 1-bromopropane,

or 1-iodobutane in LiCl/DMSO solvent in the presence

of dimsyl sodium was carried out successfully (Petruš

et al. 1995). Methyl cellulose was also obtained in

LiCl/DMAc with DS-values of 0.9–2.2 and compared

to heterogeneously prepared samples (Hirrien et al.

1996). A deviation in the substitution pattern for

samples with similar DS was found indicating a more

uniform substituent distribution along the polymer

backbone for homogeneously prepared methyl

cellulose.

Bulky silyl and aryl containing substituents are

interesting as regioselective protecting groups to attain

a better understanding of structure–property relation-

ships. This knowledge leads to better properties and

ultimately improves the performance of new materi-

als. The most commonly used protecting groups are

thexyldimethylsilyl and trityl (triphenylmethyl) and

its derivatives. The chloride of the latter one was

reacted with cellulose in LiCl/DMAc to obtain 6-O-

tritylcellulose with acceptable regioselectivity (Taka-

hashi et al. 1986; Kondo and Gray 1991). Using

methoxy-substituted trityl chlorides increased reaction

rate significantly (Heinze et al. 1994b; Gomez et al.

1996). Additionally, the acid-catalyzed splitting of the

methoxytrityl substituent is accelerated compared to

the trityl group.

Even higher regioselectivity was achieved using

thexyldimethylsilyl chloride; cellulose 2,6-O- or 6-O-

substitution products are obtained. Whereas the latter

ether can be obtained by the heterogeneous reaction in

DMF/ammonia at - 15 �C (Klemm and Stein 1995),

2,6-O-thexyldimethylsilyl cellulose was prepared in

LiCl/DMAc with pyridine (Koschella and Klemm

1997) or imidazole (Koschella et al. 2001) as base

Fig. 10. A mild removal of the silyl groups with

[TBA]F avoids undesired cellulose degradation. More

detailed information on this topic can to found in a

comprehensive review (Fox et al. 2011).

Cellulose derivatization in [TBA]F�3H2O/DMSO

Cellulose dissolution in [TBA]F�3H2O/DMSO

Dimethyl sulfoxide containing [TBA]F�3H2O dis-

solves easily cellulose with a DP as high as 650

within 15 min at room temperature without pre-

treatment. This solvent is a non-derivatizing one, as

concluded from 13C NMR spectroscopic measure-

ments (Heinze et al. 2000). In the 13C NMR spectrum,

six signals appear that were unambiguously assigned

to the different C-atoms of the AGU (Fig. 11).
19F and 1H NMR spectroscopic measurements of

solutions of cellulose in ([TBA]F�xH2O/DMSO) con-

taining varying amounts of water indicated that the

disruption of hydrogen bonds is the result of the

formation of strong Cel-OH���F- bonds and the

subsequent electrostatic repulsion between the nega-

tively charged Cel-OH���F- chains (Östlund et al.

2009). A sheath of the [TBA]? cations most likely

surrounds the negative chains, which leads to a

synergism of electrostatic repulsion (Cel-OH���F-)

and steric repulsion (Cel-OH���anion/cation complex)

preventing chain re-association. Due to strong F–

water interactions, this solvent tolerates a certain

amount of water only. Water may remove the fluoride

ions from the cellulose backbone allowing formation

of hydrogen bond networks that that yield solutions of

increasing viscosity or even gels and finally precipi-

tation of the biopolymer (Fig. 12).

Consequently, water-free [TBA]F is of interest to

dissolve the cellulose. Direct dehydration of

[TBA]F�3H2O is not feasible because anhydrous

[TBA]F is unstable, undergoing a rapid E2-elimina-

tion (Hofmann degradation), resulting in the formation

of hydrogen difluoride anions (Sharma and Fry 1983).

However, anhydrous [TBA]F is accessible in situ by

reacting tetra(n-butyl)ammonium cyanide with hex-

afluorobenzene in dry DMSO (Sun and DiMagno

2005). The freshly prepared mixture of DMSO and

water-free [TBA]F solution dissolves cellulose very

easily, even in the presence of the byproduct C6CN6

(Köhler and Heinze 2007). Surprisingly, the dissolu-

tion of bleached cotton fibers (DP = 3743) occurs

within 1 min. On the contrary to the findings of

Östlund et al., no difference in the viscosity of a

solution of the same cellulose in [TBA]F�3H2O/

DMSO or in the water-free system (Östlund et al.

2009).
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Other quaternary ammonium fluorides/DAS were

investigated as cellulose solvents. Thus, benzyltrimethy-

lammonium fluoride monohydrate ([BTMA]F�H2O)/

DMSO dissolves cellulose, whereas tetramethylammo-

nium fluoride (TMAF)/DMSO does not. A simple

explanation for this difference is the solubility of the

parent electrolyte in DMSO. At room temperature, the

solubilities in DMSO are 0.94, 0.025 mol/L for

[TBA]F�3H2O, and BTMAF�H2O, respectively; TMAF

is practically insoluble in this DAS. It was argued that a

certain amount of fluoride ions (at least 2.2 mol fluoride

per mol AGU) are needed to dissolve cellulose (Köhler

and Heinze 2007).

For [TBA]? with different halide ions (X-), IR

spectroscopy showed that the interactions X-���HO-

polyol (2,2-bis(hydroxymethyl)-1,3-propanediol (a

model for cellulose) increased as a function of increas-

ing the charge density and decreasing the volume of the

anion (Papanyan et al. 2013). The same was found for

solutions of the 1-ethyl-3-methylimidazolium halides

([EtMeIm]X, X = halide). Because the fluoride anion is

the hardest base according to the Hofmeister series, the

high cellulose dissolution capacity of QA fluorides/

DMSO is expected; other QA halides/DMSO are not

efficient (Papanyan et al. 2013).

As shown above for LiCl/DMAc, [TBA]F�3H2O/

DMSO was also used as solvent for determination of

Fig. 12 Photograph and plot of samples at varied cellulose and

water content: (a) samples at isotropic solutions; (b) transparent

gels; (c) opaque gels. Inspection of the parallel lines in the

background of the photograph shows the difference in trans-

parency between the samples. Vial (a) 1% cellulose (data point a

in plot); vial (b) 2.3% H2O and 1% cellulose (data point b in

plot); vial (c) 10% H2O and 1% cellulose (data point c in plot) all

in [TBA]F/DMSO. Reprinted with permission from Östlund

et al. (2009), copyright (2009) American Chemical Society

Fig. 10 Heterogeneous and

homogeneous

thexyldimethylsilylation of

cellulose. Reprinted with

permission from (Fox et al.

2011), copyright (2011)

American Chemical Society

Fig. 11 13C NMR spectrum of cellulose dissolved in DMSO-

d6/[TBA]F�3H2O recorded at 50 �C. Reprinted from (Heinze

and Liebert 2012), copyright (2012), with permission from

Elsevier
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MM of cellulose samples by SEC analysis (Lu and

Ralph 2003; Yusup et al. 2015). For cellulose samples

with low molar mass, e.g., MCC pullulan was used for

calibration. The high concentration of [TBA]F�3H2O

needed for dissolution of cellulose samples with high

MM, however, prevented use of this solvent, due to

column saturation with the electrolyte (Rebière et al.

2017).

Esterification of cellulose in [TBA]F�3H2O/

DMSO

[TBA]F�3H2O/DMSO was applied as reaction med-

ium for a variety of homogeneous derivatization

reactions. The acetylation of MCC (2.9 wt%) dis-

solved in 16 wt% DMSO/[TBA]F�3H2O with 2.3 mol

acetic anhydride/mol AGU at 40 �C for 70 h gave a

cellulose acetate soluble in DMSO and DMF with a

DSAc of 0.83 (Heinze et al. 2000). This DS was

reached although the reaction mixture contains water

(from [TBA]F�3H2O), which is the 4.4-fold molar

amount of acetic anhydride employed. Partial DSAc

values were calculated by 1H NMR spectroscopy; the

order is O-6 C O-2[O-3, akin to the result in LiCl/

DMAc (Ass et al. 2004).

The transesterification of cellulose dissolved in

[TBA]F�3H2O/DMSO with vinyl acetate under com-

parable conditions led to a cellulose acetate with

DS=1.04, presumably because vinyl acetate reacts

with water slower than acetic anhydride. Most of the

hydroxyl groups can be acetylated applying a molar

ratio of 10 mol vinyl acetate/AGU yielding cellulose

acetate with a DS = 2.72 (Heinze et al. 2000). Table 1

shows a comparison of the acylation results reactions

in 3 solvents.

The conversion of cellulose in [TBA]F�3H2O/

DMSO with tosyl chloride/triethylamine yields

organo-soluble CTs (DSTs = 1.15) with insignificant

chlorodeoxy formation (DSChlorodeoxy = 0.024%).

Figure 13 shows the use of in situ activation of

carboxylic acids to synthesize bearing unsaturated,

chiral, crown ether, and cyclodextrin moieties (Ciacco

et al. 2003; Hussain et al. 2004; Liebert and Heinze

2005; Heinze et al. 2006).

Functionalization of cellulose with furan-2-car-

boxylic acid, activated with CDI yields products of

DS of up to 2.4, whereas the homogeneous preparation

of cellulose furoate in LiCl/DMAc gave a DS of 0.6

under comparable conditions. Thus, quaternary ammo-

nium fluorides/DMSO are more efficient reaction

media for this specific synthesis. Moreover, the cellu-

lose esters formed possess comparable properties (e.g.,

solubility in organic solvents) with those obtained in

LiCl/DMAc (Köhler and Heinze 2007).

On the contrary, the reaction of cellulose with

3-isopropenyl-a,a-dimethylbenzyl isocyanate, is

more efficient applying LiCl/DMAc as medium;

highest DS of 1.8 was obtained (Köhler and Heinze

2007). The cellulose-3-isopropenyl-a,a-dimethylben-

zyl carbamate is soluble in various solvents such as

DMSO, which can be used to study the structure by

NMR spectroscopy (Fig. 14), on one hand. On the

Table 1 Comparison of reaction conditions and results of homogeneous esterification of cellulose in the solvents [TBA]F�3H2O)/

DMSO, benzyltrimethylammonium fluoride monohydrate ([BTMA]F�H2O)/DMSO and LiCl/DMAc (Köhler and Heinze 2007)

Reagent/solventa Molar ratiob Reaction temperature (oC) Reaction time (h) Reaction yield (%) DS

Vinyl acetate/S1 3 40 70 86 1.2

Vinyl acetate/S2 3 40 70 88 0.9

Vinyl acetate/S3 3 40 70 85 1.2

2-Furoic acid imidazolide/S1 5 80 22 75 2.4

2-Furoic acid imidazolide/S2 5 80 24 81 2.1

2-Furoic acid imidazolide/S3 5 80 24 97 0.6

Pyroglutamic acid imidazolide/S1 2.6 80 24 96 0.5

Pyroglutamic acid imidazolide/S2 3.1 80 24 96 0.6

Pyroglutamic acid imidazolide/S3 3.1 80 24 84 1.2

aS1 = [TBA]F�3H2O/DMSO; S2 = [BTMA]F�H2O/DMSO; S3 = LiCl/DMAc
bMolar ratio acylating agent/AGU
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Fig. 13 Examples of cellulose esterification with carboxylic acid imidazolides formed by in situ activation with N,N-

carbonyldiimidazole carried out in [TBA]F�3H2O/DMSO

Fig. 14 13C NMR spectrum

of cellulose-3-isopropenyl-

a,a-dimethylbenzyl

carbamate with DS = 1.79

acquired in DMSO-d6.

Reprinted with permission

from Köhler and Heinze

(2007), copyright (2007),

with permission from

Elsevier

123

Cellulose (2019) 26:139–184 153



other, it may undergo crosslinking in the presence of

light. Nevertheless, there is no general conclusion

possible which solvent give the best results regarding

DS for the reaction in question. However, it should be

pointed out again that the dissolution of cellulose in

the mixture of quaternary ammonium fluoride/DMSO

is very simple and fast compared to the laborious

dissolution of the biopolymer in LiCl/DMAc.

The graft polymerization of cyclic compounds such

as lactones and N-carboxy-a-amino acid anhydrides

on cellulose dissolved in [TBA]F�3H2O/DMSO could

be carried out as well (Ikeda et al. 2003).

An approach for the synthesis of regioselectively

functionalized cellulose esters with bulky substituents

in [TBA]F�3H2O/DMSO, LiCl/DMAc and

[AlMeIm]Cl was attempted by Xu et al. (2011). The

esterifications were quasi-selective for the primary

O-6, but still acylation on the secondary O-2/3 was

observed. Thus, they couldn’t identify conditions for

truly regiospecific acylation (at O-6). They conclude

regioselective esterification is likely to be successful

for large dendritic acyl moieties. A comprehensive

review about regioselectivity in cellulose esterifica-

tion and etherification is available (Fox et al. 2011).

An interesting result is the observation of regioselec-

tive deacetylation of silylated cellulose acetate during

deprotection with [TBA]F�3H2O/THF at the positions

O-2 and O-3 of the AGU. The deacetylation takes

place via ketene intermediate formation (Xu and

Edgar 2012; Zheng et al. 2013a, b). The succinylation

of cellulose was compared in the solvent systems

[N2222]Cl/DMSO and [TBA]F�3H2O/DMSO. The

reaction is slightly more efficient in the latter solvent

and depends strongly on the QAE? concentration.

Polyelectrolyte-like complexes of cellulose and QAE

could promote the succinylation of cellulose (Chen

et al. 2014).

Etherification of cellulose in [TBA]F�3H2O/

DMSO

Unlike typical cellulose carboxylic esters that are

soluble in the solvents employed for cellulose disso-

lution, the hydrophobic and less polar cellulose ethers

are not soluble in the reaction medium. Thus, the

reaction starts homogeneously but becomes heteroge-

neous. This (phase separation) problem also applies to

ionic cellulose ethers like sodium carboxymethyl

cellulose. There are some exceptions, however: SO2/

diethylamine/DMSO dissolves cellulose and homoge-

neous carboxymethylation was carried out (Kamida

et al. 1984; Isogai et al. 1984a).

Commercially, etherification is carried out exclu-

sively under heterogeneous reaction conditions apply-

ing aqueous NaOH to activate cellulose, i.e., to

enhance the reactivity by swelling and increase the

nucleophilicity of the hydroxyl groups by forming the

alkali cellulose (Heinze et al. 2018c). The addition of

aqueous NaOH to dissolved cellulose usually leads to

precipitation, i.e., the homogeneous system becomes

heterogeneous, containing unreactive cellulose. On

the contrary, cellulose samples dissolved in

[TBA]F�3H2O/DMSO were treated with solid NaOH

suspended in DMSO or with an aqueous base solution

yielding a highly swollen material. The reaction with

benzyl chloride yielded benzyl celluloses with DS

values up to 2.8. Interestingly, the reactivity of the

cellulose depends not only on the molar ratio of benzyl

chloride/AGU, but also on the amount of [TBA]F�3H2-

O used for dissolving the biopolymer (Ramos et al.

2005b). SEC measurements revealed polymer aggre-

gation in samples of low DS synthesized in a solvent

containing 9% [TBA]F�3H2O while at higher concen-

tration of the salt, the benzyl cellulose samples

obtained do not form aggregates. Fully substituted

organo-soluble allylcellulose was prepared by a sim-

ilar procedure (Heinze et al. 2008).

Carboxymethylation of cellulose in [TBA]F�3H2O/

DMSO was successfully carried out with DS-values

up to 1.87 (Heinze et al. 2000). 1H NMR spectroscopy

of the CMC showed partial DS of carboxymethyl

groups in the order O-6[O-3 C O-2 (6 = 0.734,

2 = 0.558, 3 = 0.574), which is comparable to the

same product synthesized in aqueous Ni[tris(2-

aminoethyl)amine](OH)2 system. However, the sub-

stituents were distributed in a non-statistical manner

because of the high amount of fully carboxymethy-

lated AGUs. Later, a more detailed study of this

reaction was carried out (Ramos et al. 2005a). Using

solid NaOH, products with DS as high as 1.6 can be

obtained independent of the DP of the cellulose used.

With aqueous NaOH a maximum DS of 2.17 was

reached in a one-step conversion. On the contrary, a

two-step procedure is necessary to get such a high DS

value by the conventional heterogeneous procedure.

The derivatives synthesized in [TBA]F�3H2O/DMSO

exhibit a deviation from the statistical substituent

distribution, observed for products obtained in the

123

154 Cellulose (2019) 26:139–184



conventional heterogeneous process (Heinze et al.

1994a; Heinze 1998). The carboxymethylation is also

much more efficient compared to the reaction carried

out in LiCl/DMAc, because a rather high excess of

etherifying agent (up to 5 mol/AGU) must be

employed. Synthesis of CMC from an empty fruit

bunch could be accomplished, which seems to be

useful for diverse applications such as paper coating

and food packaging (Eliza et al. 2015).

Cellulose derivatization in aqueous media

Cellulose dissolution in aqueous media

Regarding the dissolution of cellulose in aqueous

environment, theoretical calculations revealed that the

entropy loss due to water–cellulose interactions is not

compensated by the concomitant entropy gain due to

the increased chain conformations upon dissolution,

consequently, cellulose dissolution in energetically

unfavorable (Bergenstråhle et al. 2010; Parthasarathi

et al. 2011; Bao et al. 2015). This energy balance,

however, changes if the polymer is ionized (by an

added base), i.e., becoming a polyelectrolyte, because

the counter ions and Coulombic interactions con-

tribute largely to the entropy gain (Schneider and

Linse 2002, 2003). As a result, polymers that ionize

are generally soluble in water, even if they are not very

polar (Lindman et al. 2017). Cellulose ionization was

inferred from NMR data by considering that the OH-

groups don’t need be completely dissociated, but form

dissociated structures of relatively short duration

(Isogai 1997). Later, this assumption was

substantiated with electrophoretic NMR on cellobiose.

The results revealed base-independent (NaOH and

KOH) dissociation steps at pH 12 and 13.5 (Bialik

et al. 2016). A comprehensive review of cellulose in

NaOH aqueous solutions with and without additives

was provided by Budtova and Navard (2015). Cellu-

lose dissolution in systems based on aqueous metal

complex (Burchard et al. 1994; Klüfers and Schuh-

macher 1994; Saalwächter et al. 2000) or zinc chloride

(Letters 1932; Xu and Chen 1999) needs deprotona-

tion of OH-groups (O-2 and O-3) before the complex

can be established at those positions. This emphasizes

the argumentation of the (transient) deprotonation of

cellulose in basic media. In this context, the decrease

in cellulose solubility in basic solution upon addition

of additives, ionic or non-ionic can be rationalized

because of the concomitant change (decrease) of

entropy (Alves et al. 2016a, b; Medronho et al. 2016).

On the other hand, urea, thiourea, guanidine and their

derivatives decrease hydrophobic interactions. In

aqueous solutions, these additives cause, inter alia,

protein denaturation, demicellization of surfactant

aggregates, and cellulose dissolution (in presence of

base) (Lilienfeld 1924; Zhou and Zhang 2000; Cai and

Zhang 2005, 2006; Cai et al. 2006, 2007; Ruan et al.

2008; Egal et al. 2008; Qi et al. 2008; Cai et al. 2008;

Liu and Zhang 2009; Lindman et al. 2017). Note that

thiourea is the more efficient additive than urea,

although the dissolution mechanism of both additives

is similar, namely by channel inclusion complexes

[Fig. 15 (Cai et al. 2007; Luo and Zhang 2013)].

Aqueous tetraalkylammonium hydroxide ([NR4]-

OH), in particular tetra(n-butyl)ammonium hydroxide

([TBA]OH), solutions dissolve cellulose well. The

Fig. 15 TEM image (left)

and proposed mechanism of

the channel inclusion

complex (right) of cellulose

in LiOH/urea aqueous

solution. Reprinted from

(Luo and Zhang 2013),

copyright (2013), with

permission from Elsevier
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conclusion may raise that solutions of organic acids or

bases are much better solvents than those of inorganic

ones (Gubitosi et al. 2016; Lindman et al. 2017). It was

found, that 1.2 [TBA]? ions bind per AGU, which

suggests electrostatic interactions of the cation with

the deprotonated hydroxyl groups of cellulose, in

addition to hydrophobic interactions (Gentile and

Olsson 2016). Furthermore, cellulose solubility

increases as a function of increasing cation hydropho-

bicity, as illustrated in Fig. 16 (Wang et al. 2018).

NMR analyses (2D NOESY) of [NR4]OH/cellulose or

cellobiose indicated that the cations a-methylene

group interacts with the electropositive C-1 atom of

cellulose via electrostatic and Van der Waals forces,

forming a [NR4]?/cellulose ‘‘complex’’ leading to

further cellulose structural disruption [Fig. 17 (Zhong

et al. 2017)].

In summary, cellulose is likely to dissolve in

aqueous media if it acquires a charge (albeit transient),

concomitant with disruption of hydrophobic interac-

tions. For example, at pH[ 12 the translational and

configurational entropy increases. Organic hydroxides

such as [NR4]OH are more efficient than their

inorganic counterparts because the cations of the

former disrupts hydrophobic interactions.

Etherification of cellulose in aqueous media

Anionic cellulose ethers

Carboxymethyl cellulose (CMC) is one of the most

relevant industrial cellulose derivative (Heinze et al.

2018d). Its industrial production is carried out hetero-

geneously in a slurry containing an alcohol (often

isopropanol), aqueous NaOH and chloroacetic acid or

the corresponding sodium salt. The first successful

homogeneous carboxymethylation of cellulose was

carried out in Ni[tris(2-aminoethyl)amine](OH)2 in

Fig. 16 Solubility of cellulose in aqueous quaternary ammo-

nium hydroxides in dependence of the cation volume. Repro-

duced from Ref. (Wang et al. 2018), with permission from the

Centre National de la Recherche Scientifique (CNRS) and The

Royal Society of Chemistry

Fig. 17 Proposed interactions of aqueous [NR4]OH with cellulose. Reprinted with permission from Zhong et al. (2017), copyright

(2017), with permission from Elsevier
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the presence of alkaline solution (Heinze et al. 1999).

DS-values between 0.11 and 0.72 were obtained after

3–4 h reaction time at 80 �C. The samples became

water soluble at DS[ 0.4, which is comparable with

heterogeneously prepared products. Interestingly,

structure analysis by means of HPLC and 1H NMR

after chain degradation showed comparable results as

for CMC obtained by the heterogeneous slurry process,

i.e., a statistical distribution of the substituents along the

polymer chain. The partial DS-values, however, are

different: in the heterogeneous slurry O-2 C O-6[O-

3 was found, whereas it was O-6 C O-2[O-3 in

Ni[tris(2-aminoethyl)amine](OH)2. Thus, cellulose

activated by NaOH aqueous solutions as in the slurry

process or homogeneously dissolved in Ni[tris(2-

aminoethyl)amine](OH)2 exhibit overall the same

reactivity but a slightly different distribution of the

partial DS. Later, the same group applied NaOH/urea

(Qi et al. 2009) and LiOH/urea (Qi et al. 2010) as

homogeneous reaction media for the carboxymethyla-

tion of cellulose. Water-soluble CMC with DS =

0.18–0.62 were obtained in NaOH/urea and with

DS = 0.36–0.65 in LiOH/urea. Here, partial DS-values

in the order O-6[O-2[O-3 were found, which is in

accordance with the nickel-based solvent (Qi et al.

2009). The homogeneous carboxymethylation of

cellulose is less effective than the heterogeneous

synthesis (maximum DSheterogeneous = 1.24 vs. DShomo-

geneous = 0.72), most likely because of an increased

hydrolysis of sodium monochloroacetate. On the other

hand, water-soluble derivatives with DS-values as low

as 0.18 could be obtained via the homogeneous route,

which must be attributed to the slight differences in the

partial DS-values.

The homogeneous Michael addition of cellulose

with acrylamide in NaOH/urea and partial hydrolysis

of the acylamino group yielded water-soluble (mixed)

derivatives in the range of 0.36–0.84 (Song et al.

2008b). Figure 18 shows the reaction scheme.

Cationic cellulose ethers

Cationic cellulose ethers are mainly prepared in aqueous

solutions of NaOH/urea. The reagents used to obtain

tetraalkylammonium functionalized cellulose deriva-

tives, so-called ‘‘quaternized cellulose’’ are (3-chloro-2-

hydroxypropyl)trimethylammonium chloride

(CHPTMA Cl) or (2,3-epoxypropyl)trimethylammo-

nium chloride (EPTMA Cl, Fig. 19). Water-soluble

products with DS-value of 0.20–0.63 were obtained

with CHPTMA Cl (Song et al. 2008a), and from 0.17 to

0.50 with EPTMA Cl as reagents. The reactivity of the 3

Fig. 18 Homogenous etherification of cellulose with acrylamide in NaOH/urea aqueous solutions results in a mixture of non-ionic and

ionic (carboxyethyl cellulose) cellulose derivative. Redrawn from (Song et al. 2008b)

Fig. 19 Reaction scheme and molecular structure of hydroxypropyltrimethylammonium (HPTMA) cellulose synthesized in aqueous

media. Adopted by permission from Heinze et al. (2018d), Springer Nature, copyright (2018)
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OH-groups was found to be in the same order as for the

carboxymethylation: O-6[O-2[O-3. Bacterial cel-

lulose was homogeneously modified in the same manner

(Zhang et al. 2016). In comparison, under heteroge-

neous conditions only water-insoluble samples with DS-

values\ 0.2 were obtained (Heinze et al. 2018d).

Quaternized cellulose was of increased interest for

the preparation of cellulose-based hydrogels. These

are water-swollen, and cross-linked polymeric net-

works or polymeric materials that exhibits the ability

to swell and retain a significant fraction of water

within its structure (Ahmed 2015). They are attractive

soft materials receiving increased attention due to the

applications in the fields of food, food packaging,

pharmaceuticals, agriculture, personal care products,

and electronics (Luo and Zhang 2013). Thus, HPTMA

cellulose was crosslinked with cellulose (Peng et al.

2016) or CMC (Chang et al. 2011) in the presence of

epichlorohydrin. An amphoteric cellulose derivative

with terminal quaternary ammonium and sulfonium

groups was obtained by simultaneous conversion of

cellulose with CHPTMA Cl and (3-chloro-2-hydrox-

ypropane)sulfonic acid (DS = 0.23–0.76) improving

mechanical properties of fibers (Song et al. 2013).

Miscellaneous cellulose ethers

We dwell here on classes of non-ionic (e.g. alkyl,

hydroxyl alkyl, aryl) cellulose ethers as well as mixed

ethers, that may or may not contain ionic groups,

synthesized in aqueous media. Aqueous NaOH/urea is

the dominantly employed solvent system for these

etherification reactions. Hydroxypropyl cellulose

(HPC) and methyl cellulose (MC) were the first

derivatives prepared in this solvent (Zhou et al. 2004).

The DS values were 0.85–1.73 and 1.48–1.69, for

HPC and MC, respectively. Interestingly, the partial

DS-values of O-2 were in all cases higher than that of

O-6, which is in contrast to the examples cited above.

Structure property relationships of MC were reported

later (Ke et al. 2006; Zhou et al. 2008). The synthesis

of O-(2,3-dihydroxypropyl) cellulose with glycidol as

reagent was performed as well (Chang et al. 2013).

Molar degrees of substitution were determined to be

1.02–4.84, which indicates extensive consecutive

reaction at the newly formed OH-groups. The partial

DS-values were in the order O-6[O-2[O-3 with

O-2 being only marginally lower substituted than O-6.

Hydroxyethyl cellulose (HEC) exhibited MS-values

between 0.54 and 1.44 with similar DS (Zhou et al.

2006). Thus, only minor consecutive reaction is

observed under these conditions. Analysis of the

partial substitution pattern revealed the preferred

substitution of O-2.

Unsaturated substituents could be attached to the

cellulose backbone in NaOH/urea. Organo-soluble or

swellable (DMSO, DMF, DMAc, pyridine) benzyl

cellulose was obtained with a DS as low as 0.4 (Li

et al. 2011a). Heterogeneously prepared benzyl cellu-

lose is not soluble in molecular solvents at this DS.

However, other homogeneous reaction media such as

LiCl/DMAc were more efficient for the benzylation

(Isogai et al. 1984b). A rapid benzylation of cellulose

in a 47 wt% tetra(n-butyl)phosphonium hydroxide

aqueous solution was reported yielding a DS of up 2.5

within 10 min at room temperature. The reaction starts

homogeneously but the product precipitates with

ongoing conversion. The high efficiency of this

solvent system compared to others such as NaOH/

urea was ascribed to the good solubility of benzyl

bromide in the mixture due to the amphiphilic

character of the quaternary phosphonium cation.

Figure 20 illustrates the benzylation (Abe et al. 2017).

Organo-soluble allyl cellulose with DS-values of

0.98–1.65 were synthesized as well (Hu et al. 2015).

They were further used for thiol-ene click reactions to

obtain cellulose derivatives with various functionali-

ties. Partial DS-values were not determined for the

allyl ether substituents.

Hydrogels were prepared from the above-men-

tioned cationic cellulose ethers. For example, a

cellulose/alginate composite was obtained by

crosslinking with epichlorohydrine (Chang et al.

2009a). Moreover, a fluorescent hydrogel for fluoro-

immunoassays and biological labelling was synthe-

sized by crosslinking of cellulose and incorporation of

quantum dots into the cellulose matrix (Chang et al.

2009b). Crosslinking of cellulose (Ciolacu et al.

2016), and CMC (Chang et al. 2010a, b) with N,N0-
methylene bisacrylamide (Geng 2018) or 1,4-butane-

diol diglycidyl (Liu et al. 2016a) yielded further

hydro- or aerogels, respectively. One-pot method for

the synthesis of sub-micron microgels, as effective

stabilizers of oil-in-water emulsions, from cellulose

applying a combination of alkylation with sodium

monochloroacetate and subsequent Ugi reaction was

proposed (Shulepov et al. 2016).
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Graphene oxide/cellulose composite films were

obtained by chemical crosslinking with epichlorohy-

drin (Liu et al. 2016b). The resulting films exhibited

superior mechanical performances and excellent ultra-

violet-shielding making it an excellent candidate for

high performance bioplastics. A highly conductive

cellulose/graphene oxide film was prepared by in situ

chemical reduction of the graphene oxide in NaOH/

urea/cellulose aqueous solution (Chen et al. 2018b).

The composite films can be applied as multifunctional

sensor materials responding to different external

stimuli, such as temperature, humidity, stress/strain,

and liquids by electrical resistance changes. To our

knowledge, aqueous solutions of [NR4]OHs with or

without addition of organic solvents were not yet

applied for derivatization of cellulose. However, they

were used for cellulose extraction form sugarcane

bagasse (Zhong et al. 2016) or the preparation of

hydrogels in the presence of b-cyclodextrin (Me-

dronho et al. 2016, 2017). Figure 21 summarizes the

applications of cellulose-based materials obtained in

base/urea aqueous solutions.

Fig. 20 Proposed

scheme of the benzylation of

cellulose in tetra(n-

butyl)phosphonium

hydroxide aqueous solution:

a beginning of benzylation

after benzyl bromide

addition; b growth of

benzylation in a temporarily

stabilized micelle; c ending

of benzylation accompanied

by a precipitation of benzyl

cellulose. Reprinted with

permission from Abe et al.

(2017), copyright (2017)

American Chemical Society

Fig. 21 Cellulosic materials prepared in NaOH/urea solutions

and its applications. Reprinted from (Luo and Zhang 2013),

copyright (2013), with permission from Elsevier
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Cellulose derivatization in quaternary ammonium

electrolytes

Cellulose dissolution in quaternary ammonium

electrolytes (QAEs)

The majority of cellulose dissolving QAEs consist of

tetraalkylammonium cations with carboxylate or

chloride anions. In particular, [TBA]AcO mixed with

varying amounts DMSO is of great interest. The good

solubility of cellulose in this solvent system is mainly

attributed to the (hard) basicity of the acetate anion.

Huang et al. investigated the dependence of solvent

efficiency on the [TBA]AcO/DMSO weight ratio and

found, the degree of dissociation of the QAE is larger

at W[TBA]AcO \ 0.15 than at W[TBA]AcO[ 0.15

(W[TBA]AcO = mass of [TBA]AcO/[mass of

[TBA]AcO ? mass of DMSO]) because of the

interaction of QAE ions with cellulose (Huang et al.

2016). This is illustrated schematically in Fig. 22. A

rapid increase of the [TBA]AcO/DMSO/cellulose

solution conductivity until W[TBA]AcO * 0.15 fol-

lowed by subsequent slower increase corroborated this

result. NMR and IR spectroscopy also revealed

increased interaction of the a-methylene group of the

[TBA]? cation with the DMSO-oxygen and decreased

cation/anion interaction with increasing electrolyte

concentration. Weaker interactions between cation

and cellobiose were found as well, which agrees with

the results found for [NR4]OH solvent systems

mentioned in point 3.2 above (Zhong et al. 2017).

Thus, the balance between ion concentration and

mobility is important to cellulose dissolution. This

balance is largely controlled by hydrogen bonding and

solvophobic interactions of the species present,

[TBA]AcO, cellulose and DMSO. The latter has the

favorable effect of reducing the viscosity and stabi-

lizing the QAE/complex.

Investigations of the same solvent system at 60 �C
revealed a ratio acetate/AGU of 1/1 at maximum

cellulose solubilization (Idström et al. 2017). This

remarkable efficiency is due to the acetate anion

binding to more than one hydroxyl group of the AGU.

Strong anion���HO-Cel hydrogen bonding was con-

cluded from theoretical calculations that indicated

longer contact time between acetate and the AGU OH-

groups compared any other pair of species present in

the system (cation–cellulose, cation–DMSO, DMSO–

DMSO). The simultaneous binding of halides to more

than one OH-group in the same AGU (OH-2 and OH-

3) was also concluded from MD simulations of

cellulose solutions in [R4N]F�xH2O/DMSO (Casarano

et al. 2014) and [AlMeIm]Cl/DMSO (Nawaz et al.

2015).

In a systematic study triethylalkyl- and tripropy-

lalkylammonium acetates and propionates and their

mixtures with DMSO were investigated with regard of

the effect of QAE cation volume on cellulose disso-

lution in QAEs/DMSO (Meng et al. 2017). The

cellulose dissolving QAEs are those with a fourth

alkyl-substituent longer than n-hexyl. The most effi-

cient QAE is [N2228]AcO. With 20 wt% DMSO the

calculated molar ratio QAE/AGU is 2.1, which is

smaller than that observed for [TBA]AcO/DMSO

(Idström et al. 2017). It may be concluded, that above a

certain threshold volume of the cation cellulose

solubilization gets less efficient because the penetra-

tion in between the chains is sterically hindered.

Fig. 22 Equilibrium of

association/dissociation of

[TBA]AcO as a function of

the mass ratio W[TBA]AcO of

the [TBA]AcO with DMSO.

Reprinted with permission

from Huang et al. (2016),

Copyright (2016) American

Chemical Society
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Etherification of cellulose in QAEs

Water-soluble CMC with DS = 1.55 was isolated

from triethylmetylammonium formate in the presence

of solid NaOH (Köhler et al. 2009). A block-like

distribution of substituents along the polymer back-

bone and partial DS-values of 0.56 (O-6), 0.55 (O-2)

and 0.41 (O-3), i.e. O-6 C O-2[O-3, were found.

This block-like or non-statistical distribution of sub-

stituents is in contrast to those determined in the

aforementioned aqueous cellulose solvents under

heterogeneous and homogeneous conditions. Hence,

the homogeneous conversion of cellulose to CMC in

triethylmetylammonium formate/solid NaOH follows

the principle of reactive microstructures as observed in

non-aqueous solvents such as DMSO or LiCl/DMAc

(Liebert and Heinze 1998). Hydroxypropylation of

MCC, cotton linter, and spruce sulfite pulp in N1222Fo

in the presence of magnesium acetate yielded water-

soluble products (Köhler et al. 2010). Without addi-

tion of this catalyst negligible conversion was

observed. Interestingly, the homogeneous preparation

of HPC in [EMIM]AcO in the absence of magnesium

acetate results in a less regioselective distribution of

substituents with partial DS in the order O-2 C O-

6[O-3, which was attributed to the higher acidity of

O-2 (Saric and Schofield 1946). Benzyldimethylte-

tradecyl-ammonium chloride dihydrate was also used

for the homogeneous etherification of cellulose to

obtain HPC but no analytical data are available

(Moellmann et al. 2013).

Esterification of cellulose in QAEs

The enzyme catalyzed transesterification is a promis-

ing method for cellulose esterification. However,

enzyme denaturation in ionic solvents such as QAEs

and ILs is a problem to overcome. Thus, bis- and

tris(2-methoxyethyl)triethyl-ammonium acetates

were prepared and successfully used for enzyme

catalyzed transesterification of glucose and cellulose

(Zhao et al. 2008). A DS of 0.89 was obtained.

However, substitution exclusively occurred in posi-

tion O-6. Cellulose acetate, propionate and butyrate

with DS-values between 2 and 3 were obtained by

acylation in [TBA]AcO/DMAc (Lin et al. 2015) or

[TBA]AcO/DMSO (Yu et al. 2016, 2018). Also,

acetate/propionate and acetate/butyrate mixed esters

with high DS were synthesized. The conversion of

cellulose with succinic anhydride under catalyst free

conditions yielded products with DSSuccinate between

0.3 and 1.2 (Xin et al. 2017). The reaction was more

efficient compared to other catalyst free conversions in

ILs with and without DMSO as co-solvent (Liu et al.

2006, 2007). Substitution occurred mainly in position

O-6. Acetylation reactions were conducted success-

fully in the binary mixtures of [N2228]Cl/co-solvent

(Achtel and Heinze 2016; Achtel et al. 2017, 2018).

Organo-soluble cellulose acetates with DSAc ranging

from 0.16 to 2.79 depending on the reaction conditions

were isolated. Maximum DSAc of 2.79 was obtained

after 2 h at 50 �C using acetyl chloride/pyridine.

Under the same reaction conditions using LiCl/DMAc

and [BuMeIm]Cl as solvents the DSAc were almost

identical with 2.83 and 2.81. As expected, cellulose

acetate with low DS exhibit partial DS-values in the

order O-6[O-2[O-3. On the contrary, the distri-

bution changes to O-6[O-3[O-2 for samples with

high DS values. This result is difficult to explain but

might be a consequence of the cleavage of the O-3/O-

50 hydrogen bond as well as a slightly stronger

(electrostatic or hydrophobic) interaction of the cation

with C-1 of the AGU than with other regions of the

AGU. Thus, the adjacent OH-2 group is sterically

hindered and less accessible for the reagent. Solva-

tochromic investigations revealed that the acetylation

is little dependent on the molecular solvent used of the

binary [N2228]Cl/co-solvent mixture (Achtel et al.

2018). The medium polarity showed a ‘‘levelling-off’’

effect due to the relative high concentration of QAE.

Moreover, the chloride ions interact with the cellulose

OH-groups whereas the voluminous cation surrounds

the negatively charged chains. Thus, the cellulose-

QAE complex is less sensitive to the nature of the

molecular solvent employed, as schematically

depicted in Fig. 23.

Tetraalkylammonium dimethylphosphates have

been reported as solvents for cellulose and reaction

media for the production of cellulose esters (Buchanan

et al. 2013). Neat tri-(n-butyl)methylammonium

dimethylphosphate allowed the homogeneous, cata-

lyst-free synthesis of cellulose acetate with a DSAc-

= 2.5. DMSO, DMF and NMP were efficiently used

as co-solvents to obtain cellulose acetate and cellulose

acetate/propionate mixed esters. Here, the above-

mentioned change of regioselectivity at high DS-

values from O-6[O-2[O-3 to O-6[O-3[O-2

was found too.
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The salts of super bases were employed for

acetylation of cellulose under homogeneous condi-

tions (Jogunola et al. 2016). The derivatization was

carried out with acetic anhydride in 1,5-diazabicy-

clo[4.3.0]non-5-ene (DBN) mixtures with different

co-solvents (acetone, acetonitrile, DMSO). Organo-

soluble esters with DSAc-values in the range from 0.90

to 2.89 were obtained depending on the chosen

reaction conditions with acetonitrile being the most

efficient molecular solvent. Partial substituent distri-

bution in the order O-6[O-2[O-3 were confirmed

by NMR spectroscopy, which is in accordance with

products obtained from 1-allyl-3-methylimidazolium

chloride (Cao et al. 2007) and LiCl/DMAc (Marson

and Seoud 1999). Other publications, however,

reported partial DSAc-values in the order O-6[O-

3[O-2 (Wu et al. 2004; Cao et al. 2010). This

renders an explanation of the effects of solvent and

reaction conditions uncertain. There is still the possi-

bility that these differences are only statistical, espe-

cially for cellulose acetates with high DS. Therefore, a

systematic study of the regioselectivity of the acety-

lation of cellulose in 3 different imidazolium-based

ILs was carried out indicating a strong dependence of

the reactivity of OH-2 and 3 on the IL anion and the

acetylating reagent (Abe et al. 2016). This issue will be

discussed in more detail below.

The acetylation of cellulose in neat [DBN]AcO

using various acetylating agents was reported (Kakko

et al. 2017). The reagents efficiency was equal for

DSAc-values between 0.1 and 1. Isopropenyl acetate

was the most efficient reagent to obtain highly or fully

substituted cellulose actates. Distribution of the sub-

stituent was found to be O-6[O-2 & O-3, i.e.,

different from the results reported elsewhere (Abe

et al. 2016). The switchable IL, produced from 1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU), methanol

and CO2 was used as reaction media to acylate

cellulose and yielded acetate, propionate and butyrate

esters with maximum DSAc = 2.94, DSPr = 2.91 and

DSBu = 2.59 (Yang et al. 2014). The common reac-

tivity for the three OH-groups was elucidated by 1H

NMR spectroscopy: O-6[O-2[O-3.

A somewhat special solvent is the system consist-

ing of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/

DMSO/CO2 (Xie et al. 2014; Yang et al. 2015) which

belongs in principle to the group of switchable ILs

(Jessop et al. 2005). The superbase DBU functions as

catalyst and solvent. Commercially important,

organo-soluble cellulose mixed esters (acetate-

Fig. 23 Schematic representation of sheath formation during

cellulose dissolution. The chloride anions (bright red spheres)

interact with the hydroxyl units, the cations (bright blue spheres)

build the sheath and ‘‘isolate’’ the cellulose from the molecular

solvent (dark blue droplet). Reprinted with permission from

Achtel et al. (2018), copyright (2018) WILEY
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propionate, acetate butyrate) with DS between 2.33

and 3.0 were obtained after 2 h at 80 �C employing a

molar ratio reagent/AGU of 5/1. The order of reactiv-

ity was O-6[O-2[O-3, as confirmed by 13C NMR

spectroscopy (Xu et al. 2018). In the same solvent

system cellulose was acylated via direct transesterifi-

cation with vinyl esters of long chain fatty acids, and

aromatic acids. Even at room temperature high DS-

values of 2.6 was reached within 4 h. A broad range of

substitution was achieved in dependence on reaction

time, temperature and molar ratio reagent/AGU (Chen

et al. 2018a). This reaction scheme was found to

outperform comparable acylation/transesterifications

reported for other solvent systems (Cao et al.

2013, 2014; Hanabusa et al. 2018; Hinner et al.

2016). The dissolved cellulose was also allowed to

react with succinic anhydride without any catalyst

under very mild conditions yielding cellulose succi-

nates with DS in the range 1.51–2.59, depending on

the reaction conditions and the molar ratio of succinic

anhydride. The carboxylic acid moiety introduced by

the succinylation was modified by Passerini three-

component reactions (carboxylic acid; carbonyl com-

pound; isocyanide) and Ugi four-component reactions

((carboxylic acid; carbonyl compound; isocyanide;

amine) (Söyler et al. 2018). After reaction, DBU can

be effectively recycled and reused which is desirable

with respect to the development of sustainable,

‘‘greener’’ processes for cellulose modification.

Carboxyl groups of various polysaccharide deriva-

tives were efficiently modified applying the Ugi-

reaction in water, leading to novel polysaccharide

derivatives with peptide-like substituents (Gabriel and

Heinze 2018).

Cellulose derivatization in imidazolium based ionic

liquids

Cellulose dissolution in ionic liquids

In the past 15 years, ILs have been amongst the most

frequently studied ‘‘new solvents’’ for cellulose. The

term ‘‘ionic liquid’’ describes a highly diverse class of

compounds that are entirely composed of an organic

cation with an organic or inorganic anion and that are

characterized by a low melting point (opera-

tionally\ 100 �C) (Plechkova et al. 2009; Anastas

et al. 2013). Imidazolium based ILs are most

frequently employed and will be discussed in this

review. However, also pyridinium-based ILs, and low-

melting quaternary phosphonium and ammonium

compounds have been described in the literature

(Sashina and Kashirskii 2015; Kostag et al. 2018).

Most cellulose dissolving ILs contain 1-alkyl-3-

methyl imidazolium cations with different n-alkyl

chains (Fig. 24). Allyl, ethyl-, and butyl- are the most

frequent side chains (Gericke et al. 2012a; van Osch

et al. 2017). In addition, imidazole-based ILs with

benzyl- and methylnapthyl substituents dissolve cel-

lulose albeit less efficiently (Dissanayake et al. 2018).

Chloride and acetate are the most common anions of

ImILs that are employed as solvents for cellulose

processing.

The ability of ILs to dissolve cellulose is closely

related to their unique molecular structures. Due to the

broad structural diversity of this class, it is difficult to

propose a general dissolution mechanism. ILs are non-

derivatizing cellulose solvents and it is generally

accepted that the anion should be a strong hydrogen

bond acceptor (i.e., with high Lewis basicity) in order

to facilitate dissolution of the polysaccharide

(Table 2) (Gupta and Jiang 2015; Yuan and Cheng

2015; Li et al. 2018). A major contribution that leads

to cellulose dissolution is the interaction of IL anions

with hydroxyl groups of the polymer backbone leading

to breaking of the strong intra molecular hydrogen

bond network. However, interaction of IL cations with

cellulose, the anions, and the cations themselves have

to be considered also. It is generally accepted that

cellulose dissolution is favored by decreasing cation

size (volume) because of their easier intercalation

between the cellulose chains (Dissanayake et al.

2018).

ILs are renowned for their extremely low vapor

pressure and their good solvent properties. They are

studied intensively in the context of green chemistry in

many applications such as organic and inorganic

synthesis, electrolytes, separation technologies, and in

general as environmentally benign alternatives to

molecular solvents (Plechkova et al. 2009; Anastas

et al. 2013).

ILs received extensive interest for the fractionation

of lignocellulosic biomass into cellulose, hemicellu-

lose, and lignin-based components (van Osch et al.

2017). Their unique trait as customizable ‘‘designer

solvents’’ is of particular interest in this regard.

Another research aspect is the use of ILs for the
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valorization of lignocellulose into biofuels and plat-

form chemicals (Dutta et al. 2015; Zhang et al. 2017b).

ILs have been studied as solvents for shaping cellulose

into fibers and other cellulosic materials (Zhang et al.

2017a). However, in the field of fiber production, the

development of IL-based processes is hampered by

strong competition from the viscose and NMMO-

processes that are both well established and commer-

cialized for decades.

In the field of monomolecular chemistry, ILs were

employed as highly efficient reaction media for a

broad variety of organic synthesis (Hallett and Welton

2011). Likewise, ILs were used intensively as solvents

for the homogeneous derivatization of cellulose.

Mixtures of ILs and dipolar aprotic solvents are

frequently used to enhance miscibility and decrease

solution viscosity (Gericke et al. 2011; Gale et al.

2016; Stolarska et al. 2017). For example, cellulose is

dissolved molecularly in solvent mixtures of

Fig. 24 Molecular structures of common cations and anions of imidazolium based ionic liquids that have been used as reaction media

for the derivatization of cellulose

Table 2 Hydrogen bond

basicity and solubility of

microcrystalline cellulose in

1-butyl-3-

methylimidazolium based

ionic liquids. Adapted from

(Xu et al. 2010)

Anion Lewis basicity Solubility (wt%)

40 �C 50 �C 60 �C 70 �C

CH3COO- 1.161 11.5 12.5 13.0 15.5

HSCH3COO- 1.032 \ 1.0 9.5 12.5 13.5

HCOO- 1.008 7.5 8.5 9.0 12.5

(C6H5)COO- 0.987 \ 1.0 \ 1.0 \ 1.0 12.0

H2NCH2COO- 1.096 \ 1.0 2.0 8.0 12.0

HOCH2COO- 0.967 – 7.5 9.0 10.5

CH3CHOHCOO- 0.964 – – 8.0 9.5

N(CN)2
- 0.621 – – – –
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[EtMeIm]AcO containing chloroform, dichloro-

methane, DMF, acetonitrile or propylene carbonate.

The most efficient cellulose dissolution was achieved

in solvent mixtures at maximum electrical conductiv-

ity (Rein et al. 2014). The research activities in this

field was driven by the following aspects:

1. Is it possible to perform a particular cellulose

derivatization under homogeneous conditions

using a particular IL?

2. How can IL based procedures be compared with

other homogeneous and heterogeneous proce-

dures for cellulose derivatization (e.g., in terms

of reaction efficiency and regioselectivity)?

3. Can novel synthesis approaches be developed by

exploiting the unique traits of ILs (e.g., by

adopting procedures from the reactions of simple

compounds)?

4. Do ILs provide a particular advantage, e.g., by

introducing new properties or in terms of eco-

nomical and ecological considerations (sustain-

ability of the process, green chemistry’’ aspects)?

Esterification of cellulose in ionic liquids

Cellulose alkyl and aryl esters

Cellulose esters, such as cellulose acetates, propi-

onate, butyrates, and mixed esters therefrom, are of

huge commercial importance, e.g., in coatings, filter

materials, drug delivery, plastics, composites, and

optical films (Edgar et al. 2001; Glasser 2004).

Following the first reports on successful esterification

of cellulose in [BuMeIm]Cl and [AlMeIm]Cl, many

publications followed each with a different focus

(Heinze et al. 2005; Barthel and Heinze 2006; Cao

et al. 2007):

1. Feasibility studies to see if esterification of

cellulose in IL is possible.

2. Comprehensive studies on efficiency, regioselec-

tivity, and/or sustainability in comparison to other

homogeneous and heterogeneous procedures.

3. Product oriented studies aiming for the efficient

synthesis of cellulose esters with specific proper-

ties and/or new types of functional derivatives.

Due to the unique solvent properties of the ILs,

completely homogeneous esterification of cellulose is

feasible and fully functionalized esters with DS up to 3

can be obtained in a single reaction step. The only

exception are long-chain fatty acid esters that might

become insoluble in the IL when exceeding a certain

DS (Barthel and Heinze 2006). The reactions usually

require only slight excess of acylation reagents to

achieve the desired DS values. They are performed at

elevated temperatures (80–100 �C), which guarantees

that the viscosity of the reaction mixtures is suffi-

ciently low.

Cellulose acetates and other commercially avail-

able cellulose esters are currently prepared by hetero-

geneous procedures only. To obtain uniform products,

two steps are required. First, cellulose is fully

converted into a cellulose ester with DS of 3. Second,

controlled partial saponification yields the desired DS

values and properties of the cellulose esters (Stein-

meier 2004). Novel sustainable processes for produc-

tion of cellulose acetate and other cellulose esters are

highly desired. Homogeneous procedures have the

potential to yield the products in a facile one-step-

process due to the uniform reaction conditions.

Acetylation of cellulose in IL such as [AlMeIm]Cl

and [BuMeIm]Cl yields cellulose acetates with tun-

able DS and acetone soluble products are directly

accessible (Cao et al. 2007). This is required for

shaping into fiber filaments by solution spinning,

which involves regeneration by evaporation of ace-

tone (Law 2004). ILs also enable an innovative

approach for producing cellulose ester materials by

using it as reaction medium and solvent for the shaping

process (Kosan et al. 2010). Directly after the homo-

geneous derivatization reaction is completed, the

reaction mixture is subjected to a wet-spinning

without prior isolation of the cellulose ester.

The regioselectivity of the acetylation of cellulose

in IL, depends on type of IL and the derivatization

reagent used (Table 3) (Abe et al. 2016). The primary

O-6 position was preferably acetylated in most cases.

The partial DS for position O-2 on the other hand was

significantly affected by the anion species present in

the system. A low partial DSO-2 and higher DSO-3 were

observed for conversions performed with acetyl

chloride in imidazolium chlorides. However, the

partial DSO-2 increased at the expense of DSO-3 when

acetate ions were introduced, by using IL acetates as

solvents and/or acetic anhydride as reagent. The

differences were attributed to a formation of carbene

species by deprotonation of the imidazolium cation in

the presence of acetate. Another possibility to alter
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regioselectivity provides the esterification of cellulose

with more bulky moieties, such as pivaloate, adaman-

toate, and 2,4,6-trimethylbenzoate (Xu et al. 2011). A

preferential esterification at position O-6 but no true

regioselectivity was observed for the three solvent

systems tested (LiCl/DMAc, DMSO/TBAF�3H2O,

[AlMeIm]Cl).

In addition to cellulose acetates, esters with short

alky chains (propionate to hexanoate) have been

prepared in different IsL (Fidale et al. 2009; Possido-

nio et al. 2010; Luan et al. 2013; Olsson and Westman

2017). Moreover, mixed cellulose esters such as

cellulose acetate/propionate and cellulose acetate/

butyrate that are of considerable commercial impor-

tance have obtained by homogeneous derivatization in

ILs (Huang et al. 2011a; Cao et al. 2011). In addition to

conventional heating, microwave irradiation was

employed in these experiments (Possidonio et al.

2010; El Seoud et al. 2011). The reaction rates for

esterification of cellulose in [AlBuIm]Cl with the

corresponding acid anhydrides decreased with

increasing length of the alkyl chain from ethanoate

to butanoate (Fig. 25). However, it increased again for

pentanoate and hexanoate. This behavior was

explained by two competing effects. With increasing

chain length, steric hindrance increases, which

decreases reactivity. At the same time, hydrophobic

interaction between the anhydride and lipophilic

cellulose ester chains increases which lowers reaction

enthalpy (Fig. 25). An interesting option to alter the

reaction kinetics of the acylation of cellulose in IL is

the addition of co-solvents. They reduce viscosity and

thus increase diffusion coefficients of the reactants

(Nawaz et al. 2015). For the acetylation of cellulose, a

reactivity order of IL/DMSO[LiCl/

DMAc[ IL/sulfolane was observed.

Table 3 Reaction

conditions of and results for

the acetylation of cellulose

in different ionic liquids.

Adapted from (Abe et al.

2016)

aAcCl acetyl chloride,

Ac2O acetic anhydride
bNo information available

Ionic liquid Reagenta Water content (wt%) DS DSpartial

Total O-2 O-3 O-6

[AlMeIm]Cl Ac2O 0.4 2.42 0.93 0.63 0.86

[AlMeIm]Cl AcCl 0.4 2.31 0.52 0.83 0.95

[OctylMeIm]Cl AcCl 0.3 2.25 0.48 0.83 0.94

[BuMeIm]AcO AcCl 0.3 2.23 0.72 0.59 0.92

[BuMeIm]AcO AcCl 0.6 2.21 0.78 0.58 0.84

[BuMeIm]AcO Ac2O –b 2.22 0.65 0.67 0.90

Fig. 25 a Degrees of substitution achieved for the homoge-

neous synthesis of cellulose esters with different chain length in

1-allyl-3-butylimidazolium chloride under identical reaction

conditions (4.5 mol acid anhydride per repeating unit, 8 h,

microwave irradiation 30 W, 80 �C); b Schematic interaction of

hexanoic acid anhydride with partially acylated cellulose.

Reprinted and modified with permission from Possidonio et al.

(2010), copyright (2010) WILEY
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ILs were employed successfully for the synthesis of

cellulose aryl esters, most notably cellulose benzoates

(Zhang et al. 2009; Chen et al. 2015). Thereby, a

strong effect of the substituents on the phenyl ring on

the derivatization was found. Long alkyl chain fatty

acid cellulose esters (Huang et al. 2011b; Tarasova

et al. 2013; Singh et al. 2015) and cellulose ester with

dicarboxylic acids were prepared in ILs (Li et al.

2009, 2011b; Liu et al. 2010; Wang et al. 2016).

Whether or not ILs are beneficial in these processes

over other homogeneous reaction media significantly

depends on the objective of the particular work, e.g.,

improving the synthesis of an already established

product, development of specific novel derivatives.

Two key issues that should be considered in this

context are recycling and specific side reactions. The

recycling strategy employed to recover the IL strongly

depends on the process in which it is used as solvent

for cellulose processing. Most of these procedures

involve a regeneration step in which a large excess of

non-solvent (usually water or alcohol) is used to

recover cellulose or the cellulose derivatives synthe-

sized. The non-solvent is usually removed by evapo-

ration and the crude IL can be used again to dissolve

cellulose. However, thermal ‘‘aging’’ of the IL should

be considered. Upon heating, some ILs degrade by

different mechanisms that may involve common

impurities (e.g., residual N-alkylimidazole), carbene

species (formed in situ by deprotonation), and dealky-

lation products (Liebner et al. 2010; Wendler et al.

2012; Efimova et al. 2018). The thermal degradation

products require specific purification strategies

because they accumulate upon consecutive process-

ing/recycling steps. Recycling becomes even more

complex for ILs used as homogeneous reaction media

for cellulose derivatization because it also includes

removal of excesses reagents, bases, catalysts, and

monomolecular side products. In addition to thermal

degradation, ILs can undergo side reactions with

particular derivatization reagents that may lead to

unexpected products. Carbene species can be formed

in ILs by deprotonation of the imidazolium cation in

position 2 (Amyes et al. 2004; Rodrı́guez et al. 2011).

This process is accelerated by the addition of bases but

can also occur in pure IL with relatively basic

carboxylate anions. It has been reported that imida-

zolium carbenes forms covalent bonds with the

reducing end group of cellulose (Zweckmair et al.

2015). Moreover, the highly reactive carbenes can

participate in the derivatization reactions and thus alter

selectivity and/or reagent efficiency (Canal et al. 2006;

Enders et al. 2007; Wang et al. 2017).

The IL anion can also influence the derivatization

reaction, e.g., the acetate anion catalyzes the ring

opening of oxiranes and facilitate hydroxalkylation of

cellulose in ILs (Köhler et al. 2010). EMIMAc is one

of the most frequently employed ILs for dissolution

and processing of cellulose. However, the acetate

anion can react with acid chlorides (e.g., from

carboxylic acid and sulfonic acids) to form mixed

anhydrides (Fig. 26) (Köhler et al. 2007). Thus,

acylation of cellulose in imidazolium acetate-based

IL resulted in predominant acetylation of the polysac-

charide instead of yielding the desired cellulose ester.

As discussed above, transesterification is an inter-

esting alternative for cellulose ester synthesis. A series

of different aryl- and alkyl esters of cellulose were

prepared by homogeneous conversion of cellulose,

dissolved in [BuMeIm]Cl, with monomolecular

methyl esters (Table 4) (Schenzel et al. 2014). The

reaction was catalyzed by triazabicyclo[4.4.0]dec-5-

en and yielded DS values of up to 0.7 using up to

fivefold excess of the reagents. Thus, efficiency of the

transesterification appears to be lower compared to the

use of acid chlorides or anhydrides. However, an

obvious advantage is that only methanol is liberated as

a side product, which can easily be removed by

evaporation. Thus IL recycling is simpler than when

acid anhydrides or acyl chloride are used where the

side products are carboxylic acid or chloride ion,

respectively.

As discussed for LiCl/DMAc vinyl and isopropenyl

esters are efficient acylating agents, the reaction is

driven to completion by volatilization of the produced

acetaldehyde or acetone (simpler IL recycling). Cel-

lulose acetates with DS close to 3 have been prepared

in [EtMeIm]AcO/DMSO mixtures by conversion of

cellulose with an excess of vinyl acetate (Nguyen et al.

2017). As could be demonstrated for the synthesis of

cellulose esters with octanoate (C8), laurate (C12),

and palmitate (C16) substituents, transesterification

with vinyl esters in IL is rather efficient (Hinner et al.

2016). As an example, DSlaurate of 1.6 and 2.4 are

achieved using 2 and 3 mol vinyl laurate per AGU,

which corresponds to reaction efficiencies of 80%. As

described above, conversion of cellulose in EMIMAc

with lauryl chloride or anhydride mostly results in

acetylation. Transesterification with vinyl esters on the
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other hands mostly yields the desired products and

only a minor DSacetate (Hinner et al. 2016). The result

may be traced to a different mechanism, namely the

reaction does not proceed via the formation of a mixed

anhydride but involves the transfer of the acyl moiety

to an intermediate carbene specie that is formed by

Table 4 Reaction

conditions for the

transesterification of

cellulose, dissolved in

1-butyl-3-

methylimidazolium

chloride, with carboxylic

acid methyl esters in the

presence of 1,5,7-

triazabicyclo[4.4.0]dec-5-

ene as catalysts. Adapted

from (Schenzel et al. 2014)

a30 wt% of the ionic liquid,

DMF N,N-

dimethylformamide, DMSO

dimethylsulfoxide
bDegree of substitution,

obtained by 1H NMR

Substituent Mole equivalents T (�C) Time (h) Co-solventa DSb

1 Benzoate 1 95 24 DMF 0.22

2 Benzoate 3 95 24 DMF 0.43

3 Benzoate 3 95 24 DMSO 0.42

4 Benzoate 5 95 24 DMSO 0.51

5 Benzoate 5 115 24 DMSO 0.69

6 Butyrate 1 95 24 DMF 0.30

7 Butyrate 3 95 24 DMF 0.35

8 Butyrate 3 95 24 DMSO 0.38

9 Butyrate 5 95 24 DMSO 0.45

10 Butyrate 5 115 24 DMSO 0.61

11 10-Undecanoate 1 95 24 DMF 0.25

12 10-Undecenoate 1 95 48 DMF 0.26

13 10-Undecenoate 3 95 24 DMF 0.33

14 10-Undecenoate 3 95 24 DMSO 0.34

15 10-Undecenoate 5 95 24 DMSO 0.33

16 10-Undecenoate 5 115 24 DMSO 0.40

Fig. 26 13C NMR spectra of mixtures of 1-ethyl-3-methylimidazolium acetate ([EtMeIm]AcO) with a 2-furoyl chloride and pyridine

and b tosyl chloride. Reprinted and modified with permission from Köhler et al. (2007), copyright (2007) WILEY
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deprotonation of the imidazolium cation in position 2

(Chen et al. 2017).

Other cellulose esters

Acylation of cellulose in IL is usually performed

at C 80 �C. At these elevated temperatures, the vis-

cosity of IL and cellulose/IL solutions is reasonably

low, which guarantees efficient heat- and mass-

transfer during the reaction. The synthesis of cellulose

sulfonates and cellulose sulfates (i.e., sulfuric acid half

esters) requires milder reaction conditions of B 25 �C
to prevent severe polymer degradation. Thus, co-

solvents have to be added to diminish the adverse

effect of high solution viscosity (Fig. 27) (Gericke

et al. 2011; Lv et al. 2012). It should be noted in this

context that sulfation and tosylation in the lower

viscous imidazoliuam acetates yield acetylated cellu-

lose instead of the desired products (Köhler et al.

2007; Ebner et al. 2008). The derivatization reagents

form mixed anhydrides with acetate counterions that

act as acetylation agents.

Cellulose sulfates with DS up to 1.7 were prepared

in mixtures of [BuMeIm]Cl and DMF (Gericke et al.

2009). As a result of the completely homogeneous

reaction course, uniform distribution of sulfate groups

along the polymer back-bone was achieved, which

resulted in good water solubility of the products even

at rather low DS around 0.2–0.3. Comparable products

cannot be prepared in DAS/LiCl based cellulose

solvents due to coagulation of the reaction mixture

during the sulfation.

Synthesis of p-toluensulfonic acid ester (tosylates)

of cellulose in IL is performed at room temperature in

order to prevent the excessive formation of 6-chloro-

6-deoxy cellulose (Gericke et al. 2012a, b). Thus, co-

solvents such as pyridine or DAS need to be employed.

In the latter case, an additional base such as

1-butylimidazole is required. Ethylenediamine that is

usually employed in the tosylation of cellulose in LiCl/

DMAc cannot be used because it is immiscible with IL

(Rahn et al. 1996). Under identical reaction condi-

tions, tosylation in LiCl/DMAc at 25 �C proceeds with

a higher reaction efficiency whereas the tendency to

produce 6-chloro-6-deoxy moieties is less pronounced

for the synthesis in IL.

In addition to cellulose sulfonates and sulfates, aryl

phosphates have been prepared in [AlMeIm]Cl by

conversion of the polysaccharide with diphenyl

chlorophosphate (Xiao et al. 2014). DS values up to

1.23 were obtained under mild conditions (50 �C,

5–10 h) using 3 mol-equivalents of the reagent. It was

also possible to obtain mixed cellulose acetate phos-

phate esters. The advantage of IL is that the synthesis

can be performed in a homogeneous, one-pot reaction

because all reagents and products are soluble in the

reaction medium.

The synthesis of cellulose aryl carbonates is a good

example for reactions in which ILs are superior over

DAS based cellulose solvents. The conversion of

cellulose with phenyl chloroformate yields cellulose

phenyl carbonates. If the reaction is carried out in

LiCl/DMAc, DS values of up to 2.0 are obtained but

only with 10 equivalents of reagent/AGU, which

corresponds to a reaction efficiency of only 20%

Fig. 27 Viscosity (g) of a ionic liquid (AmimCl: 1-allyl-3-

methylimidazolium chloride; BmimCl: 1-butyl-3-methylimida-

zolium chloride)/DMS) mixtures a without and b with dissolved

cellulose at 25 �C and different molar fractions (vs) of DMSO.

Reprinted and modified with permission from Lv et al. (2012),

copyright (2012), with permission from Elsevier
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(Elschner et al. 2013). This is due to Vilsmeier-type

side reactions of chloroformate with DAS such as

DMSO and DMAc that consume the reagent (Thota

et al. 2009; Kwak and Gong 2013). Using a

[BuMeIm]Cl/pyridine mixture as reaction medium,

undesired side reactions is suppressed. Reaction

efficiency increases significantly up to 90% (Elschner

et al. 2014). Even fully functionalized cellulose phenyl

carbonates with a DS of 3 were obtained that provided

NMR-spectra with a high resolution due to the very

uniform molecular structure (Fig. 28). In addition to

aryl carbonates, cellulose alkyl carbonates were

prepared in two different IL, [EtMeIm]AcO and

methyltrioctylphosphonium acetate.

ImIL proved to be efficient solvents for the

homogeneous esterification of cellulose. They should

always be considered as potential reaction media when

developing new synthesis approaches. It is important

to consider critically the individual advantages (e.g.,

high dissolution power for cellulose, reagents and

products) and disadvantages (e.g., high viscosity, need

for recycling strategies). IL are often described as

‘‘designer solvents’’ due to the vast number of

combinations of potential anions and cations. Thus,

new developments can be expected in the future.

Etherification of cellulose in ionic liquids

Despite the commercial importance of cellulose ethers

such as CMC and cellulose hydroxyalkyl ethers,

reports on etherification of cellulose in IL are scarce.

This is mostly a result of the limited miscibility of the

derivatization reagents used (e.g., solid alkali, gas-

eous/volatile and/or hydrophobic alkylation reagents).

The synthesis of CMC, one of the most important

commercial cellulose derivatives, was not successful

in IL and yielded small DS-values\ 0.5 (Heinze et al.

2005). Solid NaOH was used as a base, which resulted

in gelation of the reaction mixture despite the use of

DMSO as co-solvent. Hydroxyalkylation of cellulose

was achieved in [EtMeIm]AcO, [BuMeIm]Cl, and

several ammonium-based ILs (Köhler et al. 2010). In

this process, co-solvents such as DMSO and DMF

were added to improve the dissolution of the gaseous

reagents, namely ethylene oxide and propylene oxide.

The ring opening reaction is catalyzed by acetate

either coming from the IL counterion (for

Fig. 28 a 1H NMR and, b 13C NMR spectra of cellulose phenyl carbonate with a degree of substitution of 3. Reprinted and modified

with permission from Elschner et al. (2014), copyright (2014) WILEY
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[EtMeIm]AcO) or magenesium-/potassium acetate.

Additionally, the etherification of cellulose with

glycidol in IL has been reported (Kakibe et al. 2017).

Trityl ethers of cellulose are of interest for the

preparation of cellulose derivatives with regioselec-

tive substitution pattern (Kondo and Gray 1991). The

bulky trityl moieties are preferably introduced at the

primary OH-group (O-6) and can be removed selec-

tively under acidic conditions. Thus, it can be

employed as protecting group for obtaining regiose-

lective derivatization at position O-2 and O-3. Trityl

celluloses with DS values of up to 1.5 were obtained in

ILs by conversion of the polysaccharide with trityl

chloride in the presence of excess pyridine (Erd-

menger et al. 2007; Xia et al. 2014; Lv et al. 2015). The

maximum DS was increased to 1.8 using the more

reactive p-methoxytrityl chloride. Mild reaction con-

ditions and DS values close to 1.0 (i.e., complete

protection of O-6) are desired for TC in the context of

protecting group applications. IL appear to be favor-

able in this regard because said DS values are achieved

within 1–10 h whereas tritylation in LiCl/DMAc

requires C 24 h.

Cellulose silyl ethers are renowned for their self-

assembly into thin films (e.g., by spin-coating, Lang-

muir–Blodgett-/Langmuir–Schaefer deposition) that can

be converted into well-defined cellulosic films by acid

hydrolysis (Kontturi et al. 2003; Tammelin et al. 2006).

Different ILs, including [EtMeIm]AcO, [BuMeIm]Cl,

and [BuMeIm]propionate were studied as reaction media

for the synthesis of trimethylsilyl cellulose (Köhler et al.

2008; Mormann and Wezstein 2009; Kostag et al. 2010;

Liebert et al. 2011). The reaction proceeds heteroge-

neously because 1,1,1,3,3,3-hexamethylendisilazane, the

silylation reagent employed, is immiscible with IL.

Moreover, trimethylsilyl cellulose with a DS[2.0 is

insoluble in IL. Completely homogeneous synthesis of

TMSC with a DS up to 2.9 was achieved in mixtures of IL

with chloroform as co-solvent (Köhler et al. 2008).

Conclusions and perspectives

The last 25 years witnessed the introduction of diverse

cellulose solvents that allowed cellulose dissolution

and derivatization under homogeneous conditions,

with much better yields and control of regioselectivity.

These solvents include strong electrolytes/DAS; aque-

ous and nonaqueous solutions of QAEs, and a myriad

of pure ILs and their solutions in DAS. Although we

focused our attention on esters and ethers of cellulose,

the above-mentioned advantages apply to other

classes of cellulose derivatives. Thanks to the intro-

duction of these novel solvents, additional themes are

being actively investigated, including potential appli-

cations of cellulose solutions for its regeneration as

fibers (the Ioncell-F is an example), systematic

investigation of solvent structure/performance rela-

tionship, increasing the atom-efficiency of the deriva-

tization reactions, and environmentally acceptable and

efficient solvent component recovery. An important

purpose of using these solvents is production of

specialty cellulose derivatives where structure control

and reproducible physical forms (nanospheres, nano-

fibers, etc.) is crucial to their (biomedical and phar-

macological) applications. As the demand for such

products is expected to grow, there is an urgent need to

assess the green chemistry aspects of the homoge-

neous reaction scheme, in particular, economics of the

process and its environmental impact (Table 5).
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Köhler S, Liebert T, Schöbitz M et al (2007) Interactions of

ionic liquids with polysaccharides 1. Unexpected acetyla-

tion of cellulose with 1-ethyl-3-methylimidazolium acet-

ate. Macromol Rapid Commun 28:2311–2317. https://doi.

org/10.1002/marc.200700529
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Tammelin T, Saarinen T, Österberg M, Laine J (2006) Prepa-

ration of Langmuir/Blodgett-cellulose surfaces by using

horizontal dipping procedure. Application for polyelec-

trolyte adsorption studies performed with QCM-D. Cellu-

lose 13:519. https://doi.org/10.1007/s10570-005-9002-7

Tarasova E, Šumigin D, Kudrjašova M, Krumme A (2013)

Preparation of cellulose stearate and cellulose acetate

stearate in 1-butyl-3-methylimidazolium chloride. Key

Eng Mater 559:105–110. https://doi.org/10.4028/www.

scientific.net/KEM.559.105

Thomas R (1970) New process for the partial esterification of

cellulose with carboxylic acids under practice conditions.

Textilveredlung 5:361–368

Thota N, Mukherjee D, Reddy MV et al (2009) Reaction of

carbohydrates with Vilsmeier reagent: a tandem selective

chloro O-formylation of sugars. Org Biomol Chem

7:1280–1283. https://doi.org/10.1039/B900026G

Tiller J, Berlin P, Klemm D (2000) Novel matrices for biosensor

applications by structural design of redox-chromogenic

aminocellulose esters. J Appl Polym Sci 75:904–915.

https://doi.org/10.1002/(SICI)1097-4628(20000214)75:

7%3c904:AID-APP7%3e3.0.CO;2-8

Tiwari S, Kumar A (2012) Viscosity dependence of intra- and

intermolecular Diels–Alder reactions. J Phys Chem A

116:1191–1198. https://doi.org/10.1021/jp208989z

Trulove PC, Reichert WM, Long HCD et al (2009) The structure

and dynamics of silk and cellulose dissolved in ionic liq-

uids. ECS Trans 16:111–117. https://doi.org/10.1149/1.

3159315

Vaca-Garcia C, Borredon ME (1999) Solvent-free fatty acyla-

tion of cellulose and lignocellulosic wastes. Part 2: reac-

tions with fatty acids. Biores Technol 70:135–142. https://

doi.org/10.1016/S0960-8524(99)00034-6

Vaca-Garcia C, Thiebaud S, Borredon ME, Gozzelino G (1998)

Cellulose esterification with fatty acids and acetic anhy-

dride in lithium chloride/N,N-dimethylacetamide medium.

J Am Oil Chem Soc 75:315–319. https://doi.org/10.1007/

s11746-998-0047-2

van Osch DJGP, Kollau LJBM, van den Bruinhorst A et al

(2017) Ionic liquids and deep eutectic solvents for ligno-

cellulosic biomass fractionation. Phys Chem Chem Phys

19:2636–2665. https://doi.org/10.1039/c6cp07499e

Vasudevan V, Mushrif SH (2015) Insights into the solvation of

glucose in water, dimethyl sulfoxide (DMSO), tetrahy-

drofuran (THF) and N,N-dimethylformamide (DMF) and

its possible implications on the conversion of glucose to

platform chemicals. RSC Adv 5:20756–20763. https://doi.

org/10.1039/C4RA15123B

Wang Z, Yokoyama T, Chang H, Matsumoto Y (2009) Disso-

lution of beech and spruce milled woods in LiCl/DMSO.

J Agric Food Chem 57:6167–6170. https://doi.org/10.

1021/jf900441q

Wang H-H, Zhang X-Q, Long P et al (2016) Reaction behavior

of cellulose in the homogeneous esterification of bagasse

modified with phthalic anhydride in ionic liquid 1-allyl-3-

123

182 Cellulose (2019) 26:139–184

https://doi.org/10.1007/s10570-016-0957-3
https://doi.org/10.1007/s10570-016-0957-3
https://doi.org/10.1016/j.jiec.2014.09.031
https://doi.org/10.1016/S0144-8617(96)00129-4
https://doi.org/10.1016/S0144-8617(96)00129-4
https://doi.org/10.1021/bm800429a
https://doi.org/10.1021/bm800429a
https://doi.org/10.1016/j.carbpol.2007.10.018
https://doi.org/10.1016/j.carbpol.2007.10.018
https://doi.org/10.1039/C3RA44628J
https://doi.org/10.1039/C7GC02577G
https://doi.org/10.1039/C7GC02577G
https://doi.org/10.1002/(SICI)1099-0518(199808)36:11%3c1945:AID-POLA30%3e3.0.CO;2-C
https://doi.org/10.1002/(SICI)1099-0518(199808)36:11%3c1945:AID-POLA30%3e3.0.CO;2-C
https://doi.org/10.1002/masy.200450405
https://doi.org/10.1002/masy.200450405
https://doi.org/10.1016/j.carbpol.2017.09.025
https://doi.org/10.1016/j.carbpol.2017.09.025
https://doi.org/10.4067/S0717-97072003000100013
https://doi.org/10.4067/S0717-97072003000100013
https://doi.org/10.1016/S0165-022X(03)00064-2
https://doi.org/10.1016/S0165-022X(03)00064-2
https://doi.org/10.1021/ja0440497
https://doi.org/10.1021/ja0440497
https://doi.org/10.1002/pola.1986.080241125
https://doi.org/10.1002/pola.1986.080241125
https://doi.org/10.1007/s10570-005-9002-7
https://doi.org/10.4028/www.scientific.net/KEM.559.105
https://doi.org/10.4028/www.scientific.net/KEM.559.105
https://doi.org/10.1039/B900026G
https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7%3c904:AID-APP7%3e3.0.CO;2-8
https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7%3c904:AID-APP7%3e3.0.CO;2-8
https://doi.org/10.1021/jp208989z
https://doi.org/10.1149/1.3159315
https://doi.org/10.1149/1.3159315
https://doi.org/10.1016/S0960-8524(99)00034-6
https://doi.org/10.1016/S0960-8524(99)00034-6
https://doi.org/10.1007/s11746-998-0047-2
https://doi.org/10.1007/s11746-998-0047-2
https://doi.org/10.1039/c6cp07499e
https://doi.org/10.1039/C4RA15123B
https://doi.org/10.1039/C4RA15123B
https://doi.org/10.1021/jf900441q
https://doi.org/10.1021/jf900441q


methylimidazium chloride. Int J Polym Sci. https://doi.org/

10.1155/2016/2361284

Wang B, Qin L, Mu T et al (2017) Are ionic liquids chemically

stable? Chem Rev 117:7113–7131. https://doi.org/10.

1021/acs.chemrev.6b00594

Wang Y, Liu L, Chen P et al (2018) Cationic hydrophobicity

promotes dissolution of cellulose in aqueous basic solution

by freezing–thawing. Phys Chem Chem Phys

20:14223–14233. https://doi.org/10.1039/C8CP01268G

Wei Y, Cheng F (2007) Effect of solvent exchange on the

structure and rheological properties of cellulose in LiCl/

DMAc. J Appl Polym Sci 106:3624–3630. https://doi.org/

10.1002/app.26886

Wendler F, Todi L-N, Meister F (2012) Thermostability of

imidazolium ionic liquids as direct solvents for cellulose.

Thermochim Acta 528:76–84. https://doi.org/10.1016/j.

tca.2011.11.015

Wu J, Zhang J, Zhang H et al (2004) Homogeneous acetylation

of cellulose in a newionic liquid. Biomacromolecules

5:266–268. https://doi.org/10.1021/bm034398d

Würfel H, Kayser M, Heinze T (2018) Efficient and catalyst-free

synthesis of cellulose acetoacetates. Cellulose

25:4919–4928. https://doi.org/10.1007/s10570-018-1908-y

Xia K, Chen J, Yang R et al (2014) Green synthesis and crystal

structure of regioselectively substituting 6-O-tritylcellu-

lose derivatives. J Biobased Mater Bioenergy 8:587–593.

https://doi.org/10.1166/jbmb.2014.1472

Xiao P, Zhang J, Feng Y et al (2014) Synthesis, characterization

and properties of novel cellulose derivatives containing

phosphorus: cellulose diphenyl phosphate and its mixed

esters. Cellulose 21:2369–2378. https://doi.org/10.1007/

s10570-014-0256-9

Xie H, Yu X, Yang Y, Zhao ZK (2014) Capturing CO2 for

cellulose dissolution. Green Chem 16:2422–2427. https://

doi.org/10.1039/C3GC42395F

Xin P-P, Huang Y-B, Hse C-Y et al (2017) Modification of

cellulose with succinic anhydride in TBAA/DMSO mixed

solvent under catalyst-free conditions. Materials 10:526.

https://doi.org/10.3390/ma10050526

Xu Q, Chen L-F (1999) Ultraviolet spectra and structure of zinc–

cellulose complexes in zinc chloride solution. J Appl

Polym Sci 71:1441–1446. https://doi.org/10.1002/

(SICI)1097-4628(19990228)71:9%3c1441:AID-APP8%

3e3.0.CO;2-G

Xu D, Edgar KJ (2012) TBAF and cellulose esters: unexpected

deacylation with unexpected regioselectivity. Biomacro-

molecules 13:299–303. https://doi.org/10.1021/bm201724s

Xu A, Wang J, Wang H (2010) Effects of anionic structure and

lithium salts addition on the dissolution of cellulose in

1-butyl-3-methylimidazolium-based ionic liquid solvent

systems. Green Chem 12:268–275. https://doi.org/10.

1039/B916882F

Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective

acylation of cellulose with bulky acid chlorides. Cellulose

18:405–419. https://doi.org/10.1007/s10570-010-9476-9

Xu Q, Song L, Zhang L et al (2018) Synthesis of cellulose

acetate propionate and cellulose acetate butyrate in a CO2/

DBU/DMSO system. Cellulose 25:205–216. https://doi.

org/10.1007/s10570-017-1539-8

Yang Y, Xie H, Liu E (2014) Acylation of cellulose in reversible

ionic liquids. Green Chem 16:3018–3023. https://doi.org/

10.1039/C4GC00199K

Yang Y, Song L, Peng C et al (2015) Activating cellulose via its

reversible reaction with CO2 in the presence of 1,8-diaz-

abicyclo[5.4.0]undec-7-ene for the efficient synthesis of

cellulose acetate. Green Chem 17:2758–2763. https://doi.

org/10.1039/C5GC00115C

Yu Y, Miao J, Jiang Z et al (2016) Cellulose esters synthesized

using a tetrabutylammonium acetate and dimethylsulfox-

ide solvent system. Appl Phys A 122:656. https://doi.org/

10.1007/s00339-016-0205-6

Yu Y, Jiang Z, Miao J et al (2018) Application of the solvent

dimethyl sulfoxide/tetrabutyl-ammonium acetate as reac-

tion medium for mix-acylation of pulp. Adv Polym Tech-

nol 37:955–961. https://doi.org/10.1002/adv.21742

Yuan X, Cheng G (2015) From cellulose fibrils to single chains:

understanding cellulose dissolution in ionic liquids. Phys

Chem Chem Phys 17:31592–31607. https://doi.org/10.

1039/C5CP05744B

Yusup EM, Mahzan S, Jafferi N, Been CW (2015) The effec-

tiveness of TBAF/DMSO in dissolving oil palm empty fruit

bunch-cellulose phosphate. J Med Bioeng 4:165–169.

https://doi.org/10.12720/jomb.4.2.165-169

Zhang J, Wu J, Cao Y et al (2009) Synthesis of cellulose ben-

zoates under homogeneous conditions in an ionic liquid.

Cellulose 16:299–308. https://doi.org/10.1007/s10570-

008-9260-2

Zhang C, Liu R, Xiang J et al (2014) Dissolution mechanism of

cellulose in N,N-dimethylacetamide/lithium chloride:

revisiting through molecular interactions. J Phys Chem B

118:9507–9514. https://doi.org/10.1021/jp506013c

Zhang H, Guo H, Wang B et al (2016) Synthesis and charac-

terization of quaternized bacterial cellulose prepared in

homogeneous aqueous solution. Carbohyd Polym

136:171–176. https://doi.org/10.1016/j.carbpol.2015.09.

029

Zhang J, Wu J, Yu J et al (2017a) Application of ionic liquids for

dissolving cellulose and fabricating cellulose-based mate-

rials: state of the art and future trends. Mater Chem Front

1:1273–1290. https://doi.org/10.1039/C6QM00348F

Zhang Z, Song J, Han B (2017b) Catalytic transformation of

lignocellulose into chemicals and fuel products in ionic

liquids. Chem Rev 117:6834–6880. https://doi.org/10.

1021/acs.chemrev.6b00457

Zhao H, Baker GA, Song Z et al (2008) Designing enzyme-

compatible ionic liquids that can dissolve carbohydrates.

Green Chem 10:696–705. https://doi.org/10.1039/

B801489B

Zheng X, Gandour RD, Edgar KJ (2013a) Probing the mecha-

nism of TBAF-catalyzed deacylation of cellulose esters.

Biomacromolecules 14:1388–1394. https://doi.org/10.

1021/bm400041w

Zheng X, Gandour RD, Edgar KJ (2013b) TBAF-catalyzed

deacylation of cellulose esters: reaction scope and influ-

ence of reaction parameters. Carbohyd Polym 98:692–698.

https://doi.org/10.1016/j.carbpol.2013.06.010

Zhong C, Wang C, Wang F et al (2016) Application of tetra-n-

methylammonium hydroxide on cellulose dissolution and

isolation from sugarcane bagasse. Carbohyd Polym

123

Cellulose (2019) 26:139–184 183

https://doi.org/10.1155/2016/2361284
https://doi.org/10.1155/2016/2361284
https://doi.org/10.1021/acs.chemrev.6b00594
https://doi.org/10.1021/acs.chemrev.6b00594
https://doi.org/10.1039/C8CP01268G
https://doi.org/10.1002/app.26886
https://doi.org/10.1002/app.26886
https://doi.org/10.1016/j.tca.2011.11.015
https://doi.org/10.1016/j.tca.2011.11.015
https://doi.org/10.1021/bm034398d
https://doi.org/10.1007/s10570-018-1908-y
https://doi.org/10.1166/jbmb.2014.1472
https://doi.org/10.1007/s10570-014-0256-9
https://doi.org/10.1007/s10570-014-0256-9
https://doi.org/10.1039/C3GC42395F
https://doi.org/10.1039/C3GC42395F
https://doi.org/10.3390/ma10050526
https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9%3c1441:AID-APP8%3e3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9%3c1441:AID-APP8%3e3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9%3c1441:AID-APP8%3e3.0.CO;2-G
https://doi.org/10.1021/bm201724s
https://doi.org/10.1039/B916882F
https://doi.org/10.1039/B916882F
https://doi.org/10.1007/s10570-010-9476-9
https://doi.org/10.1007/s10570-017-1539-8
https://doi.org/10.1007/s10570-017-1539-8
https://doi.org/10.1039/C4GC00199K
https://doi.org/10.1039/C4GC00199K
https://doi.org/10.1039/C5GC00115C
https://doi.org/10.1039/C5GC00115C
https://doi.org/10.1007/s00339-016-0205-6
https://doi.org/10.1007/s00339-016-0205-6
https://doi.org/10.1002/adv.21742
https://doi.org/10.1039/C5CP05744B
https://doi.org/10.1039/C5CP05744B
https://doi.org/10.12720/jomb.4.2.165-169
https://doi.org/10.1007/s10570-008-9260-2
https://doi.org/10.1007/s10570-008-9260-2
https://doi.org/10.1021/jp506013c
https://doi.org/10.1016/j.carbpol.2015.09.029
https://doi.org/10.1016/j.carbpol.2015.09.029
https://doi.org/10.1039/C6QM00348F
https://doi.org/10.1021/acs.chemrev.6b00457
https://doi.org/10.1021/acs.chemrev.6b00457
https://doi.org/10.1039/B801489B
https://doi.org/10.1039/B801489B
https://doi.org/10.1021/bm400041w
https://doi.org/10.1021/bm400041w
https://doi.org/10.1016/j.carbpol.2013.06.010


136:979–987. https://doi.org/10.1016/j.carbpol.2015.10.

001

Zhong C, Cheng F, Zhu Y et al (2017) Dissolution mechanism of

cellulose in quaternary ammonium hydroxide: revisiting

through molecular interactions. Carbohyd Polym

174:400–408. https://doi.org/10.1016/j.carbpol.2017.06.078

Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea

aqueous solution. Polym J 32:866–870. https://doi.org/10.

1295/polymj.32.866

Zhou J, Zhang L, Deng Q, Wu X (2004) Synthesis and char-

acterization of cellulose derivatives prepared in NaOH/

urea aqueous solutions. J Polym Sci Part A Polym Chem

42:5911–5920. https://doi.org/10.1002/pola.20431

Zhou J, Qin Y, Liu S, Zhang L (2006) Homogeneous synthesis

of hydroxyethylcellulose in NaOH/urea aqueous solution.

Macromol Biosci 6:84–89. https://doi.org/10.1002/mabi.

200500148

Zhou J, Xu Y, Wang X et al (2008) Microstructure and aggre-

gation behavior of methylcelluloses prepared in NaOH/

urea aqueous solutions. Carbohyd Polym 74:901–906.

https://doi.org/10.1016/j.carbpol.2008.05.016

Zweckmair T, Hettegger H, Abushammala H et al (2015) On the

mechanism of the unwanted acetylation of polysaccharides

by 1,3-dialkylimidazolium acetate ionic liquids: part 1—

analysis, acetylating agent, influence of water, and mech-

anistic considerations. Cellulose 22:3583–3596. https://

doi.org/10.1007/s10570-015-0756-2

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

184 Cellulose (2019) 26:139–184

https://doi.org/10.1016/j.carbpol.2015.10.001
https://doi.org/10.1016/j.carbpol.2015.10.001
https://doi.org/10.1016/j.carbpol.2017.06.078
https://doi.org/10.1295/polymj.32.866
https://doi.org/10.1295/polymj.32.866
https://doi.org/10.1002/pola.20431
https://doi.org/10.1002/mabi.200500148
https://doi.org/10.1002/mabi.200500148
https://doi.org/10.1016/j.carbpol.2008.05.016
https://doi.org/10.1007/s10570-015-0756-2
https://doi.org/10.1007/s10570-015-0756-2

	Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers
	Abstract
	Graphical abstract
	Requirements for cellulose dissolution
	Cellulose pretreatments
	Cellulose dissolution and derivatization in LiCl/DMAc
	Dissolution
	Esterification of cellulose in LiCl/DMAc
	Esters of carboxylic acids
	Esters of sulfonic acids

	Etherification of cellulose in LiCl/DMAc

	Cellulose derivatization in [TBA]Fmiddot3H2O/DMSO
	Cellulose dissolution in [TBA]Fmiddot3H2O/DMSO
	Esterification of cellulose in [TBA]Fmiddot3H2O/DMSO
	Etherification of cellulose in [TBA]Fmiddot3H2O/DMSO

	Cellulose derivatization in aqueous media
	Cellulose dissolution in aqueous media
	Etherification of cellulose in aqueous media
	Anionic cellulose ethers
	Cationic cellulose ethers
	Miscellaneous cellulose ethers


	Cellulose derivatization in quaternary ammonium electrolytes
	Cellulose dissolution in quaternary ammonium electrolytes (QAEs)
	Etherification of cellulose in QAEs
	Esterification of cellulose in QAEs

	Cellulose derivatization in imidazolium based ionic liquids
	Cellulose dissolution in ionic liquids
	Esterification of cellulose in ionic liquids
	Cellulose alkyl and aryl esters
	Other cellulose esters

	Etherification of cellulose in ionic liquids

	Conclusions and perspectives
	Acknowledgments
	References




