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Abstract In this study, carboxymethyl xylan was

synthesized from wheat straw xylan and then pH/

temperature dual-responsive hydrogels based on the

carboxymethyl xylan (CMX) and poly(N-isopropy-

lacrylamide) (PNIPAm) were firstly synthesized

through semi-interpenetrating polymer network syn-

thetic route. The temperature-responsive behavior was

investigated by swelling experiment and DSC test,

showing that the CMX content played an important

role in the phase transition, and the CMX–PNIPAm

hydrogel had higher pH sensitivity compared with

PNIPAm hydrogel. The CMX content and the

interconnected pore structure within the network

improved the swelling, and the CMX–PNIPAm

hydrogels had a high de-swelling rate. Addition of

AAc in the hydrogels can improve pH sensitivity but

decrease temperature sensitivity. The excellent swel-

ling reversibility in response to temperature was

verified through the oscillatory experiments of swel-

ling and de-swelling. It is expected that the CMX–

PNIPAm hydrogels could be used in biomedical fields

as an intelligent material, especially for drug delivery.
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Abbreviations

BIS N-Methylene bisacrylamide

CMX Carboxymethyl xylan
13C-NMR C-Nuclear magnetic resonance

DSC Differential scanning calorimetry

FT-IR Fourier transform infrared spectroscopy

GC Gas chromatography

LCST Lower critical solution temperature

PNIPAm Poly(N-isopropylacrylamide)

SEM Scanning electron microscopy

semi-IPN Semi-interpenetrating polymer network

Introduction

Xylan, as the major component of hemicelluloses, is

one of the most abundant polysaccharides in plants. It

is widely used in many fields, for example, to produce

xylitol as a functional food additive (Ebringerova et al.

2005) and the biomedical field for drug delivery (Sun

et al. 2013). In addition to the advantages of

biodegradability and low-toxicity, many beneficial

effects of xylans have been reported, including anti-

inflammatory effects, immune function, bone tissue

regeneration, and so on (Ebringerová and Heinze

2000; Bush et al. 2016). It is reported that car-

boxymethylation of polysaccharides is a functional

modification to prepare bio-based materials with

useful properties, such as films, emulsions, suspen-

sions, and for binding and maintaining water (Heinze

1998). Some polysaccharides have been modified into

carboxymethyl polymer for preparing intelligent

polymeric hydrogels, such as carboxymethyl chitosan

(Guo and Gao 2007; Azarova et al. 2016) and

carboxymethyl cellulose (Ma et al. 2007; Dai et al.

2018; Bajpai and Shrivastava 2005). The car-

boxymethylation of xylan was also investigated

because carboxymethyl xylan (CMX) is more hydro-

philic than xylan and can decrease the surface tension

of water (Petzold et al. 2006a, b). CMX can be used to

synthesize pH-sensitive hydrogel because of the

presence of carboxyl groups; however, CMX-based

hydrogel has not been studied.

Intelligent polymeric hydrogels have become a

research interest because of their sensitivity to envi-

ronmental stimuli. The preparation of smart hydrogel

is one of the study focuses, due to its widespread

applications in many fields, such as drug delivery

system (Huynh et al. 2009), cell encapsulation vehicle

(Roy and Gupta 2003), tissue engineering scaffold

(Lee and Mooney 2001; Jeong et al. 2002), and wound

dressing (Razzak et al. 2001). Temperature sensitive

hydrogels, especially PNIPAm gel, have attracted

extensive interest, because the lower critical solution

temperature (LCST) is close to the human body

temperature. Semi-interpenetrating polymer network

(semi-IPN) technology is an important method to

prepare thermo- and pH-sensitive hydrogels because

of its advantages, such as excellent sensitivity to
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stimulus (Guo and Gao 2007) and high mechanical

strength (Lee and Chen 2001). In recent years, a

particular interest in the preparation of the semi-IPN

hydrogels is the introduction of natural polysaccha-

rides (Dragan 2014; Sun et al. 2016). The incorpora-

tion of natural polysaccharides could adjust the LCST

of the hydrogels and improve the biodegradability and

biocompatibility of the hydrogels as well as the

swelling and de-swelling rate (Zhang et al.

2005a, b). A variety of natural polysaccharides have

been used to achieve these excellent performances,

such as carboxymethyl chitosan (Guo and Gao 2007),

carboxymethyl cellulose (Ma et al. 2007), sodium

alginate (Zhang et al. 2005b), dextran (Zhang et al.

2004b), konjac glucomannan (Liu et al. 2010), and

kappa-carrageenan (Chen et al. 2009).

Xylan-based hydrogels have attracted more and

more attention of researchers in recent years. Bush

et al. (2016) have prepared a hemicellulose xylan/chi-

tosan composite hydrogel, and the thermal-responsive

and injectable composite hydrogel, which is liquid at

room temperature and gels at physiological tempera-

ture, was suitable for the use of bone tissue regener-

ation. Xylan-based temperature/pH sensitive

hydrogels were also prepared for controlled drug

release (Gao et al. 2016). The semi-IPN hydrogels

have been prepared by incorporating phosphorylated

poly(vinyl alcohol) (P-PVA) into the hemicelluloses-

g-poly(acrylic acid) polymeric network, where the

P-PVA was uniformly dispersed and the strong

hydrogen bonding interaction was occurred, leading

to effective increase of thermal stability and compres-

sive strength (Peng et al. 2014). Xylan/poly(-

methacrylic acid) semi-interpenetrating network

hydrogel was prepared, and the hydrogel presented

porous structure, and the interconnected porous chan-

nels increased when the content of xylan was

increased in the hydrogels (Sun et al. 2016). We have

already gained some achievements in the study of

xylan-based hydrogels. A xylan-based pH-sensitive

and biodegradable hydrogel was prepared (Sun et al.

2013), and the hydrogel was used as a carrier for oral

drugs because of the excellent pH-sensitivity and

biodegradability. With acetylsalicylic acid as a model

drug, the release dynamics of the drug-loaded hydro-

gels closed to zero-order drug release kinetics for 6 h.

Moreover, the xylan/poly(acrylic acid) magnetic

nanocomposite hydrogel (Sun et al. 2015) and a novel

hemicellulose-based magnetic hydrogel (Li et al.

2014) were prepared. The prepared hydrogels exhib-

ited porous structure, excellent thermal stability, pH-

sensitivity, and good paramagnetic property.

In this paper, xylan was isolated from wheat straw

and then modified by the carboxymethylation in

ethanol/water medium with sodium monochloroac-

etate, and the obtained CMXwas characterized by FT-

IR and 13C NMR spectroscopies. The CMX and

poly(N-isopropylacrylamide) (PNIPAm) was used to

synthesize pH/temperature dual-responsive semi-in-

terpenetrating hydrogel. The pH/temperature respon-

sive behaviors and the reversibility of swelling and de-

swelling were investigated.

Experimental section

Materials

Wheat straw was collected from Changan Region in

Xi’an city of China and ground to pass a 1 mm size

screen. The xylan material was isolated from the

wheat straw. N-isopropylacrylamide (NIPAm) and

N,N-methylene bisacrylamide (BIS) were obtained

from J&K Chemical LTD. Ammonium persulfate

(APS), anhydrous sodium sulfite, and sodium

monochloroacetate were purchased from Tianjin

Fuchen Chemical Reagent Co. (China). Acrylic acid

(AAc) was obtained from Shanghai Chemical Reagent

Co. (China). All chemicals used were of analytical

grade.

Preparation of pure xylan

Wheat straw powder was delignified with sodium

chlorite under pH 4.0 (adjusted by acetic acid) at

75 �C for 2 h to obtain holocellulose. Hemicelluloses

were isolated from the holocellulose using 10% KOH

at 25 �C for 10 h with a solid to liquor ratio of 1:20 (g/

mL). The obtained hemicelluloses contained

80.4 wt% xylose and 12.5 wt% arabinose (related to

the total sugar content), which was determined by gas

chromatography (GC) analysis.

To prepare pure xylan, the obtained hemicellulosic

material was further treated with 0.05 M HCl at 50 �C
for 4 h with a solid to liquor ratio of 1:20 (g/mL). Gas

chromatography analysis showed that the obtained

xylan contains 93 wt% xylose and 5 wt% arabinose.

The xylose content was close to that material for
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preparing carboxymethyl xylan used by Petzold et al.

(2006a). The weight-average molecular weight of the

xylan is 18,600 g mol-1, which was determined by

gel permeation chromatography (GPC) on a PL

aquagel-OH 50 column (300 9 7.7 mm, Polymer

Laboratories Ltd).

Synthesis of carboxymethyl xylan

The carboxymethylation of xylan was performed

according to the conventional method for car-

boxymethylation of polysaccharides (Heinze and

Pfeiffer 1999; Petzold et al. 2006a, b). Xylan sample

(2.0 g) and NaOH (1.5 g) were added into a three-

necked flask containing 10 mL distilled water for

alkalization at 40 �C for 30 min. Next, 90 mL of

ethanol/water mixture with a ratio of 9:1 (v/v) was

added into the slurry medium. After the addition of

sodium monochloroacetate (2.4 g) and sodium

hydroxide (0.5 g), the reaction temperature was

increased to 70 �C for 2 h. The reaction mixture was

neutralized to pH 5.5, and the resulting product was

collected by filtration and washed with 75% aqueous

ethanol (v/v). The product was dried at 45 �C for 24 h

in a vacuum oven.

The prepared CMX was dissolved in distilled water

with a solid to liquor ratio of 1:20 (g/mL) at 50 �C for

2 h. The pH of the solution was adjusted accurately to

6.0, and then the CMX solution was poured in 3

volumes of ethanol for solid–liquid separation for

15 min. The supernatant liquid was filtered off, and

the solid product was washed with 75% aqueous

ethanol (v/v) for at least five times.

Characterization of CMX

FT-IR and 13C NMR spectroscopies were applied to

evaluate the chemical structure of carboxymethyl

xylan. The dried sample was analyzed by FT-IR

spectrophotometer (Nicolet 510) with KBr discs

containing 1% finely ground sample. For 13C-NMR

spectroscopy, 100 mg of the sample was dissolved in

1 mL D2O completely, and the solution was trans-

ferred into the NMR tube, and the NMR spectrum was

recorded on a Bruker AMX 400 spectrometer at room

temperature. The 13C NMR spectrum of the CMX was

measured by using the pulse program of ‘zgig30’, and

2000 scans was performed.

Synthesis of hydrogels

The CMX–PNIPAm semi-interpenetrating hydrogels

were synthesized in aqueous solution using free

radical initiator system, and Scheme 1 displays syn-

thetic scheme of CMX–PNIPAm hydrogel. As listed

in Table 1, various ratios of CMX and NIPAm were

dissolved in distilled water. As the redox initiation

system, 1 wt% APS and 3 wt% anhydrous sodium

sulfite were added into the mixed solution with a rapid

stirring speed, and then BIS was added slowly as the

crosslinker. The prepared hydrogels were collected

after the gelation was completed. PNIPAm hydrogel,

xylan-PNIPAm, and CMX–PNIPAm/AAc were also

prepared as the above described method, and the feed

compositions are listed in Table 1. All hydrogels were

cut into cubes (5x5x5 mm) and immersed in distilled

water for 24 h to remove the residual monomers, and

then the hydrogels were pre-frozen at - 20 �C and

then freeze-dried at - 50 �C for 48 h.

Characterization of the CMX–PNIPAm hydrogels

FT-IR spectra of the prepared hydrogels were recorded

on a FT-IR spectrophotometer (Nicolet 510) after

dried hydrogel samples were ground and pressed into

KBr discs. The morphology of the hydrogels was

observed by a scanning electron microscope instru-

ment under different magnifications (SEM, S-2460 N,

Hitachi, Tokyo, Japan) after the swollen hydrogels

were freeze-dried to maintain the porous structure

without any collapse.

Thermo-behavior of the hydrogels

The thermo-behavior of the hydrogels was studied

through the determination of the equilibrium swelling

ratios of the hydrogels at different temperatures. The

swelling experiment was conducted in triplicate by

conventional gravimetric method. The hydrogel sam-

ples were immersed into distilled water at the

temperatures ranging from 20 to 50 �C. The swollen

hydrogels were taken out and the surface water was

removed using filter paper, and then weighed as soon

as possible. The equilibrium swelling ratio (Seq) was

calculated as follows:

Seq ¼ We �Wdð Þ=Wd ð1Þ
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where the terms Wd is the weight of the dry hydrogel;

and We is the weight of the swollen hydrogel at

equilibrium state.

In order to characterize the thermo-behavior of the

hydrogels, the DSC test (TA Instruments, USA) was

conducted to determine the LCST of the hydrogels.

The swollen hydrogel samples were analyzed at the

temperatures ranging from 15 to 45� under N2

atmosphere with a heating rate of 2 K min-1.

pH-Response of the hydrogels

The pH sensitivity of the prepared hydrogels was

tested in triplicate by gravimetric method in buffer

solutions of desired pH (1.5–11.0) at 20 �C, and ionic

strength was adjusted to I = 0.1 M using NaCl. The

weight of the swollen hydrogel in different pH buffer

solution was measured, and the equilibrium swelling

ratio was calculated by the formula (1).

+
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Scheme 1 Synthetic scheme of CMX–PNIPAm hydrogel

Table 1 Feed compositions for synthesis of different hydrogels

Samples composition PNIPAm Xylan-PNIPAm CMX–PNIPAm CMX–PNIPAm/AAc

NIPa XNa CMXN1a CMXN2 CMXN3 CMXN4 CMXNA1a CMXNA2

NIPAm 100 83.3 90.9 83.3 76.9 71.4 76.9 71.4

Xylan 0 16.7 0 0 0 0 0 0

CMX 0 0 9.1 16.7 23.1 28.6 15.4 14.3

AAc 0 0 0 0 0 0 7.7 14.3

aAbbreviations of the PNIPAm hydrogel (NIP), xylan-PNIPAm hydrogels (XN), CMX–PNIPAm hydrogels (CMXN), and CMX–

PNIPAm/AAc hydrogels (CMXNA), respectively
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Swelling and de-swelling behaviors

of the hydrogels

The swelling and de-swelling behaviors of the

prepared hydrogels were also studied in triplicate by

gravimetric method as above. All dried hydrogel

samples were swelled in distilled water at 20 �C, and
taken out at 30 min intervals and weighted after

removing the excess surface water with a filter paper.

The de-swelling behaviors of the swollen hydrogels

was studied at 40 �C. At predetermined time intervals,

the shrinking hydrogels were taken out and weighted

after blotting the excess water on the surface of

hydrogel. Water uptake and water retention at time t

were defined as follows:

Water uptake% ¼ Wt �Wdð Þ= We �Wdð Þ � 100%

ð2Þ

Water retention% ¼ Wt �Wdð Þ= We �Wdð Þ
� 100% ð3Þ

whereWt is the weight of the hydrogel at swelling time

t; and Wd and We are defined as above.

The temperature-dependent swelling reversibility

of the CMX–PNIPAm hydrogels were determined by

alternately immersing in distilled water at 40 �C and

20 �C. The swelling ratios of the hydrogels were

measured by gravimetric method. The swelling and

de-swelling test were carried out repeatedly with a

period of 24 h.

Results and discussion

Characterization of CMX

The FT-IR spectra of xylan and carboxymethyl xylan

are shown in Fig. 1. According to the previous studies

(Fang et al. 2002; Sun et al. 2005), the absorption

bands at 1614, 1464, 1252, 1040, and 892 cm-1 were

associated with native hemicelluloses in spectrum (a).

The prominent band at 1040 cm-1 was originated

from the C–O–C stretching of pyranoid ring of xylan.

The occurrence of small band at 1166 cm-1 was due to

the presence of arabinose residues. There was a sharp

band at 892 cm-1, which arose from the C1 group

frequency or ring frequency, and this band is charac-

teristic of b-glucosidic linkages between the sugar

units. The broad band at 1614 cm-1 was probably

attributed to adsorbed water (Fang et al. 2002; Sun

et al. 2005). IR spectrum (b) of CMX displayed the

representative absorption peaks for carboxymethyl

groups, and the strong absorption peak at 1601 cm-1

was attributed to the presence of COO- group (Sun

et al. 2013), and the –CH2 scissoring and –OH bending

vibration resulted in the two absorptions at 1419 and

1327 cm-1, respectively. The characteristic absorp-

tions of carboxymethyl xylan appeared obviously,

confirming the successful carboxymethylation of

xylan.

Figure 2 shows 13C NMR spectrum of car-

boxymethyl xylan. The characteristic signals of the

main chain of xylan are depicted between 104 and

75 ppm. The substituents on xylan chain resulted in a

substantial downfield shift of the nearest carbon atom

resonance and moderate upfield shifts of the signals of

the neighboring carbon atoms (Tranquilan-Aranilla

et al. 2012). The signals at 103.9, 78.6, 75.9, 75.0, and

65.2 ppm were assigned to C-1, C-4, C-3, C-2, and

C-5, respectively, of the b-D-xylpyranosyl units of the
xylan (Lawther et al. 1995). As shown in Fig. 2, the

signal of the carboxylate groups appeared at

180.6 ppm (Petzold et al. 2006a; Lawther et al.

1995), and the observed splitting peak may be

attributed to different possible positions of car-

boxymethyl substituents on the xylan polymer chain

(Tranquilan-Aranilla et al. 2012). The signals at

58.7 ppm were assigned to the methylene carbon

Fig. 1 FT-IR spectra of xylan (spectrum a), carboxymethyl

xylan (spectrum b), CMX–PNIPAm hydrogel (spectrum c) and

PNIPAm hydrogel (spectrum d)
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atom of the carboxymethyl groups. These observa-

tions confirmed the carboxymethylation of xylan, and

the degree of substitution of anhydroxylose by

carboxymethyl groups was found to be 0.78, which

was determined by 1H-NMR.

Characterization of the CMX–PNIPAm hydrogels

Compared with the IR spectrum of CMX (spectrum b)

in Fig. 1, the spectra of CMXN2 hydrogel (spectrum

c) and PNIPAm hydrogel (spectrum d) showed a new

peak appearing at around 1645 cm-1 which was the

representative absorption band of the carbonylamide

and N–H stretching in PNIPAm. The two absorption

bands at around 1458 cm-1 and 1368 cm-1 were

attributed to the asymmetric bending vibration of –

CH3 groups and the symmetric vibration coupling of

the double –CH3 on the –CH(CH3)2, respectively. The

peak at 1173 cm-1 was assigned to the contraction

vibration of C–C in the –CH(CH3)2 groups. Because

low amount of CMX was used for the synthesis of the

CMX–PNIPAm hydrogels, the representative absorp-

tions of the CMX at around 1600 cm-1 and

1040 cm-1 correspondingly weakened. Importantly,

the characteristic absorptions of PNIPAm and CMX

were found in the spectrum, and this suggested the

successful synthesis of the CMX–PNIPAm hydrogel

(Ma et al. 2007; Lee and Chen 2001).

The SEM photographs of the hydrogel (CMXN2)

are showed in Fig. 3, and the surface of the hydrogel

displayed a uniform morphology at 9 50. From the

SEM photographs at 9 400, it was observed that

different sizes of pores were formed within the

hydrogel, and it is obvious from Fig. 3c that these

pores were connected with each other, which resulted

in the formation of the interconnected pore channels.

The pore channels provided the way for the water to

diffuse in and out of the hydrogels, resulting in the

increases of the swelling and de-swelling rates of the

hydrogels, and this also would improve the tempera-

ture sensitivity of the hydrogels and make the porous

and thermo-sensitive hydrogels have potential appli-

cations as biomaterial (Teli et al. 2007), and the porous

network could provide enough space and channels for

the loading and releasing of drugs (Cheng et al. 2003).

Temperature dependence of the swelling ratio

As shown in Fig. 4, the swelling ratios of the CMX–

PNIPAm hydrogels displayed obvious temperature

dependence over the temperatures ranging from 20 to

50 �C. It was clear that the equilibrium swelling ratios

of all hydrogels decreased with an increase in

temperature without any exceptions, and a sharp

decrease occurred at the transition temperature, thus

the CMX–PNIPAm hydrogel demonstrated

Fig. 2 13C NMR spectrum of CMX in D2O
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temperature sensitivity. Compared to the pure PNI-

PAm hydrogel, the transition temperature of the

CMX–PNIPAm hydrogels shifted to higher tempera-

ture. Upon increasing the CMX content, the shrinkage

time of the hydrogels prolonged, suggesting that the

composition of hydrogels played an important role in

the phase transition behaviors of hydrogels.

It is well-known that the temperature sensitivity of

PNIPAm hydrogel is attributed to the pendant groups,

the amide (hydrophilic group) and iso-propyl (hy-

drophobic group) in the NIPAm unit, with a special

hydrophilic and hydrophobic balance (Hirokawa and

Tanaka 1984). At low temperature (below the LCST),

hydrogen bonds formed between water molecules and

hydrophilic groups on the polymer chain, leading to a

great deal of water up-taking into the temperature

sensitive hydrogel network. When the temperature

increased (above the LCST), the hydrogen bonds

became weakened, and hydrophobic interactions of

the polymer chains became a leading role, and the

polymer chains in hydrogels aggregated with each

other through hydrophobic interactions among

hydrophobic regions, and a great amount of water

molecules absorbed in the network were supplanted,

resulting in the volume phase transition and dramatic

decrease of equilibrium swelling ratio. If the balance is

broken by the change of the interactions between the

hydrophilic or hydrophobic groups, the temperature of

Fig. 3 SEM images of the CMXN2 hydrogel dried in a freeze dryer after swelling at 25 �C (a 9 50; b 9 400; c 9 1000)
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Fig. 4 The equilibrium swelling ratios of the CMX–PNIPAm

hydrogels at different temperatures
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the dehydration would fluctuate, giving rise to the shift

of LCST of the hydrogels (Inomata et al. 1990;

Shibayama et al. 1996). As CMX is more hydrophilic,

the equilibrium swelling ratio of the CMX–PNIPAm

hydrogels was relatively higher compared with

PNIPAm hydrogel. Addition of the CMX broke the

original balance between hydrophilic and hydrophobic

groups, and the increase of the hydrophilicity

enhanced hydrogen bond interactions; therefore, the

transition temperature of the CMX–PNIPAm hydro-

gels increased with an increase in the CMX content.

The phase transition behavior of the synthesized

hydrogels was further studied by DSC test.

LCST of the CMX–PNIPAm hydrogels

According to Nemethy–Scheraga hydrophobic inter-

action theory, the thermodynamic properties of the

free water in the hydrogel network can be character-

ized by DSC test. At the temperature below its LCST,

the hydrophilic groups in hydrogels interact with

water molecules through hydrogen bonds, and the

enthalpy change DH of the swelling process is

negative because of the formation of the hydrogen

bonds. Meanwhile, these hydrogen bonds behave

cooperatively around the hydrophobic groups to form

a stable and orderly shell; therefore, the entropy DS
becomes negative. From the formula DGwater = DHwa-

ter–TDSwater, we can know that when the T rises up to

Tv which make DGwater = 0, the phase transition will

occur with a continue increase in temperature (Liu

et al. 2004). In this process, the absorbed water and

hydrogel polymer are separated, and this is an

endothermic process because of the destruction of a

part of hydrogen bonds and the collapse of the shell,

and this was reflected in the DSC curves in which an

endothermic peak was present. LCST is determined as

the intersecting point of two tangent lines from the

baseline and slope of the endothermic peak, which

corresponds to the phase transition temperature

(Zhang et al. 2009).

The LCST of the CMX–PNIPAm hydrogels were

determined by DSC as shown in Fig. 5. Compared to

the xylan-PNIPAm hydrogel, the LCST of the CMX–

PNIPAm hydrogels increased obviously, demonstrat-

ing that CMX is more hydrophilic than xylan and

proving once again that the carboxymethylation of

xylan was achieved. The LCST of the CMX–PNIPAm

hydrogels were higher than PNIPAm hydrogel, and

the LCST increased in the order of CMNX1\
CMNX2\CMNX4 with increasing CMX content

in the hydrogels. Such a result is analogous to that

observed by swelling ratio measurement as above.

Because of the introduction of the hydrophilic groups,

the coordination of hydrogen bonds within the poly-

mer network strengthened and the bound water shell

around hydrophobic groups was more stable, causing

an increase in the enthalpy change DH and a decrease

in the entropy DS during the swelling process (Liu

et al. 2004), and the final performance showed an

increase in the LCST.

pH-Sensitivity of the hydrogel

The equilibrium swelling ratios of the prepared

hydrogels at different pH are shown in Fig. 6a, and

the CMX–PNIPAm hydrogel had a relatively higher

pH sensitivity compared with PNIPAm hydrogel, and

the swelling ratio of the PNIPAm hydrogel only

increased from 5.3 to 6.6 with increasing pH value

from 1.5 to 12; however, the swelling ratio of the

CMX–PNIPAm hydrogel increased from 4.7 to 6.7

with increasing pH value from 1.5 to 12. This

phenomenon can be explained according to the

descriptions of Ma et al. (2007) and Lee and Chen

(2001), and –COOH groups of CMX can form

hydrogen bonds with both the –OH groups in the

CMX and the –NHCO in PNIPAm in acidic solution,

and a large amount of hydrogen bonds between the

inter- and intra-molecules could make the CMX–

PNIPAm hydrogel shrink. In the higher pH solution, –

COOH groups were negatively charged, and the
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Fig. 5 DSC curves of the XN and CMXN hydrogels
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hydrogen bonds in the network were dissociated, and

the electrostatic repulsion between the –COO- groups

made the hydrogels swell. It is well-known that the

hydrophilic and ionic groups in polymer network have

significant impact on the swelling behavior and play

an important role in the swelling (Kim and Park 2004).

In order to improve the pH sensitivity of the CMX–

PNIPAm hydrogel, AAc was added, mixing with

CMX and NIPAm, during the preparation of the

hydrogels. As shown in Fig. 6a, the swelling ratio of

the CMXNA2 hydrogel increased from 3.0 to 7.6 with

increasing pH value from 1.5 to 12. The CMX–

PNIPAm/AAc hydrogel was more sensitive to pH

because of the formations of more hydrogen bonds at

low pH and stronger electrostatic repulsion at high pH.

Figure 6b shows the equilibrium swelling ratios of the

CMX–PNIPAm/AAc hydrogels at different tempera-

tures, and the swelling ratios of the hydrogels appeared

a relatively increase at low temperature because of the

presence of the ionizable –COOH group. With

increasing the AAc content in the hydrogels, the

phase transition temperature shifted to higher temper-

ature and the transition region became broad, and the

temperature sensitivity slightly decreased. The same

conclusion was acquired from the DSC test of the

CMX–PNIPAm/AAc hydrogels, as shown in Fig. 6c.
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The addition of the hydrophilic AAc broke the balance

between hydrophilic and hydrophobic groups, and the

hydrophilic –COOH groups made the coordination of

hydrogen bonds within the hydrogel enhance and the

water shell around the hydrophobic groups became

denser at low temperature. Therefore, the enthalpy

change DH during the swelling process increased and

the entropy change DS decreased, and then the LCST

increased when the movement of the polymer chains

tended to shrink and twist with increasing temperature.

Dual sensitivities on the pH and temperature give the

hydrogels wider applications, especially suitable for

the applications in gastro-intestinal drug delivery.

Swelling behavior

The swelling behavior of the CMX–PNIPAm hydro-

gels with different CMX/NIPAm ratios at 20 �C are

shown in Fig. 7. According to the previous study

(Dang et al. 2011), it is known that the swelling

process of hydrogels is controlled by three consecutive

steps: the diffusion of water molecule into the polymer

system, the relaxation of the hydrated polymer chains,

and the expansion of the polymer network into

aqueous solution. Strong inter/intra molecular inter-

actions would greatly constrain the relaxation of the

polymer chains, leading to the slower swelling rate for

that hydrogel (Dang et al. 2011; Zhang et al. 2004a).

The inter/intra molecular interactions in the CMX–

PNIPAm hydrogels were stronger than that in the

PNIPAm hydrogel, resulting in the lower swelling

rate. The interactions in the polymeric network would

be strengthened further from CMXN1 to CMXN2

because of an increase in CMX content; however, the

swelling ratio of the CMX–PNIPAm hydrogels

increased when the content of the CMX in the

hydrogels increased to 23.1 wt%, and this phe-

nomenon is consistent with the results of temperature

sensitive hemicellulose-based hydrogels studied by

Yang et al. (2011), and the result may be due to the

minimum levels of CMX additions in CMXN1 and

CMXN2 hydrogels. The swelling behavior is com-

plexly controlled by the synergistic effect of the

several factors, mainly including the interactions

among the polymer in the hydrogels (Jeong et al.

2002; Dang et al. 2011), the pore size that influenced

by themethod of drying sample (Yang et al. 2011), and

the chemical structure (Zhang et al. 2009; Kaneko

et al. 1995). Owing to an increase in the hydrophilic

CMX content, more hydrogen bonds with water

molecules generated, leading to an expanded config-

uration of the hydrogel (Yin et al. 2007), thus a faster

water uptake rate appeared (Yang et al. 2011). The

superior hydrophilicity of the CMX and the intercon-

nected pore structure within the network made the

swelling ratio increase with increasing the CMX

content.

De-swelling behavior

Figure 8 shows the de-swelling behaviors of the

prepared hydrogels from the equilibrated swollen

state at 20 �C to the shrunken state at 40 �C. All
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prepared hydrogels had fast de-swelling rates, and the

de-swelling rate of the CMX–PNIPAm hydrogel

(CMXN3) was higher than that of PNIPAm hydrogel;

however, the de-swelling rate of the CMX–PNIPAm/

AAc hydrogel was lower than that of the CMX–

PNIPAm hydrogel (CMXN3) because of the incorpo-

ration of the non-thermo-responsive specie AAc into

the hydrogels (Yang et al. 2011). Zhang and cowork-

ers’ study found that the de-swelling rate of the

dextran–NIPAAm hydrogel was controlled by two

opposite factors, weaken skin layer and dilution with

the incorporation of the non-thermo-responsive spe-

cies (Zhang et al. 2004b). When the CMX–PNIPAm

hydrogels were immersed in water at 40 �C, the

absorbed water in the outmost region of the hydrogel

was extruded firstly and the hydrophobic interactions

in this region became stronger, resulting in a rapid

shrinkage of the outmost surface (Kim and Park 2004).

The formation of a dense skin layer in PNIPAm

hydrogel would limit the diffusion out of free water in

the hydrogel network, and this lead to a slower de-

swelling rate (Zhang and Zhou 2000). In contrast, the

introduction of the hydrophilic CMX polymer into

hydrogel networks could inhibit the formation of the

dense skin layer, and such hydrophilic chains also

would facilitate water molecule permeating from the

gel interior (Lee and Chen 2001; Kim and Park 2004;

Zhang et al. 2005b). As the same effect of the pore

structure on the swelling process, the pore structure of

the CMX–PNIPAm hydrogels provided channels for

water diffusing out, and heat transfer from the hot

water into the innermost of the hydrogel occurred

rapidly because of the existence of the pores (Lee and

Chen 2001), which resulted in a rapid phase

separation.

Temperature-dependent swelling reversibility

of the CMX–PNIPAm hydrogels

The oscillatory swelling experiments were conducted

by alternately immersing swollen hydrogels in dis-

tilled water at 40 �C and 20 �C. The temperature-

dependent swelling reversibility of the CMX–PNI-

PAm hydrogels is shown in Fig. 9, demonstrating that

the hydrogels were evidently in response to the

alternating temperature change between 40 �C (above

the LCST) and 20 �C (below the LCST). When the

swollen CMX–PNIPAm hydrogels at 20 �C were

placed in distilled water at 40 �C, the hydrogels

rapidly dewatered in the next time interval. It is

obvious that water uptake and de-watering behaviors

changed alternately, which would be due to CMX that

facilitated water diffusion in the semi-IPN hydrogel

(Ma et al. 2007). The above results showed that the

synthesized CMX–PNIPAm hydrogels possessed a

good reversible response to the change of temperature

with an excellent reproduction. Thanks to its temper-

ature responsiveness and reversibility, the CMX–

PNIPAm hydrogels are expected to be an intelligent

material for controlled drug release. Xylan-based

temperature/pH sensitive hydrogel has been studied

for drug release, and the drug encapsulation efficiency

of the hydrogel reached to 97.60% and the cumulative

release rate of acetylsalicylic acid was 90.12% and

26.35% in the intestinal and gastric fluid, respectively

(Gao et al. 2016).

Conclusions

A pH/temperature dual-responsive semi-interpenetrat-

ing hydrogel was synthesized using CMX and

PNIPAm in this study, and xylan was extracted from

wheat straw and modified by carboxymethylation. The

chemical structure and morphology of the synthesized

hydrogels were studied by FT-IR and SEM, respec-

tively. Compared to the pure PNIPAm hydrogel, the

transition temperature of the CMX–PNIPAm hydro-

gels shifted to higher temperature. The lower critical

solution temperature of the prepared hydrogels

increased and the shrink-age extended with an
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increase in CMX content. The superior hydrophilicity

of the CMX and the interconnected pore structure

within the network improved the swelling, and the

CMX–PNIPAm hydrogels also had a high de-swelling

rate. Addition of AAc in the hydrogels improved pH

sensitivity but decreased temperature sensitivity. The

hydrogels possessed a good reversible response to the

change of temperature with an excellent reproduction.

Attributing to temperature/pH responsiveness and

reversibility, the synthesized CMX–PNIPAm hydro-

gel is expected to be used in biomedical fields as an

intelligent material.
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