
ORIGINAL RESEARCH

Rapid quantification of cellulose nanocrystals by Calcofluor
White fluorescence staining

Roi Peretz . Hadas Mamane . Elizaveta Sterenzon . Yoram Gerchman

Received: 24 June 2018 / Accepted: 26 November 2018 / Published online: 30 November 2018

� Springer Nature B.V. 2018

Abstract Cellulose nanocrystals (CNCs) have

gained increased interest worldwide for their unique

properties. CNC production by acid hydrolysis of

cellulose-rich biomass is well established, but its’

quantification is still complicated. In this study, a rapid

method for the determination of CNC concentration

using Calcofluor White (CW) fluorescence dye is

demonstrated for both purified and homemade CNCs

recovered from Whatman filter paper. The method is

robust, selective for crystalline cellulose, suitable for

routine measurement in CNC production and that the

pH must be basic for staining using CW.
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Introduction

In recent years, cellulose nanocrystals (CNCs) have

gained increased interest worldwide due to their

unique and interesting properties. These rod-like

cellulose whiskers have been applied in many indus-

tries including water treatment and purification (Car-

penter et al. 2015; Mautner et al. 2015; Voisin et al.

2017), building and reinforcement composites (Lee

et al. 2014), paper and packaging (Cowie et al. 2014)

and biomedical (George and Sabapathi 2015). CNCs

vary in size from 100 to 250 nm in length and 5 to

70 nm in width (Du et al. 2016) and demonstrate high

strength, thermal stability, large surface area, unique

optical properties, biodegradability, and are consid-

ered non-toxic (Song et al. 2014; Xu et al. 2017).

CNCs are produced from cellulosic biomass,

mostly wood (Sheltami et al. 2012), although their

production from other types of biomass has been

reported, e.g. wastepaper (Danial et al. 2015), filter

paper (Tang et al. 2013), eucalyptus pulp (Bian et al.

2017), citrus wastes (Mariño et al. 2015), bleached

pulp fibers (Wang et al. 2017), rice husks (Johar et al.

2012) and even industrial sludge (Jonoobi et al. 2012).

The production of CNCs is done by degrading the

disordered part of the cellulose, most commonly by

the use of concentrated sulfuric acid (Capron et al.

2017; Chen et al. 2016), although other, milder

treatments are being researched (Bian et al. 2017;

Wang et al. 2017; Chen et al. 2016). After the

degradation step, the CNCs are washed, and its

amount is estimated by separation of the CNCs from

the acids, drying and weighing. This process is

tedious, time consuming, and does not allow for easy

optimization of CNC production process. Chemical

Oxygen Demand (COD) analyses was also suggested,

however errors might occur due to the presence of

lignin or hemicellulose (Bian et al. 2017), and COD

measurement is also time consuming.

Calcofluor White (CW) is a fluorescence dye used

widely in the paper and textile industries as whitening

agents (Harrington and Hageage 2003). This dye (and

probably similar dyes, such as Phore-white, Tinopal)

bind oriented structural polysaccharides like crys-

talline cellulose and chitin, resulting in a dramatic

increase in the dye fluorescence through an unknown

mechanism (Harrington and Hageage 1991; Herth and

Schnepf 1980; also see Fig. 1). Previous papers have

demonstrated CW’s ability to bind oriented cellulose

fibrils and suggested that CW is not only adsorbed on

the CNC surfaces but does so in an oriented way

(Herth and Schnepf 1980). Due to this ability, CW has

been used in the study of plant structure (Hughes and

McCully 1975), the study of bleaching process in the

paper industry (Gray and Olmstead 1993), and rapid

detection of clinical fungi infection (Harrington and

Hageage 2003), but to date it was not used for

detection of CNCs.
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In this study, we present a rapid method for CNC

quantification based on CW fluorescence. A calibra-

tion curve is presented using the model developed

from commercial CNCs, and the method was then

applied for rapid detection of CNCs produced from

filter paper, demonstrating its potential for industrial

and academic uses.

Materials and methods

Materials and standards

CNC powder was purchased from Nanografi (Turkey).

Calcofluor White (CW) M2R (Cat #18909), CMC

(419303; degree of substitution = 0.9) and a-cellulose

(C8002) were purchased from Sigma-Aldrich (Israel)

and was used in this study as received. Sulfuric acid

ACS reagent grade and Potassium hydroxide (KOH)

were obtained from Merck (Germany). Working CNC

suspensions were prepared by adding the desired

amount of commercial CNCs to known volume of

deionized water (DIW) (Direct-Q3 UV System, Mil-

lipore-France) and continuously stirring.

Fluorescence procedure

Samples (100 ll) were placed in in a flat-bottomed

black 96 wells plate (NuncTM, Denmark) and mixed

with CW reagent and 5M KOH solution for total

volume of 200 ll. Fluorescence signal was quantified

using Spark 10M plate reader (Tecan, Switzerland).

This was reported in the instrument’s Relative Fluo-

rescence Units (RFU), which was calculated by

SparkControl software. Excitation was measured at

355 nm and emission at 433 nm. The plate was

continuously shaken to prevent CNC sedimentation.

Temperature was kept at 30 �C. Fluorescence was

read in kinetic mode every 10 min with maximal

incubation time of 120 min. At least five wells were

examined for each time interval tested.

In-house CNC production from Whatman filter

paper

Cellulose nanocrystals were prepared by acid hydrol-

ysis as previously described (Johar et al. 2012;

Sheltami et al. 2012). Whatman filter paper 1 was

ground to fibers using a 250W laboratory blade mill

(MRC Ltd., Israel), aqueous sulfuric acid (64 wt%)

was added to the fibers at 1:20 ratio (w/w), and the

mixture incubated at 45 �C for the designated time.

Samples were taken after 0and 45 min of hydrolysis

and diluted 10-folds with cold water to stop the

reaction. The acid was removed from the CNCs by

centrifugation (10,000 rpm, 15 min, 10 �C; Jouan

B4i), decanting the liquid, and re-suspending the

pellet in DIW (three repeating washes). Finally, the

CNC pellet was suspended in 30 ml DIW, and

dialyzed against deionized water until a constant pH
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Fig. 1 Fluorescence as a function of CNC concentration:

a Fluorescence reading kinetics for different CNC concentra-

tions; b fluorescence reading after 30 min; average of 5 readings

± SD
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Fig. 2 CNC fluorescence as function of conditions and time
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was reached. CNC fluorescence procedure was done

as mentioned above.

Results and discussion

CNC fluorescence after CW

CW reagent has been used extensively for dyeing

oriented structural (i.e. crystalline) cellulose in plant

tissues (Hughes and McCully 1975). Since CNCs are

highly structurally oriented (and that is where their

crystallinity arises from), we assumed that CW can

also be used for staining and quantification of such. To

examine this approach, commercial CNC suspensions

(10 mL) at different concentrations were prepared in

DIW (0%, 0.2%, 0.4%, 0.6%, 0.8% and 1% w/v). For

each suspension, a volume of 100 ll was mixed with

50 ll CW reagent and 50 ll 5M (10% w/v) Potassium

hydroxide (KOH), as suggested for staining plant

tissue (Harrington and Hageage 2003), providing a

final CNC concentrations of 0%, 0.1%, 0.2%, 0.3%,

0.4% and 0.5% (w/v) respectively. The samples were

placed in a black 96 well plate and tested for

fluorescence kinetics (Fig. 2).

Figure 1a illustrates the relative fluorescence units

(RFU) as a function of CNC concentration from 0 to

0.5% and incubation time up to 120 min and Fig. 1b

illustrates fluorescence reading after 30 min for the

various CNC concentration. From Fig. 1 it is evident

that the fluorescence reading increased in the first

30 min, probably due to diffusion of the CW into the

CNC particles and then reached a plateau up to

120 min. Figure 1b shows an increase in CNC con-

centration for 30 min. incubation time. Equilibrium

fluorescence was positively correlated to CNC con-

centration with near linear correlation up to 0.4% (w/

v) CNCs (Fig. 3).

Another set of experiments examined the optimum

amounts of CNCs (1%; 0–200 ll), CW (0–200 ll) and

5M KOH (0–200 ll) for maximal RFU signal

(Table 1). The different conditions were also plotted

as RFU vs. incubation time. Optimum was determined

by the highest RFU reading after 30 min and observed

for condition ‘E’ (80 ll of CW reagent and 20 ll of

5 M KOH).

To test whether this fluorescence dyeing is selective

for CNCs and not for cellulose in general, a similar

experiment was conducted using carboxymethyl cel-

lulose (CMC), a cellulose derivative with very low
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Fig. 3 CNC and CMC solutions fluorescence (average of 5

readings ± SD). The linear fit was passed only through the

linear readings (0–0.4%)

Table 1 Different samples mixtures for CNC fluorescence tests

CNC 1%

solution (ll)

CW

(ll)

5 M

KOH

(ll)

Total

volume

(ll)

Final CW

concentration (%v/

v)

Final KOH

concentration in well

(M)

pH Fluorescence reading

(RFU) after 30 min

A 100 0 100 200 0 2.5 14 500.6 ± 6.4

B 100 20 80 200 10 2.0 14 39,668.8 ± 1177.0

C 100 40 60 200 20 1.5 14 38,801.2 ± 1315.2

D 100 60 40 200 30 1.0 13–14 42,971.6 ± 3573.0

E 100 80 20 200 40 0.5 12–13 47,859.4 ± 8608.1

F 100 100 0 200 50 0.0 6 10,321.8 ± 727.9

G 200 0 0 200 0 0.0 N.A. 1445.4 ± 207.0

H 0 0 200 200 0 5.0 N.A. 968.4 ± 11.5

I 0 200 0 200 100 0.0 N.A. 7045.2 ± 149.2
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crystallinity (Xiquanq et al. 1990) at high degree of

substitute (here 0.9), compared to the much higher

92% for the CNCs used (manufacturer data). Solutions

of all materials were prepared as above, where 100 ll

of each was mixed with 80 ll CW reagent and 20 ll

5 M KOH, incubated, and read after 30 min in the

plate reader as detailed above (Fig. 3). The results

demonstrated linearity of the fluorescence signal up to

0.4% (w/v) CNCs (Fig. 3), with specificity of the CW

staining, since CMC (a modified cellulose with very

low crystallinity; Xiquanq et al. 1990) gave only

negligible fluorescence, and even this only at the

highest concentration.

KOH effect on CNC fluorescence

Previous work (Harrington and Hageage 1991) and

common clinical protocols recommended the addition

of KOH to the CW reagent as KOH was demonstrated

to be important for softening the fungal chitinous cell

wall (Hamer et al. 2006), however still no optimization

was evident. Given this, we examined the impact of

various KOH additions on CNC fluorescence value.

The results presented in Fig. 4 demonstrate that the

presence of KOH not only quench background fluo-

rescence (compare 0% CNC and 0% CNC ? KOH)

but is also mandatory for effective labeling of the

CNCs.

To determine the proper KOH conc. for maximal

effect, a 5 M KOH solution was used to make various

dilutions of KOH. For each KOH solution, the pH was

tested using a simple pH stick. A volume of 100 ll of

1% CNC solution was mixed with 20 ll KOH (at

various conc.) and 80 ll of CW, in different wells.

Fluorescence reading was examined (Fig. 5).

The highest fluorescence was obtained with final

conc. of 0.125M KOH and measured pH value of

12–13. There were statistically significant differences

between group means as determined by one-way

ANOVA (F (5,24) = 198.8, p\ 0.0001). Letters

above the graph indicate statistically significant

different groups. This suggests that there is an

optimum pH for CNC fluorescence, and the examined

samples should be titrated to pH =12–13 prior to
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conducting the tests. This also correlates to previous

results that suggested optimum at this pH (Table 1).

CW staining of in-house CNCs

To further test our quantification approach on ‘real-

life’ samples, we used the CW fluorescence method to

quantify CNCs prepared from Whatman paper 1 in-

house. Whatman filter paper was hydrolyzed with 64%

sulfuric acid, the crystals separated from the liquid by

centrifugation, washed from the acid, re-suspended in

DIW, and CW and KOH added—to 100 ll recovered

CNCs, 20 ll 5M KOH, and 80 ll of CW. Fluores-

cence reading was determined (Fig. 6).

No fluorescence was evident at time 0, indicating

the lack of solubilized CNCs. Clear and high fluores-

cence was visible after 45 min of hydrolysis, indicat-

ing the presence of soluble CNCs and demonstrating

the applicability of the CW method for detection of

CNCs without the need for time consuming drying.

Conclusion

In this study, a new, simple and rapid approach for the

determination of CNC concentration in solution is

presented, based on the fluorescence resulting from the

interaction of crystalline cellulose, but much less with

disordered cellulose, with CW. Staining of crystalline

cellulose resulted in significantly higher fluorescence

than staining of disordered cellulose and cellulose

derivative, with linear relation between CNC

concentration and fluorescence signal. This method

is therefore suggested to depend on the cellulose

crystallinity index, making this method highly suit-

able for CNC quantification. pH conditions for effec-

tive staining were also established, demonstrating the

importance of basic pH (ideally pH =12–13). The

method was tested on CNCs produced from Whatman

1 paper, demonstrating its validity. This method could

simplify optimization of CNCs production conditions.

It should be noted that although CW has been widely

used for histological staining of plant tissues, it has not

been used to-date for CNCs applications.
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