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Abstract In this work, the kinetic and the mechanism

of isothermal degradation of local chitin (CN), chitosan

(CS) and the biocomposite Bentonite/Chitosan (5%Bt/

CS) were investigated by thermogravimetric analysis in

air atmosphere and in the temperatures range

285–330 �C. Fourier transform-infrared, X-ray diffrac-

togram and differential scanning calorimetry analyses

were used to determine the structure of the as prepared

samples. DTG curves of the samples show that CN and

CS presented one peak, while those of 5%Bt/CS

presented one to three peaks as the isothermal degrada-

tion increases. This difference was linked to the strong

interactions between CS and Bentonite, which improve

the stability of CS in the biocomposite 5%Bt/CS. The

common first DTG peak appearing in each sample was

treated using the Friedman method, leading to

the activation energy (Ea) of Ea(CN) = 127.18

kJ/mol[Ea(CS) = 103.90 kJ/mol[Ea(5%Bt/CS) =

80.64 kJ/mol. The auto-catalytic Sestak–Berggren

model was found to be qualitatively matched the

isothermal degradation process of each sample. The

thermodynamic parameters show the appearance of an

order in the activated complex with respect to the initial

state and that the isothermal degradation process is

endothermic and is not spontaneous.
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Introduction

CN and its derivatives, mainly CS, are part of the

larger natural biopolymers that include cellulose

(Ibrahim 2002; Hu et al. 2014; Wu and Farnood

2015), starch, collagen, etc. (Kumar and Majeti 2000;

Rinaudo 2006; Swetha et al. 2010; Saheb and Jog

2015). Chemically, CN and CS are both linear

polysaccharide containing 2-acetamido-2-deoxy-d-

glucopyranose (GlcNAc) and 2-amino-2-deoxy-d-

glucopyranose (GlcN) units linked by (1 ? 4) glyco-

sidic bonds. They can be distinguished by their

contents as shown in Fig. 1 (Signini and Filho 1999;

Lamarque et al. 2004).

Their physical–chemical properties and their appli-

cations in several fields such as, biology, pharmacy,

food packaging, matrix in composite materials, and

medicine, depend greatly in the degree of deacetyla-

tion (DD), which determines the ratio between D-

glucosamine and N-acetyl -D-glucosamine units in the

polymer chains (Kumar and Majeti 2000; Khor and

Lim 2003; Rinaudo 2006; Gámiz-González et al.

2017; Islam et al. 2017). DD over 50% is considered to

be CS and below 50% the polymer is called CN (Pillai

et al. 2009). Given the interest of these biopolymers,

their obtaining from several sources, animal, fungal

(mycelium walls) or vegetable (algae), has been the

subject of several research (Ferraro et al. 2010).

Recently CN of poriferan origin has been widely

described as an attractive CN source (Wysokowski
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et al. 2013; Wysokowski et al. 2015; Stepniak et al.

2016; Ehrlich et al. 2017; Zółtowska-Aksamitowska

et al. 2018; _Zółtowska-Aksamitowska et al. 2018).

However, the insolubility of CN limits its uses, unlike

CS which is flexible, soluble in dilute acid acetic, HCl

and other acids (Roberts 1992; Rinaudo et al. 1999;

Nisticò et al. 2017). CS, is also a promising

biodegradable biopolymer, with good film forming

properties and immense potential as active food

packaging material due to its antimicrobial activity

(Zheng and Zhu 2003; Anitha et al. 2014; Baranwal

et al. 2018). To obtain CS, the N-deacetylation

reaction of CN is generally performed in concentrated

alkaline medium and at high temperature (Sagheer

et al. 2009; Teli and Sheikh 2012; Ahlafi et al. 2013).

However, in most engineering applications, there

are some limitations of these polymers, due to their

low mechanical, humidity resistance and thermal

stability properties (Peniche-Covas et al. 1993; Barros

et al. 2015; Corazzari et al. 2015). These limitations

are overcome through the recent development of a new

class of materials, known as biocomposites/bio-

nanocomposites materials, where these biopolymers

were used as a matrix (Alexandre and Dubois 2000;

Kittur et al. 2002; Darder et al. 2003; Günister et al.

2007; Cárdenas et al. 2008; Chivrac et al. 2009; Le

et al. 2012; Shukla et al. 2013; Xie et al. 2013). Unlike

other nanofillers, biopolymer/clay bio-composites

have been widely studied, and applied in several

research areas, because clay materials are available,

cheaper and because their intercalation chemistry is

well known (Chivrac et al. 2009), etc. Among the

clays, CS/Montmorillonite (MMT) is the most studied

ones (Chivrac et al. 2009; Xie et al. 2013; Giannakas

et al. 2014). It was demonstrated that CS/MMT

displayed improved properties such as mechanical

properties, gas barrier and thermal stability when

compared to neat CS (Moussout et al. 2018). This was

linked to the excellent dispersion of nanoclay and its

strong affinity with CS matrix. However, in literature

there is a lack of systematic studies about the

properties of biocomposite CS/Bentonite clay (CS/

Bt), in particular its thermal stability, which is an

important parameter for many technological applica-

tions. Numerous studies demonstrated that this param-

eter can be influenced by various factors such as the

origin of starting materials, DD and the concentrations

of CS and the clay (Günister et al. 2007). Günister

et al. (2007) observed that when the MMT amount is

increased the thermal stability of CS increased. Given

the different fields of application of these materials at

elevated temperatures, it seems interesting to study

their thermal behavior, which can be achieved by

thermogravimetric technique. Indeed, various studies

(Vyazovkin et al. 2011), performed under isothermal

or dynamic conditions, show that thermogravimetric

analysis (TGA) and differential scanning calorimetry

(DSC) are useful to access the different kinetic and

thermodynamic parameters involved in the thermal

degradation of CN or CS. The thermal stabilities of CS

and CN were evaluated as a function of their activation

energy values (Ea), estimated by treating the TGA

curves, recorded either under air or N2 atmosphere,

using Kissinger and isoconversional methods of

Friedman (1964), Coats–Redfern (modified)(Coats

and Redfern 1964; 1965) and Ozawa–Flynn–Wall

(O–F–W) (Wanjun et al. 2005; Arora et al. 2011;

Vyazovkin et al. 2011). However, a disparity between

Ea values, reported by different authors for each

polymer, is noted. For example, for the thermal

degradation of chitosan, Georgieva et al. (2012) found

Ea = 126 kJ/mol in dynamic conditions while de

Britto and Campana-Filho (2007) by applying

dynamic and isothermal conditions found Ea-

= 149.6 kJ/mol and Ea = 153 kJ/mol, respectively.

Peniche-Covas et al. (Coats and Redfern 1965) carried

out their study under the same conditions and they

found Ea = 181 kJ/mol and Ea = 183–227 kJ/mol,

respectively. The same trend was observed in the case

of chitin. Moreover, until now, the thermal stability of

CS/Bt bio-nanocomposite has not been studied, with

the exception of our previous work (Moussout et al.

2016; Moussout et al. 2018), performed in dynamic

conditions. In that paper, the following activation

energies values, Ea = 121.41 kJ/mol, Ea-

= 146.50 kJ/mol and Ea = 345.28 kJ/mol for CN,

Fig. 1 Chemical structure of a CN and b CS
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CS and 5%CS/Bt, were found, respectively. In addi-

tion, the mechanism of thermal degradation of CN, CS

and 5%CS/Bt was deeply studied.

As a complement to our previous study (Moussout

et al. 2016; Moussout et al. 2018), the thermal

degradation of chitin (CN), chitosan (CS) and bio-

composite 5%Bt/CS (5%Bt/CS), in isothermal condi-

tions, was investigated in the temperature range of

285 �C B T B 330 �C. Simultaneous thermal analy-

sis TGA/DTA and differential scanning calorimetry

(DSC), performed under air atmosphere, were used to

study the thermal stability of each sample because in

real applications, under normal atmospheric condi-

tions, oxygen plays a crucial role in the degradation

process. The corresponding kinetic parameters of

thermal degradation were calculated from Friedman

equation. Other important thermodynamic parameters

like, Gibbs energy, enthalpy and entropy of activation

were also determined. Elucidation of isothermal

degradation mechanism and changes in the chemical

structure of these samples, during their thermal

degradation, was supported by Fourier transform

infrared (FTIR) and X ray diffraction (XRD) charac-

terization technics.

Materials and methods

Samples preparations

CN was extracted from the local shrimp shells

collected in the city of Meknes (Morocco). CS was

obtained by deacetylation of CN in a concentrated

solution of NaOH (12 N) for 6 h at 120 �C. The

reaction was made in a reflux system to avoid water

evaporation. The degree of deacetylation (DD) of

chitosan, as determined by FTIR method (Ahlafi et al.

2013), was 83%. The 5%Bt/CS was prepared as

follows: CS was dissolved in a (5%v/v) acetic acid

deionized aqueous solution, which is stirred vigor-

ously for 4 h at room temperature to form a homoge-

neous mixture. Then, the Bentonite solution, which

was swollen in 50 mL of distilled water and sonicated

for 15 min, was slowly added to the CS solution,

stirred for 24 h at 60 �C. The resulting solution was

centrifuged for 15 min and washed several times with

deionized water until pH = 7. The obtained bio-

nanocomposite was finally dried overnight at 80 �C.

Bentonite was purchased from Rhône pollenc

(France). The extraction of CN and the preparation

of 5%Bt/CS were described in detail in our previous

works (Ahlafi et al. 2013; Moussout et al. 2016).

Samples characterization

The samples were characterized by FTIR, XRD, SEM,

DSC and TGA/DTA analysis:

• XRD diffractograms were obtained using a

X’PERT MPD-PRO wide angle X-ray powder

diffractometer and used CuKa radiation

(k = 1.542Å) at 45 kV and 40 mA. The canning

angle 2h was in the range of 4� and 80�.
• JASCO 4100 FTIR spectrometer was used to

record FTIR spectra at a resolution of 4 cm-1 and

accumulation of at least 64 scans. The samples

were prepared in KBr discs in the usual way from

very well dried mixture of about 4% (w/w).

• SEM images (SEM) were obtained by Brand

EIFQuanta 200 apparatus.

• DSC analysis was carried out in an air atmosphere

[25–500 �C] with a heating rate of 20 �C/min

using a DSC 131Evo instrument.

• Isothermal degradation experiments were per-

formed on a TA60 SHIMADZU simultaneous

thermal analyzer TGA/DTA. The samples were

heated under air from room temperature to a

desired isothermal temperature at heating rate

b = 10 �C/min.

Kinetic and thermodynamic parameters

The decomposition reaction rate in the solid state can

be described by the following equation:

da
dt

¼ kðTÞf ðaÞ ð1Þ

where t is the time, T is the temperature, and a ¼ m0�mt

m0�mf

is the conversion fraction, determined as a ratio of the

current mass change to the total mass change. mt, m0

and mf, are the actual, initial and final masses,

respectively, and f ðaÞ is the conversion function,

which depends on the reaction model, and k(T) is the

rate constant, giving by the Arrhenius equation:
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kðTÞ ¼ A exp
�Ea

RT

� �
ð2Þ

where A (min-1) is the frequency factor, R is the gas

constant, Ea is the activation energy (kJ/mol). Substi-

tuting Eq. (2) into Eq. (1) we obtain:

da
dt

¼ A exp
�Ea

RT

� �
:f ðaÞ ð3Þ

The differential isoconversional method or Fried-

man method (Friedman 1964), and it based on Eq. 3

whose logarithm is:

ln
da
dt

� �
¼ ln Af að Þ½ � � Ea

RT
ð4Þ

The slope of ln da
dt

� �
versus 1/T for the same value of

a, gives the value of activation energy, while the

frequency factor, A, can be determined from the

Kissinger equation (Kissinger 1957):

A ¼ bEa

RT2
m

exp
Ea

RTm

� �
ð5Þ

where b is the heating rate (b = 10 �C/min) and Tm is

the temperature related to DTG peaks at which the

thermal degradation rate is maximum.

When the activation energy is calculated, the

kinetic model that gives the best description of the

experimental data can be determined. Indeed, two

master plots functions, Z(a) and Y(a) were applied to

the experimental data in order to obtain the possible

kinetic model (Montserrat et al. 1998; Starink 2003).

In isothermal conditions, these functions are:

ZðaÞ � da
dt

� �
t ¼ f ðaÞgðaÞ ð6Þ

YðaÞ ¼ da
dt

� �
� f ðaÞ ð7Þ

The values of a at the maximum of ZðaÞ and YðaÞ,
a�z and a�y , are characteristic of the kinetic model. The

shape of YðaÞ being formally identical to the kinetic

model, the resulting experimental values of Y(a) and

Z(a) are plotted versus a and compared against

theoretical Y(a) and Z(a) master plots.

On the other hand, the thermodynamic activation

parameters were calculated from the Eyring theory of

transition state (Boonchom and Puttawong 2010;

Boonchom and Thongkam 2010) of activation entropy

(DS=), activation enthalpy (DH=) and activation

Gibbs free energy (DG=) were calculated for the

process of thermal decomposition of the samples,

using the following equations:

A ¼ evkBTm
hP

exp
DS 6¼

R

� �
ð8Þ

DG 6¼ ¼ DH 6¼ � TmDS
6¼ ð9Þ

DH 6¼ ¼ E � RTm ð10Þ

where e = 2.7183 is the Euler’s number, v is the

transition factor, which is unity for the monomolecular

reactions, kB is the Boltzmann constant, hP is the Plank

constant and Tm is the peak temperature in DTG curve.

Results and discussion

FTIR

FTIR spectra of extracted CN, CS, Bentonite and

5%Bt/CS, shown in Fig. 2, were recorded in the mid

IR range (400–4000 cm-1), and compared to each

other. These spectra can be divided in three main

spectral regions:

(a) Region between 3700 and 2700 cm-1: the

asymmetric broad band centered at 3440 cm-1

was attributed to the stretching vibrations of O–

H and N–H bonds in CS and CN (spectra a and

b), implicated in hydrogen bond. The bands at

2880 cm-1 and 2960 cm-1 are characteristics

of anti-symmetric and symmetric stretching

vibrations of C–H bond in CH2 and CH3 groups.

The OH band is also observed in Bentonite

spectrum. It was attributed to the adsorbed

water on Bentonite (spectra c) (Fan et al. 2007).

It can be noticed that all the previous bands are

observed in the spectrum of the 5%Bt/CS

(spectrum d).

(b) Region between 1750 and 1250 cm-1: this

region is characteristic of the amide I (C=O

stretching in NHCOCH3), amide II (N–H

blending modes in NHCOCH3) and amide III

(NHCO group) in CN and CS (Branca et al.

2016). The band at 1650 cm-1 represent the

bending mode of O–H groups. This band
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overlap with those of amide groups in 5%Bt/CS

(spectra d).

(c) Region between 1250 and 450 cm-1: In spec-

trum (c) of Bentonite, the peak at 1080 cm-1 is

assigned to Si–O stretching vibrations in Si–O–

Si linkage. The band at 450 and the shoulder at

900 cm-1 are assigned to bending vibrations of

Si–O and Al–Al–OH, respectively (Li et al.

2009). The vibration frequencies at 1150 cm-1

correspond to asymmetric bridge oxygen

stretching in glycosidic linkage C–O–C in CN

and CS, and that at 1050 cm-1 is related to the

asymmetric stretching of CO in the ring (spectra

a and b) (Kaya et al. 2016). These bands cannot

clearly distinguished in the spectrum of the

5%Bt/CS, due to the existence of the intense

and large band of Si–O–Si in Bt at 1080 cm-1.

The bands between 450 and 900 cm-1 in

Bentonite spectrum have been assigned to

typical Si–O and Si–O–Al bends modes (Li

et al. 2009), respectively. The presence of all the

bands described above in the spectrum of 5%Bt/

CS (spectrum d) confirms the as prepared

biocomposite, via the strong interactions

between the positive charges of CS and the

negatively charged surface of Bentonite (Li

et al. 2009; Yin et al. 2011; Park et al. 2013). It

was indicated that the formation of the

nanocomposite Clay/CS occurs following the

intercalation of CS in the interfoliaire space of

clay, via electrostatic interactions between the

protonated amine groups of chitosan with

negatively charged clay surfaces, leading to

the changes of locations and intensities of the

initial bands of the started sample.

XRD

The XRD diffractograms of the samples are given in

Fig. 3. The spectra (a, b) of CN and CS shows two

main peaks at 2h = 9.75� and 19.75�, which indicate

that the extracted chitin from shrimps shell was in the

a form (Kaya et al. 2016). XRD patterns of the

Bentonite (spectrum c) shows a reflection peak at

2.h = 5.82�, which is characteristic of its a basal

spacing (d001). After incorporating 5% (wt/wt) Ben-

tonite within chitosan the diffraction peak at

2.h = 5.82� derived from the interlayer spacing of

the Bentonite disappears, indicating that almost com-

plete exfoliation of the silicate layers in Bentonite took

place and bioocomposite structure was obtained.

Fig. 2 FTIR spectra of

a CN, b CS, c Bentonite and

d 5%Bt/CS
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SEM

The surface morphology of synthesized samples was

studied using SEM and resulting images are presented

in Fig. 4. The SEM images of CN and CS are

composed of lamellar fibers and exhibited rough and

thick surface morphology (spectra a and b. The same

morphology has previously been reported for these

materials from crustaceans such as krill, Gammarus

argaeus and pink shrimp (Wang et al. 2013; Kaya et al.

2016). The Bentonite surface (image c) is formed by

the grains of uniform size. However, the SEM image

Fig. 3 XRD patterns of

a CN, b CS, c Bentonite and

d 5%Bt/CS

Fig. 4 SEM images of a CN, b CS, c Bentonite and d 5%Bt/CS
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of the 5%Bt/CS shows a compact surface and rough,

with a very different morphology from those of initial

materials (Bentonite and CS).

DSC

Figure 5 shows the DSC thermograms for natural CN,

CS, Bentonite and 5%Bt/CS. In the DSC curves of CS

and 5%Bt/CS, two major thermal peaks were

observed, while in the case of chitin three peaks were

obtained. In all the DSC curves, the first endothermic

peak corresponds to desorption of adsorbed water. The

position temperatures of this peak depend on the water

holding capacity and the interactions of the considered

sample with water molecules (Nam et al. 2010). This

suggests that 5%Bt/CS has a low water retention

capacity than those of Bentonite and CS. The second

exothermic peak is related to the degradation reaction

of amine units (GlcN), whose exist in significant

proportions in the structure of CS and 5%Bt/CS than in

that of CN (DD = 83%), as proved by their peak’s

areas. Thus, a shift of the exothermic peak in 5%Bt/CS

to lower temperature (T = 313 �C), indicates that the

thermal stability of CS was lowered when it is

intercalated in the Bentonite structure. The third peak

located at T = 380 �C in the DSC curve of CN is due

to its deacetylation and the degradation of

polysaccharide structure. Similar thermal behavior

has been observed for a-chitin/chitosan samples,

where the shift of the exothermic peak was attributed

to the oxidative glycosidic bond, a decrease in acetyl

content and the degree of polymerization (Harish

Prashanth et al. 2002; Kittur et al. 2002; Guinesi and

Cavalheiro 2006; Nam et al. 2010).

Kinetics of the isothermal degradation of CN, CS

and 5%Bt/CS

Thermogravimetric analysis

The main purpose of this study was to determine the

kinetic and the mechanism of the isothermal degrada-

tion of CN, CS and 5%Bt/CS biocomposite, using

thermogravimetric analysis (TGA/DTG). The exper-

iments were done at the isothermal temperatures of

T = 285, 300, 315 and 330 �C. Figures 6, 7 and 8,

shows the TGA curves for CN, CS and 5%Bt/CS,

respectively, giving for each sample the mass loss and

conversion fraction (a) during the degradation time.

For each studied temperature, it can be seen that the

degradation of each sample is slower (weight loss %
10%) in the first stage (t\ 15 min), and then

becomes faster (t[ 20 min) in the second stage

(weight loss[ 50%). The first common weight loss

Fig. 5 DSC curves of a CN, b CS, c Bentonite and d 5%Bt/CS
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corresponds to the desorption of physically adsorbed

water on the sample surfaces, while the second one is

principally attributed to the thermal degradation of the

biopolymers, since Bentonite is stable in the studied

temperature range. The degradation rate of the sam-

ples was represented by the inset DTG curves, with

their temperatures Tm at the maximum degradation

rate for each isothermal temperature, shown in the

Fig. 6 a TGA/DrTG curves

and b a versus time of CN

Fig. 7 a TGA/DrTG curves

and b a versus time of CS
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Figs. 6, 7 and 8. It is appears that the Tm values, both

for CN and CS are almost identical, except for

the isothermal temperature T = 330 �C, where

Tm(CN) = 346.90 �C[Tm(CS) = 324.50 �C. This

suggest that these polymers have the same degradation

kinetics and their thermal stability is linked to the

difference in their degree of deacetylation and activa-

tion energy. According to the other studies, the first

degradation peak, was attributed to the deacetylation

of the main chain and the cleavage of glycosidic

linkages of CS (Ou et al. 2010; Hao et al. 2017).

Otherwise, the determined Tm values, seems to be

higher than the corresponding isothermal temperature.

The reason for this is that the true sample temperature

lags behind that recorded by the instrument, due to the

exothermic oxidative degradation in air, as supported

by DTA curves given in figure S1, which shows an

exothermic peak for each isothermal temperature.

However, in the DTG curve of the 5%Bt/CS, one to

three peaks are observed, when the isothermal tem-

perature was increased from T = 285 to T = 330 �C.

This indicated that the thermal degradation mecha-

nism of CS matrix in the 5%Bt/CS biocomposite was a

complex process, involving more than one-step,

especially from T[ 285 �C (Hao et al. 2017; Topcu

et al. 2018). Thus, it can be concluded that the

biocomposite 5%CS/Bt show higher thermal stability

compared to that of neat CS. A similar behavior was

observed by other authors, whose indicated that the

latter stages might be caused by the thermal destruc-

tion of pyranose ring and the decomposition of the

residual carbon (Wang et al. 2005; Hao et al. 2017).

The results are also in agreement with our previous

work (Moussout et al. 2016), where the intensities of

IR bands of CS, recorded after its treatment at

T = 300, 320 and 340 �C, decrease gradually.

Isothermal degradation kinetics

Activation energy (Ea) of isothermal degradation of

CN, CS and 5%CS/Bt, was calculated using the linear

Friedman’s equation (Eq. 4). This method is advan-

tageous because it is independent of the heating

program and allows the activation energy to be

calculated from the slope of this equation by plotting

ln(da/dt) versus 1000/T, for each a value. The

resulting straight lines are shown in Fig. 9 and the

values of Ea, determined for each sample, are

summarized in Table 1. It can be observed that the

Ea values for the first peak (first stage of degradation)

change slightly in the range 0\ a\ 0.7, indicating a

single reaction mechanism of the degradation for

Fig. 8 a TGA/DrTG curves

and b a versus time of 5%

Bt/CS

123

5602 Cellulose (2018) 25:5593–5609



each sample. The average values of Ea of CN

(Ea = 127 kJ/mol) is higher compared to those of CS

(Ea = 103 kJ/mol) and of 5%CS/Bt (Ea = 80.64 kJ/mol.

The stability of CN can be explained by the presence of

N-deacetylation of NHCOCH3, which are dominant in

CN than in CS structures. This is similar to the results

reported by Gámiz-González et al. (2017) and Wanjun

et al. (2005), which indicate that the activation energy

depends on the deacetylation degree (DD) of CN/CS.

Similarly, CS appears more stable than the biocomposite

5%Bt/CS (Ea = 80 kJ/mol), unlike the expected result.

However, it has been noted above that the biocomposite

degrades in three steps. The presence of Bentonite in CS

probably accelerates the decomposition of species

formed after the first step or there are different types of

interactions between CS and clay, with different values

of Ea. As the temperature increases, the mechanism of

Fig. 9 plot of ln(da/dt) versus 1000/T for the isothermal degradation of a CN, b CS and c 5%Bt/CS

Table 1 Activation energy

obtained by Freidman

method for each sample

a CN CS 5%Bt/CS

Ea(kJ/mol) R2 Ea(kJ/mol) R2 Ea(kJ/mol) R2

0.1 115.70 0.991 101.39 0.999 – –

0.2 127.23 0.991 107.20 0.995 51.68 0.801

0.3 134.76 0.992 122.08 0.988 87.12 0.931

0.4 138.00 0.993 106.86 0.927 – –

0.5 138.30 0.994 112.97 0.989 – –

0.6 122.50 0.982 97.87 0.991 64.97 0.779

0.7 113.80 0.983 78.90 0.992 79.51 0.886

0.8 – – – – 101.60 0.994

0.9 – – – – 71.32 0.985

1 – – – – 108.27 0.987

Av. 127.18 ± 8.44 – 103.90 ± 9.50 – 80.64 ± 15.74 –
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degradation might become more complex requiring

higher or lower activation energy to overcome.

Kinetic model and thermodynamic parameters

Once the activation energy values have been deter-

mined, it is better to determine the kinetic model

which can describe accurately the experimental data of

the isothermal degradation of the studied samples. It

can be done by plotting the functions Z(a) (equa.6)

and Y(a) (Eq. 7) shown in Fig. 10. For each sample,

the values at the maximum of these curves (a�y and a�z)

are given in Table 2. It can be seen that the obtained

curves and the values of am match well the experi-

mental curves (Fig. 10). Since, for 0\a�y\a�z , the

catalytic model SB proposed by Sesták–Berggren

(1971), in which f að Þ ¼ am 1 � að Þn (m and n are a

variables parameters), seems to be the best fit. The

Fig. 10 Experimental functions Y(a) and Z(a) for the isothermal degradation of a chitin, b chitosan and c nano 5%Bt/CS

Table 2 Values of kinetic parameters m, n and am for the

isothermal degradation of CN, CS and 5%Bt/CS

Sample T (�C) m n am (exp.) am (simulated)

CN 285 1.36 1.17 0.54 0.54

300 0.57 1.07 0.35 0.35

315 1.76 2.33 0.43 0.43

330 1.87 1.48 0.56 0.56

CS 285 0.50 1.87 0.21 0.21

300 0.74 1.56 0.32 0.32

315 1.23 1.35 0.48 0.48

330 1.33 1.35 0.50 0.50

5%Bt/CS 285 2.93 3.54 0.45 0.45

300 2.23 3.64 0.38 0.38

315 0.56 1.49 0.27 0.27

330 2.23 2.23 0.50 0.50
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values of these parameters in the function f(a) are

given by p ¼ m
n

with p ¼ a�y
1�a�y

. Thus, the Eq. 4 can be

expressed as (Kissinger 1957):

ln
da
dt

exp
Ea

RT

� �� �
¼ lnAþ nln ap 1 � að Þ½ � ð11Þ

The plot of Ln da
dt

exp Ea

RT

� �� 	
versus Ln ap 1 � að Þ½ �,

lead to the straight lines whose slopes equal to n.

Table 2 shows the calculated values of n and m for all

the samples. The resulting values of m and n tend to

increase with increasing temperature.

Thus, knowing the values of Ea and A and having an

expression for f(a), it is possible after its normaliza-

tion, to simulate the curves f(a), which can correspond

to the experimental curves da/dt. The simulated and

experimental curves corresponding to the isothermal

degradation of CN, CS and 5% Bt/CS at temperatures

of 285 �C, 300 �C, 315 �C and 330 �C are given in

Fig. 11. The curves show a good agreement between

them, indicating that the kinetic parameters and the

expression of f(a) used in the simulation are entirely

appropriate. In particular, it can be observed in the

case of 5%Bt/CS, the appearance of two peaks in the

simulated curves for T = 315 and 330 �C, according

to the experimental DTG curves.

Determining the most suitable kinetic model is not

an easy task and evaluating the most likely degrada-

tion mechanism is usually difficult. According to

Šesták and Berggren (1971), the values of m and n can

give an insight into the possible mechanism of

degradation. Thus, for m[ 1 and n[ 1, the process

is controlled by nucleation. However, it is found that

the appropriate model to describe the kinetics of

isothermal degradation of CN, CS and 5%Bt/CS was

the autocatalytic model, introduced by Sestak and

Berggren (SB (m,n)). Although there is a three major

reaction models types: accelerating, decelerating, and

Fig. 11 Simulated (line) and experimental (symbol) functions Y(a) for the isothermal degradation of a CN, b CS and c 5%Bt/CS
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sigmoidal (called autocatalytic) (Vyazovkin et al.

2011). However, for the isothermal data, the shape of

the curve a versus t can be used to decide on the

thermal degradation model, because in this case

k(T) is constant. The corresponding reaction profiles

of a versus t are shown Fig. 12. The comparison of

these curves with those obtained experimentally, for

CN (Fig. 6b), CS (Fig. 7b) and the 5%Bt/CS (Fig. 8b),

confirms that the autocatalytic model is the most

appropriate, whose initial and final stages demon-

strate, respectively, the accelerating and decelerating

behavior, in good conformity with the experimental

curves, suggesting the random scission of the poly-

meric chain.

Thermodynamic parameters

The thermodynamic parameters namely entropy DS#,

enthalpy DH# and Gibbs free energy DG# were

calculated for the formation of activated complex of

CN, CS and 5%Bt/CS (Table 3) using the Eqs. 8, 9

and 10. The positive value of DG# indicates that the

isothermal degradation process is thermodynamically

not spontaneous (Stolarek and Ledakowicz 2005).

However, the positive value of DH# shows that the

degradation process is endothermic. The negative

value of DS# shows the appearance of an order in the

activated complex with respect to the initial state, and

thus, the reaction is unfavorable and may be classified

as slow (Hao et al. 2017).

Conclusion

The thermal degradation of CN, CS and 5%Bt/CS was

studied in isothermal conditions and described using

kinetic analysis. FTIR, XRD and DSC shows that the

biocomposite was formed via the intercalation of CS

in the interlayer space of Bentonite via the strong

interaction of CS functional groups (-amino and OH)

with the silicate layer of Bentonite. Based on DTG

curves, it was found that the isothermal degradation

mechanism of CN and CS occurs in one step (one

peak), while that of biocompoiste 5%Bt/CS is com-

plex, leading one to three DTG peaks when increasing

degradation temperature. This is due to the strong

interaction between CS and Bentonite, which improve

the stability of the biocomposite. The activation

energy values, determined for the first peak, using

the Friedman method, are 127.18 kJ/mol,

103.90 kJ/mol and 80.64 kJ/mol for CN, CS and

5%Bt/CS, respectively. The stability of CN than CS is

Fig. 12 a versus t ‘‘reaction

profiles’’ for accelerating,

decelerating and

autocatalytic models
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due to their deacetylation degree. It has been found

that the kinetics model which qualitatively matches

the experimental data issued from the isothermal

degradation of the samples is that of Sestak–Berggren

of the type am(1-a) n, which correspond to the

autocatalytic reaction. The thermodynamic study

shows the appearance of an order in the activated

complex and the isothermal degradation process is

endothermic and is not spontaneous.
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