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Abstract We describe a simple one-pot mist copoly-

merization process to fabricate superhydrophobic

cotton fabrics. A mixture solution consisting of a free

radical initiator, tert-butyl peroxybenzoate (TBPB),

and three monomers, lauryl methacrylate (LMA),

2-isocyanatoethyl methacrylate (IEM), and ethylene

glycol dimethacrylate (EGD), is atomized to one side

of a cotton fabric and polymerized on the surface.

SEM images indicate that the copolymer layer on the

cotton fiber surface has a randomly wrinkled mor-

phology exhibiting nanoscale roughness. Wetting tests

demonstrate that the modified surface possesses a

remarkable superhydrophobicity with multiple heal-

ing functionalities. A simple ironing treatment at

about 200 �C can recover the degraded superhy-

drophobicity of the modified cotton fabric suffered

from 60 cycles of laundries or 2000 cycles of

Martindale abrasion. Notably, the mist copolymeriza-

tion process has no significant impact on the cotton

advantages, such as flexibility, water absorptivity, and

vapor permeability.

Keywords Superhydrophobicity � Cotton fabric �
Ironing � Healing ability � Mist polymerization

Introduction

Superhydrophobic surfaces have drawn considerable

attention because of their potential applications such

as self-cleaning, water–oil separation, anti-fogging,

anti-corrosion, drag reduction, anti-bioadhesion, and

highly protective clothes (Chu et al. 2015; Wang et al.

2015a; Wen et al. 2015; Wolfs et al. 2013; Dyett et al.

2014). According to the basic principle that the

combination of low surface energy material and

appropriate hierarchically nanostructures produces

superhydrophobicity (Wenzel 1936), various super-

hydrophobic surfaces have been successfully prepared

(Zhang et al. 2012; Wang et al. 2015b; Shirtcliffe et al.

2011). Fluorinated chemicals and polysiloxane poly-

mers were the materials most frequently utilized to

lower surface energy (Zhou et al. 2012; Zou et al.

2013; Hua et al. 2013; Wang et al. 2013; Shateri-

Khalilabad and Yazdanshenas 2013). On the other

hand, various methodologies, for example, dip coating

(Nguyen et al. 2012), sol-gel coating (Periolatto et al.

2012), soft-lithography (Kim et al. 2015; Liu et al.
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2006; Yao et al. 2009), electrochemical oxidation (Lee

et al. 2010; Darmanin et al. 2013; Xu et al. 2011;

Ottone et al. 2014), chemical vapor deposition (Liu

et al. 2004; Crick et al. 2012), spray deposition

(Hwang et al. 2011; Sparks et al. 2013), chemical

etching (Qian and Shen 2005; Dong et al. 2011),

surface polymerization (Nystrom et al. 2006; Miao

et al. 2010; Yu et al. 2013; Xue et al. 2015), and laser

microfabrication (Chen et al. 2013), have been tried to

produce such rough surfaces with well-designed

nanostructuration. In recent years, beyond the fabri-

cation of superhydrophobic surfaces, more attention

has been paid to the functional integration of super-

hydrophobic surfaces towards practical applications

(Zhang et al. 2012; Liu et al. 2014).

Cotton fabrics are soft, comfortable, breathable,

skin-friendly, and have an excellent water and mois-

ture absorption ability. Recently, many attempts have

been made to increase the functionalities of conven-

tional cotton textiles, such as water repellence (Zou

et al. 2013; Abbas et al. 2014; Shin et al. 2012),

antimicrobial activity (Dastjerdi and Montazer 2010;

Ali et al. 2014; Xi et al. 2015), and flame retardance

(Abou-Okeil et al. 2013; Chen et al. 2015). Despite the

successful advances in the modification of cotton

fabrics reported to date, there are several shortcomings

from the perspective of textile engineering. For

example, (1) most of the fluorine-containing chemi-

cals and organosilicon compounds are toxic and

problematic for the environment (Conder et al. 2008;

Isquith et al. 1988); (2) the coating films often affect

the original cotton properties such as softness and

wearing comfort; (3) the abrasion stability and laun-

dering durability of the superhydrophobic coatings are

hardly acceptable in practical applications.

In our previous works (Wang et al. 2014; Wan et al.

2014), we reported a ‘‘mist polymerization’’ technique

developed from the gas-phase-assisted surface poly-

merization methodology (Yang et al. 2012; Andou

et al. 2009a, b) to modify cotton fabric surfaces. The

‘‘mist polymerization’’ process can apply to a wider

range of monomers and can build nanostructures

simply on various substrates. Furthermore, the damage

to the original cotton properties can be reduced to a

very low level. However, the cumbersome introduc-

tion of the radical initiator to the fabric surface, and the

unsatisfactory abrasion resistance and laundering

durability of the modified cotton fabrics are the

obvious disadvantages.

In this work, we report an improved one-pot mist

copolymerization technique to generate robust super-

hydrophobic surfaces having abrasion-durable and

healable behaviors. The mixture solution of lauryl

methacrylate (LMA), 2-isocyanatoethyl methacrylate

(IEM), ethylene glycol dimethacrylate (EGD), and a

free radical initiator in cyclohexane are atomized to

and heated on the cotton surface. The resulting layer

possesses superhydrophobicity with remarkable heal-

ing functionality by heating. Notably, the original

cotton properties such as water absorbency and

moisture transmissibility are still found in the modi-

fied cotton fabrics.

Experimental section

Materials

The cotton fabrics used in this work were purchased

from a local fabric store (60 ends cm-1, 30

picks cm-1, 0.42 mm thickness, 120 g m-2 weight,

35.2 m2 g-1 specific surface area). Before chemical

modification, the cotton samples (15 mm 9 15 mm)

were cleaned by ultrasonic washing in ethanol (2 h)

and deionized water (30 min 9 3 times). LMA, IEM,

ethylene glycol dimethacrylate (EGD), tert-butyl

peroxybenzoate (TBPB), and cyclohexane were pur-

chased from Shanghai Crystal Pure Industrial Co., Ltd.

(China). All the chemicals were used as received

without further purification. Deionized water with a

resistivity of 18.2 MX cm was used in all experiments.

Typical procedures of the one-pot mist

copolymerization

A mixture solution of LMA (monomer 1, 3.562 g,

14.000 mmol), IEM(monomer 2, 0.261 g, 1.680 mmol),

EGD (monomer 3, 0.056 g, 0.280 mmol), and TBPB

(initiator, 0.068 g, 0.350 mmol) in cyclohexane (16 ml)

was atomized using an air compression-type atomizer

(DongHan DH-M01, China), fed (0.360 ml min-1) to a

cotton fabric sample (15 mm 9 15 mm) for 1 min,

heated at 80 �C for 1 h and at 110 �C for 4 h, washed by

cyclohexane (50 ml 9 3 times) to remove the unreacted

monomer, and dried under vacuum to obtain the

asymmetrically super-hydrophobic cotton fabric. Other

modified cotton fabric samples were obtained by adjust-

ing the monomer concentrations and the mist stream
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feeding time as listed in every Figure or Table. Fully

modified cotton fabrics were prepared via a similar

process inwhich themist feeding is replaced by a dipping

treatment in a mixed solution of LMA (0.700 mol l-1),

IEM (0.084 mol l-1), EGD (0.014 mol l-1), and TBPB

(0.018 mol l-1).

Characterizations

Static contact angles were measured using deionized

water droplets (4 ll) with a Kruss contact angle

instrument (DSA 100, Germany) at 25 �C. The water
contact angle (WCA) value was recorded when the

exposure time of the water droplet on the cotton fabric

surface was 5 s. Average contact angle values were

obtained by measuring three different positions on the

same sample. Surface morphology was investigated

by a JSM-6700F field emission scanning electron

microscope (FE-SEM, JEOL, Japan) after gold coat-

ing (approximately 10 nm thickness). X-ray photo-

electron spectroscopy (XPS) analysis was performed

by an AXIS multifunctional X-ray photoelectron

spectrometer (ULTRA DLD, Shimadzu Ltd., Japan)

at a power of 450 W. FTIR spectra were collected

from a Nicolet Fourier Transform spectrophotometer

(AVATAR 5700, US) with an attenuated total reflec-

tion (ATR) accessory.

Laundering durability was evaluated by monitoring

WCA on the cotton surface periodically after every

stringent washing process. The cotton fabrics

(15 mm 9 15 mm) were washed by 50 ml of an

aqueous solution of sodium dodecane sulfonate (2.0 %,

w/w) in a beaker (diameter, 50 mm) with stirring

(300 rpm, magnetic stirrer, 9 mm 9 25 mm) at 25 �C
for 10 min, rinsed with deionized water (35 �C,
10 ml 9 4 times), and dried at 60 �C. The wearing

durability tests were carried out on a Martindale-type

fabric abrader (HZ-8029A, China). The abrasive mate-

rial was pristine cotton fabric, and the loading pressure

was 12 kPa. The abrasion rotation rate of the top pristine

cotton fabric (D = 120 mm) against the modified fabric

surface (D = 20 mm) was 50 rpm. The number of

rotation cycles required for exposing the cellular struc-

ture of the fabric was noted as the index of abrasion

durability. After every 200 (or more) abrasive cycles, the

modified cotton surface was ironed by an electric iron

(iron surface temperature was about 200 �C) for 1 min.

Water absorptivity was examined by weighing the

weight increment of the cotton sample after soaking

in plenty of deionized water for 10 min and hanging

it out for another 10 min. It is expressed as the

weight ratio of adsorbed water to the cotton sample.

Water vapor permeability was evaluated using the

ASTM E-96 (open cup test) method. The test fabric

sample was placed tightly over a shallow dish

containing distilled water. The weight loss of the test

assembly over 24 h was measured, and the vapor

transmission rate (g m-2 d-1) was calculated as

water vapor permeability. Flexibility was determined

by the flat loop method (IS 7016 Part 11). Fabric

samples were cut from warp and weft directions

(40 mm 9 160 mm). A loop was made and placed

on a horizontal plane. The height of the loop was

measured as an idea of the flexibility of the fabric.

The lower the height of the loop, the greater is the

flexibility.

Results and discussion

Fabrication of the superhydrophobic cotton

surfaces

As shown in Scheme 1, the superhydrophobic surface

was obtained through a one-pot mist copolymerization

procedure. The mixture solution, consisting of a free

radical initiator (TBPB) and three monomers (LMA,

IEM, and EGD), was atomized and fed to the cotton

surface. The liquid droplets in the mist stream are

small (diameter, 150–500 nm), and only a few percent

of them can be fixed on the cotton surface (Wang et al.

2014; Wan et al. 2014). Distinguished from other

spray-coating processes (Hwang et al. 2011; Sparks

et al. 2013) by these features, mist polymerization is

beneficial to fabricating a very thin layer with complex

morphology on the substrate surface. The three

monomers have their respective roles in the surface

modification. LMA, a methacrylate monomer having a

long aliphatic chain, is chosen to lower the surface

energy. EGD, a difunctional monomer, is used as a

crosslinker to improve porous structures. IEM, a

methacrylate monomer having an isocyanate group, is

designed to react with the hydroxyl groups of cellu-

lose. The copolymerization on the cotton fabric

surface was monitored using ATR-FTIR. Figure 1

shows the ATR-FTIR spectra of the pristine cotton

fabric sample and the modified samples with different

monomer proportions. The three characteristic peaks
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at 2927, 2856, and 1728 cm-1, which are

attributable to C–H2 and C=O bonds, respectively,

are found in all the spectra of the modified cotton

fabrics. The peak at 2268 cm-1, which is assigned to

the isocyanate group, is not observed in the spectrum

of the unmodified fabric. The intensities of the peaks

in the spectra of the modified cotton fabrics decrease

with decreasing IEM concentration, indicating that

there are excessive isocyanate groups remaining in the

coating layer after the copolymerization process.

XPS spectroscopy was employed to better under-

stand the interfacial chemical composition of the

modified samples. As shown in Fig. 2, the modified

fabric sample exhibits C1, N1, and O1 s peaks

(Fig. 2a), but the pristine cotton fabric sample only

displays two typical binding energy peaks for C1 and

O1 s at 284 and 532 eV (Fig. 2c). Furthermore, the

deconvoluted C1 s spectrum (Fig. 2b) of the modified

fabric sample is different from that of the pristine

cotton (Fig. 2d). The peaks at 285.9 and 288.7 eV,

which are assigned to C=O and C–N bonds, respec-

tively, arise only in the modified cotton sample.

Compared to Fig. 2d, the decrescence of the C–OH

peak and appearance of the C–N peak in Fig. 2b

suggest that the isocyanate reacts with the hydroxyl

groups at the interface of the cotton fiber.

The surface morphologies of the modified cotton

surfaces were investigated using FE-SEM. Figure 3

shows the low- and high-magnification SEM images

for the modified fabrics with a variety of IEM dosages.

Low magnification SEM images of the original and

modified cotton fibers, shown respectively in Fig. 3a,

b, exhibit no significant morphological difference on

their fabric surface. The statistic diameters calculated

from the SEM images are 14.7 ± 1.6 and 15.0 ±

1.0 lm for the pristine and modified cotton fibers,

respectively, meaning that the copolymer layer is very

thin. High-magnification SEM images of the modified

fabrics (Fig. 3c–f) display the presence of wrinkled

structures (300–600 nm) on the fiber surface. The

surface roughness of the modified fibers increase with

increasing IEM dosage, suggesting that the wrinkle

structures may be caused by the combination of the

precipitation of the networked polymer and reaction

between the isocyanate and hydroxyl groups of cotton.

Undoubtedly, the fine structures are helpful for

improving the surface superhydrophobicity.

The surface wetting behavior of the modified

fabrics was evaluated by measuring the static water

Scheme 1 Mist

copolymerization on the

cotton fiber surface. In the

resulting random copolymer

chain, the –N=C=O group

(IEM) reacts with a

hydroxyl group of cellulose,

the dodecyl chain (LMA)

lowers the surface energy,

and the double bond (EGD)

results in a crosslinkage with

another copolymer chain

Fig. 1 IR-ATR spectra of pristine cotton fabric and the

modified cotton fabrics with different monomer ratios. Modi-

fication conditions: LMA, 0.700 mol l-1; EGD, 0.014 mol l-1;

mist feeding, 1 min
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contact angle. Figure 4a shows the relationship

between the water contact angle and mist feeding

time for each of the IEM loading levels. For the mist

solution containing 0.028 mol l-1 IEM (IEM/

LMA = 4 mol%), the static WCA increased steadily

upon increasing the mist feeding time, trending to a

constant value of 151�. At other IEM loadings, the

WCA increased first and then slowed down to being

almost constant, and their maximum WCA values

were obtained within 30–60 s. The best superhy-

drophobicity, WCA of 157�, was obtained at the

optimized condition, IEM/LMA = 12 mol%, 1 min

of the mist feeding time. For original cotton fabrics,

the capillary action generally drives the water droplets

to move through the fabric from one face to the other

side. In contrast, the modified fabrics show

stable superhydrophobicity as shown in Fig. 4b. The

WCA values decreased by\7 % over 30 min. This

result indicates that the inherent capillary action of the

original cotton fabrics is weakened by the mist

copolymerization.

The optical observations in Fig. 5 also show the

asymmetrical superhydrophobicity of the modified

fabrics. The water droplet (stained by blue ink)

quickly disappeared on the unmodified face, whereas

another water droplet placed on the modified side kept

the spherical shape and exhibited a high contact angle

of over 150� (Fig. 5a). A similar superhydrophobic

behavior was observed on the modified surface with a

variety of water droplets stained by other inks or

coffee (Fig. 5b). Figure 5c, d shows the modified

cotton fabrics immersed in water. The modified

Fig. 2 XPS survey spectra and deconvoluted Cls XPS spectra of modified cotton fabric (a, b) and the pristine cotton fabric (c, d),
respectively. Modification conditions: LMA, 0.700 mol l-1; IEM, 0.084 mol l-1; EGD, 0.014 mol l-1; mist feeding, 1 min
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surface remained dry with many air bubbles, but the

non-modified fabric was fully wetted. Figure 5e, f

compares the wetting results of the modified and

unmodified surfaces after a dynamic water repellency

test (video is provided in Supporting Information

Video S1 and 2). The fabric sample was placed 1.5 cm

below the nozzle and at 45� from the horizontal, and

liquid coffee was continuously dropped on the fabric

for 30 s. After the coffee droplets rolled down to the

fabric, almost no dirt was stuck on the modified side

(Fig. 5e), but an obvious dirt trace was left on the

unmodified side (Fig. 5f).

Wearability, laundering durability, and healability

of the superhydrophobic surfaces

A Martindale-type abrasion test was employed to

evaluate the durability and the healing ability of the

modified fabrics. As shown in Fig. 6a, theWCA of the

modified fabric decreases by several degrees every

200 abrasive cycles, but the loss can be regained

mostly by the ironing treatment at 200 �C for 1 min.

The decreased amplitude of the WCA for each 200

abrasion cycles increases with increasing abrasion

cycle numbers; however, the repeated ironing

Fig. 3 Low magnification SEM images of a pristine and

b modified cotton fabrics (IEM/LMA = 12/100); high magni-

fication SEM images of the modified cotton fabrics with

different IEM/LMA ratios: c 4/100, d 8/100, e 12/100, and f 16/
100. Modification conditions: LMA, 0.700 mol l-1; EGD,

0.014 mol l-1; mist feeding, 1 min

Fig. 4 WCA values on the

modified surfaces against

the mist feeding times of the

mist stream (a); weak
dependency of the WCA on

the exposure time (b).
Modification conditions:

LMA, 0.700 mol l-1; EGD,

0.014 mol l-1; mist feeding,

1 min
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processes made the recoveredWCA surpass 150� even
up to 1800 cycles. In contrast, the copolymer coating

without IEM loading was not durable toward abrasion,

as shown in Fig. 6c. The WCA rapidly declined from

154� to 122� at 1000 abrasion cycles, and the WCA

loss was not recoverable. Additional results are

provided in Fig. 6b to show the effect of the healing

frequency on the abrasion durability of the modified

cotton fabrics. After 2000 abrasion cycles, the mod-

ified fabric healed three times (Fig. 6b), showing a

higher WCA compared with the fabric healed ten

times (Fig. 6a). This result suggests that the frequent

healing treatments may reduce the abrasion durability

and even the healing ability of the modified cotton

fabrics.

The laundering durability was assessed by a

stringent washing process based on AATCC Test

Method 61-2003. Figure 7 shows the WCA of the

modified cotton fabrics after a number of laundering

cycles. Sample 1 was the cotton fabric modified using

LMA, EGD, and IEM monomers, while sample 2 was

the control without IEM loading. As shown in Fig. 7a,

sample 1 kept the WCA almost constant over 30

washing cycles, but the WCA of sample 2 linearly

decreased with increasing washing cycle numbers

(Fig. 7c). Similar to the previous work (Wang et al.

2014), the improved laundering durability of sample 1

is contributed to the addition of the IEM monomer,

which can increase linkages between the grafting

polymer and cotton fibers by reactions between the

isocyanate groups and the hydroxyl groups in cellulose

chains. Although the ironing treatment recovered the

WCA of both sample 1 and 2 by several degrees

(Fig. 7b, d), it could not make sample 2 superhy-

drophobic (WCA[ 150�).
To investigate the healing mechanism of the

superhydrophobicity, FE-SEM and ATR-FTIR were

employed to explore the morphological changes and

chemical reactions caused by the ironing treatment,

respectively.

SEM images show that the pristine cotton fiber has

a smooth surface (Fig. 8a), whereas the modified fiber

exhibits a nanoscale wrinkled surface (Fig. 8b), which

produces a high water repellency (WCA = 156.3�).
After 1600 abrasion cycles, the wrinkles were almost

removed from the fiber surface as shown in Fig. 8c,

but several scale-like fragments, which are guessed to

be the disintegrated parts of the copolymer layer,

remained. This relatively smooth fiber surface corre-

sponds to the lowered WCA of 143.6�. Remarkably,

Fig. 5 Optical images of the asymmetrically superhydrophobic

cotton fabrics, including stained water droplets on the cotton

fabric surfaces with or without modification (a), different

droplets (water, coffee, and stained water) on the modified

cotton surface (b), the modified (c) and unmodified (d) cotton

surfaces in water, and the wetting results after a dynamic water

repellency test of the cotton surfaces with (e) or without

(f) modification. Modification conditions: LMA, 0.700 mol l-1;

IEM, 0.084 mol l-1; EGD, 0.014 mol l-1; mist feeding, 1 min

Cellulose (2016) 23:915–927 921

123



the smooth fiber surface wrinkles again after the

ironing treatment (Fig. 8d), and the WCA was recov-

ered to 152.5�.
Figure 9 shows the ATR-FTIR spectra of the four

samples for each step in the abrasion-healing process,

revealing the interesting result that the peak at

2268 cm-1 disappears after the ironing treatment

(Fig. 9d). This suggests that a considerable number

of residual isocyanate groups existed in the polymer

coating after the abrasion tests, but finally converted to

other bonds via some heating reactions. As shown in

Scheme 2, isocyanate may reversibly react with the

urethane group to form an allophanate (Scheme 2a) or

irreversibly react with other isocyanate groups to

produce heterocyclic isocyanurate compounds (Sche-

me 2b) (Delebecq et al. 2013) at an elevated temper-

ature. The first reaction may cause the damaged

polymer coatings to wrinkle again, while the last one is

likely to consume the reversible groups such as

allophanate. In summary, the isocyanate group plays

important roles for improving the abrasion durability

of the modified cotton fabrics. It not only increases the

linkages between the copolymer layer and cotton

surface by the reactions with the hydroxyl groups of

cellulose, but also endows the modified fabric with

healing ability by reactions like in Scheme 2. Besides

the chemical reactions, physical realignment of the

copolymer chains is another factor involved in the

healing behaviors of the modified coating. When the

coating was heated (PLMA, Tg\ 0 �C) (Chatterjee
and Mandal 2006), the long side chains of PLMA

could rapidly turn to cover the loss of the aliphatic

chains.

Influences on the intrinsic properties of cotton

The balance between new functionalities and the

desired cotton natures is important for finished cotton

fabric products. Therefore, the influence on flexibility,

water absorptivity, and vapor permeability of the

modified fabrics was examined. Water vapor

Fig. 6 Healing behaviors of the modified cotton fabrics with (a,
b) or without (c) IEM loading. The total ironing treatments for

samples a and b were ten and three times, respectively.

Modification conditions: LMA, 0.700 mol l-1; EGD,

0.014 mol l-1; mist feeding, 1 min

Fig. 7 Laundering durability of the modified cotton fabrics.

Modification conditions: LMA, 0.700 mol l-1; IEM,

0.084 mol l-1; EGD, 0.014 mol l-1; mist feeding, 1 min
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transmission rates were tested at 25 �C and 50 % RH

for 1 day. As shown in Fig. 10a, the vapor transmis-

sion rate of the fully modified (dipping method) cotton

fabrics is 708 ± 30 g m-2 d-1, only about 62 % of

that of pristine cotton fabric, 1145 ± 35 g m-2 d-1.

Comparatively, the cotton fabrics modified by the mist

copolymerization process show acceptable vapor

transmission rates above 1000 g m-2 d-1, which is

still satisfactory for practical use.

Figure 10b shows the water absorptivity of the

modified cotton fabrics. The pristine cotton fabrics are

of good water absorptivity above 270 %, but the fully

modified cotton fabrics are poor at 75 %. In contrast,

the cotton fabrics modified by mist polymerization

show a medium-level water absorptivity ranging from

260 to 175 %, which is slightly lower than that of the

original cotton fabric. These results suggest that the

cotton fabrics with a single-sided modified surface

keep a large part of the excellent water absorptivity of

cotton. For most clothing products, the desired water

absorption can lower wetting by sweat drops, thereby

being pleasant for the wearer.

The mechanical properties of the cotton fabrics

were also studied by measuring the breaking tensile

strength. As shown in Fig. 10c, the pristine cotton

fabric has a general breaking strength of 17.7 MPa,

whereas the modified cotton fabrics are lightly

strengthened by the copolymerization process. The

test results for the cotton fabrics modified via mist

polymerization and the solution dipping method are

18.9 and 22.3 MPa, respectively.

Figure 10d compares the flexibilities of the mod-

ified cotton fabrics and pristine cotton fabric. The

original cotton fabric exhibited a good flexibility, as

the height of the loop less than 10.2 mm, whereas the

fully modified cotton fabric revealed a large loop

Fig. 8 SEM images of a pristine cotton fabric, b the modified

cotton fabric before the abrasion test, c the modified cotton

fabric after 1600 abrasion cycles, and d the modified cotton

fabric after 1600 abrasion cycles and an ironing treatment.

Modification conditions: LMA, 0.700 mol l-1; IEM,

0.084 mol l-1; EGD, 0.014 mol l-1; mist feeding, 1 min
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height of more than 17.0 mm. The fabric modified by

the mist polymerization showed a small loop height of

10.8 mm, which is similar to that of the original cotton

fabric.

Conclusion

We have demonstrated a one-pot mist copolymer-

ization technique that enables fabrication of heal-

able and asymmetrically superhydrophobic cotton

fabrics. With sufficient IEM loading, a randomly

wrinkled morphology exhibiting nanoscale rough-

ness is formed on the cotton fiber surface as shown

by SEM. The combination of the hydrophobic

composition of PLMA and the fine wrinkles endows

the modified surface with superhydrophobicity as

the water contact angles are greater than 150�. The
superhydrophobic copolymer layers are abrasion

resistant, laundering-durable, and healable by a

simple ironing treatment. Notably, the one-pot mist

copolymerization process does not significantly

affect the original cotton characteristics such as

flexibility, water absorptivity, and vapor permeabil-

ity. Considering the excellent balance of the new

functionalities with the intrinsic natures of cotton

fabrics, we believe the process has potential for

fabricating superhydrophobic surfaces for textiles

and other industrial fabrics.

Scheme 2 Possible

chemical mechanisms of the

thermal construction of the

copolymer layer during the

ironing treatment

Fig. 9 IR-ATR spectra of a pristine cotton fabric, b the

modified cotton fabric before the abrasion test, c the modified

cotton fabric after 1600 abrasion cycles, and d the modified

cotton fabric after 1600 abrasion cycles and an ironing

treatment. Modification conditions: LMA, 0.700 mol l-1;

IEM, 0.084 mol l-1; EGD, 0.014 mol l-1; mist feeding, 1 min
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