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Abstract Flexible hydroxypropyl guar/TEMPO-ox-

idized cellulose nanofibrils (HPG/TOCNs) composite

films were prepared using a conventional solvent-

casting technique. Their properties were investigated

with a variety of techniques including tensile test,

Fourier-transform infrared spectroscopy, scanning

electron microscopy, oxygen permeability test, water

vapor permeability test, thermogravimetric analysis

and water contact angle measurement. The results

indicate that HPG and TOCNs have an excellent

miscibility and their blending mass ratio can signifi-

cantly affect the physical, thermal, oxygen barrier and

water vapor barrier properties of the composite films.

Compared with pure HPG film, the composite films

exhibit higher tensile strength and oxygen barrier

properties. The water vapor resistance and thermal

stability of the composite films are slightly lower than

those of HPG film. However, the excellent flexibility,

transparency and gas-barrier properties of the envi-

ronmentally friendly HPG/TOCNs composite film

make it a promising packaging material for food and

pharmaceutical industries.

Keywords Cellulose nanofibrils � Hydroxypropyl
guar � Composite film � TEMPO � Oxygen barrier �
Water vapor permeability

Introduction

Cellulose nanofibrils (CNs) have attracted consider-

able attention in recent years due to their biodegrad-

ability, large surface area, high strength and high film-

forming capacity (Rodionova et al. 2012a). It is a

highly reproducible and environmentally friendly

nanomaterial (Fujisawa et al. 2011) and has been used

as the nano-fillers (Iwatake et al. 2008), thin coating

layers (Aulin and Strom 2013), and films (Song et al.

2014) for many generic and cutting-edge products.

Cellulose nanofibrils are usually prepared from native

cellulose fibers through 2,2,6,6-tetramethylpiperidine-

1-oxyl (TEMPO)-mediated oxidation and successive

mild shear mechanical treatment (Saito et al. 2006,

2007). Compared with native cellulose fibers,

TEMPO-oxidized cellulose nanofibrils (TOCNs) is

deemed as an innovative nano-sized biomaterial due to

its crystalline and amorphous domains (Jradi et al.

2012). TOCNs prepared from wood cellulose are

3–4 nmwide nanofibers with high aspect ratios of[50
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and can be individually dispersed in water (Fujisawa

et al. 2011). Self-standing films made by casting and

drying aqueous TOCNs dispersions are very flexible

and transparent (Fukuzumi et al. 2009). In addition,

the oxygen permeability (OP) of TOCNs film is only

0.049 mL lm m-2 day-1 kPa-1 (Fujisawa et al.

2011), which is lower than that of poly(vinyl alcohol)

(PVA) (Kato et al. 2005).

TOCNs can be blended with water-soluble poly-

mers such as PVA (Zhou et al. 2012), poly(ethylene

oxide) (Fukuya et al. 2014) and poly(acrylamide)

(Kurihara and Isogai 2014) to prepare highly flexible

and strong composites since TOCNs have high

dispersibility in water (Sirvio et al. 2014; Wu et al.

2012; Kurihara and Isogai 2014). The ‘‘nano-effects’’,

referring to the phenomenon that the composites

properties improve significantly with the incorpora-

tion of nano-element, occurred during the blending

can improve the performance of the produced TOCNs

composite films. In addition, layer-by-layer coated

film of chitin nanofibrils/TOCNs (Qi et al. 2012) and

oxidized starch/TOCNs composite film (Kurihara and

Isogai 2014) prepared with water as a dispersion

medium, show excellent mechanical properties and

significantly different properties from those of the

composites without TOCNs. Therefore, the incorpo-

ration of TOCNs into the modified composite films

can expand their applications.

Hydroxypropyl guar (HPG) is a water-soluble non-

ionic polysaccharide consisting of a linear backbone of

b-(1-4) D-mannose units with a-(1-6) D-galactose units
randomly attached as side chains (Nayak and Singh

2001). It has better water solubility and film forming

property than guar gum (Lu et al. 2005; Xiao et al.

2003) and plays a large role in the various products of

chemically modified guar gum (Cheng et al. 2002).

HPG has been widely used in many industries such as

oil recovery, food industry, paints and the formulation

of cartridge explosives (Wu et al. 2010; Xiao et al.

2003). The large amount of –OH groups in HPG can

interact with sodium carboxylate groups and hydroxyl

groups on the surfaces of TOCNs. These attractive

interactions may result in a well-blended composite

material with improved properties.

In the present work, composite films with various

blending mass ratios of HPG to TOCNs were prepared

through solution casting method. The miscibility,

physical properties and thermal properties of the

composite films were determined with tensile

measurements, Fourier transform infrared spec-

troscopy (FTIR), scanning electron microscopy

(SEM) and thermogravimetric analysis (TGA). The

oxygen and water vapor barrier properties were also

examined. The effects of the blending ratio between

TOCNs and HPG on the properties of the composite

films were investigated. The results reported in this

article may contribute to finding further applications

of these composite films in package materials.

Experimental

Materials

A commercial softwood bleached kraft pulp (SBKP)

was pretreated with 5 % (v/v) formic acid solution to

improve the efficiency of TEMPO-mediated oxidation

(Dai et al. 2014). Hydroxypropyl guar (HPG) with a

degree of substitution (DS) of 0.15 was kindly

provided by Wuxi JinXin Group Co., Ltd. (Wuxi,

China). All other reagents were purchased from

Sinopharm Chemical Reagent Co., Ltd. (Shanghai,

China) and used as received.

TEMPO-oxidized cellulose nanofibrils (TOCNs)

production

The formic acid pretreated pulp (5 g) was suspended

in a 500 mL solution containing 0.1 g TEMPO, 1.0 g

NaBr, 3.71 g Na2CO3 and 1.26 g NaHCO3. There-

after, NaClO (4.5 mmol/g pulp) was added to the

suspension under ambient condition to prepare

TEMPO-oxidized cellulose. The oxidation reaction

was quenched by adding 10 mL ethanol after 4 h. The

carboxylate content of TEMPO-oxidized cellulose

was 1.34 mmol g-1. An aqueous 1 wt% TEMPO-

oxidized cellulose slurry was homogenized with an

IKA T25 digital ULTRA-TURRAX homogenizer at

20,000 rpm for 30 min and subsequently sonicated

with an ultrasonic probe (25 mm probe tip diameter,

Scientz, China) at 19.5 kHz and 400 W for 20 min.

The transparent TOCNs aqueous dispersion was

stored at 4 �C before use.

Preparation of HPG/TOCNs composite films

Ten grams HPG powder was completely dissolved in

1000 mL deionized water at room temperature by
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stirring at 300 rpm for 8 h. Then, the HPG solution

was mixed with TOCNs aqueous dispersion with the

dry mass ratios of 100:0, 70:30, 50:50, 30:70 and

0:100. The mixtures were stirred for 3 h and poured

into polytetrafluoroethylene petri dishes (150 mm

diameter), respectively. The films were oven-dried at

50 �C for 3 days, peeled off and marked as HPG

(100:0), CF1 (70:30), CF2 (50:50), CF3 (30:70) and

TOCNs (0:100), respectively. All these films were

kept at 23 �C and a relative humidity (RH) of

50 ± 1 % for 2 days before characterization.

Thickness/density measurement

Film thickness was determined as an average of ten

measurements using a thickness meter (MP0, Fischer,

Germany). Density of individual film was calculated

by dividing grammage by film thickness.

UV–Vis transmittance

The light transmittance of the films was characterized

with a Shimadzu UV-1800 UV–Vis spectrometer, and

was measured from 200 to 800 nm.

Mechanical test

The films were cut into 10 mm 9 100 mm rectangu-

lar strips and their tensile strength and elongation at

break were measured at room temperature with a

BZ2.5/TNIS Zwick Material Tester (Zwick, Ger-

many). The initial grip separation was set at 50 mm

and specimens were loaded at a constant cross-head

speed of 50 mm/min. At least 5 specimens of each

sample were tested.

Fourier-transform infrared (FTIR) spectroscopy

FTIR spectra of all films were recorded on a Nicolet is

10 spectrometer with an attenuated total reflectance

(ATR) accessory (Thermo Fisher Scientific Inc., USA)

at a resolution of 4 cm-1 in the range of 550–

4000 cm-1. An average of 16 scans was reported.

Scanning electron microscopy (SEM)

The cross-sections of the films were affixed to a

vertical brass specimen holder for the SEM imaging.

Samples were coated with a gold layer and their

surface morphologies were examined with a HITA-

CHI SU1510 SEM at 5 kV acceleration voltage.

Contact angle (CA) measurement

The water contact angle of each film was measured

with a Drop Shape Analyzer-DSA 100 (KRUSS

GmbH, Germany) at ambient condition. A drop of

water (4 lL) was deposited on the specimen surface

and a series of water droplet images were captured and

analyzed.

Oxygen permeability

The oxygen permeability of the films was determined

with a Labthink VAC-V1 apparatus (Labthink, China)

at 23 �C and 40 ± 1 % RH. The sample size was

38.48 cm2 and the partial pressure of oxygen was

0.1 MPa.

Water vapor permeability (WVP)

TheWVP of the films was determined according to the

previous reports (Das et al. 2011; Sharma et al. 2014).

Briefly, a composite film with an area of 19.64 cm2

was sealed on a cup containing 10 g of oven-dried

CaCl2 as a desiccant. The cup covered with sample

was accurately weighted and put in a desiccator

cabinet containing saturated NaCl solution that was

used to generate 75 % RH gradient. The cup covered

with film was reweighted every 24 h until a constant

weight was obtained. The WVP was calculated using

the following equation:

WVP =
Dm� d

Dt � A� DP

where Dm/Dt is the moisture weight of the film gained

per time unit, d is the average film thickness, A is the

exposed surface area of the specimen, DP is the

difference between the water vapor pressures on the

two sides of the specimen. All measurements were

repeated three times and only the mean value was

reported.

Thermogravimetric analysis (TGA)

TGA of films was conducted on a TGA/SDTA 851e

Thermoanalyzer (METTLER TOLEDO, Switzer-

land). The samples were heated from 25 to 600 �C at
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a heating rate of 10 �C/min. A nitrogen gas stream was

continuously passed into the furnace at 10 mL/min

and the gradual weight loss of the sample was

recorded.

Results and discussion

Optical and mechanical properties

All films were translucent, smooth, flexible and

relatively tough. Figure 1 shows the photographs of

HPG, CF1, CF2, CF3 and TOCNs films. Obviously,

there exists visual difference between the films with

different composition ratios. In addition, light trans-

mittance through the films as a function of wavelength

was obtained and is shown in Fig. 2. The transmit-

tance at 600 nm was around 85 % for TOCNs film,

while it was about 52 % for the HPG film. The

transparency of the composite films was increased

with a higher amount of TOCNs. It is well known that

the particles with diameters less than one-tenth of the

visible-light wavelength do not scatter light (Yang

et al. 2012; Yano et al. 2005). Therefore, the high

transparency of the TOCNs film can be attributed to

the nano-sized fibers of TOCNs (Rodionova et al.

2012c) while the lower transmittance of HPG film is

probably due to the remaining cell wall fragments.

Otherwise, the introduction of HPG into the composite

films increased the particle size, leading to increased

light scattering.

The moisture content, thickness, density and tensile

properties of the films with various HPG/TOCNs

ratios are listed in Table 1. Moisture content of the

films was determined by drying the samples in an oven

at 105 �C for 5 h. The moisture content of the

Fig. 1 Photographs of control (nothing covered) and films made from HPG and TOCNs

Fig. 2 UV-Vis transmittance of films made from HPG and

TOCNs
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composite films was decreased with the increase of

TOCNs content, indicating that cellulose fibers might

have lower affinity to water than HPG. The density of

the film was increased and thickness was decreased

with the increase of TOCNs content, suggesting that

the TOCNs content affected the pore size and cracks in

the composite film. Pure HPG film showed the lowest

tensile strength of around 20.0 MPa and the tensile

strength of the composite films was increased with the

increase of TOCNs content. Meanwhile, the elonga-

tion at break of the films was decreased dramatically

with the increase of TOCNs content. The highest

tensile strength of 149.9 MPa was found in pure

TOCNs film. The high tensile strength of the TOCNs

film may be attributed to its high crystallinity, large

aspect ratio of nanofibrils (Fukuzumi et al. 2009; Wu

et al. 2012) and the numerous O���HO hydrogen bonds

formed between its elements (Shimizu et al. 2014).

The high crystallinity, large aspect ratio and uniform

distribution of TOCNs can also significantly improve

the mechanical properties of its composite film (Jradi

et al. 2012; Wu et al. 2012; Zhou et al. 2012). The

denser structure caused by the addition of TOCNsmay

also contribute to the increased tensile strength of the

composite films (Kong et al. 2014; Takagi and Asano

2008; Qing et al. 2012). The enhanced tensile strength

of the composite films might indicate the good

interaction between HPG and TOCNs. Meanwhile,

the incorporation of TOCNs could diminish the

elongation at break of composite films. The stiffness

of TOCNs as well as the low moisture contents in the

composite films with higher TOCNs contents may lead

to their low elongation (Fujisawa et al. 2011).

Miscibility

The IR spectrum of a blend of two compatible

polymers should be significantly different from their

individual IR spectra. And the differences, including

band shifts, intensity changes and peak broadening, are

derived from chemical interactions (Dong and Ozaki

1997; Xiao et al. 2003). Figure 3 shows the IR spectra

of HPG, TOCNs and CF2 films. The broad absorption

band of HPG at 3650–3000 cm-1 could be assigned to

the stretching of O–H. The bands at 2920 cm-1 was

ascribed to C–H stretching. The peak at 3340 cm-1 in

the spectrum of pure TOCNs film was attributed to the

characteristic peak of hydroxyl groups. However, the

intensity of O–H stretching vibration band was lower

due to the oxidation of the primary hydroxyl at C6

(Wang et al. 2014b). The peak at *1600 cm-1 was

attributed to the C=O stretching vibration of sodium

carboxylate groups (Homma et al. 2013; Fukuzumi

et al. 2013a). The corresponding absorption peaks of

composite film CF2, including O–H stretching, C–H

stretching and C=O stretching appeared at 3343, 2900

and 1602 cm-1, respectively. Based on the increased

intensity of O–H absorption peak and the peak shift of

sodium carboxylate group, it could be concluded that

HPG and TOCNs were cross-linked.

Figure 4 shows the SEM images of the cross-

sections of all films. Numerous pores and cracks were

observed in HPG film. TOCNs film showed a dense

and uniform compact structure. No big aggregates

were observed in composite films. Their homogeneous

morphology suggested that high miscibility occurred

during the compositing and HPG had good adhesion to

TOCNs. The interaction between HPG and TOCNs

also led to the gradually decreased film thickness as

the content of TOCNs increased. A rigid hydrogen-

bond network of cellulose nanofibrils governed by

percolation might also form in the composite films

(Zhou et al. 2012).

Contact angle

Figure 5 shows the contact angle (CA) change of a

water droplet on the films with the increase of

Table 1 Physical and

tensile properties of films

prepared from TOCNs and

HPG

Moisture

content (%)

Thickness

(lm)

Density

(g/cm3)

Tensile

strength (MPa)

Elongation

(%)

HPG film 15.63 106.8 ± 1.4 1.06 ± 0.01 19.1 ± 1.0 7.23 ± 0.50

CF1 14.10 96.4 ± 1.4 1.17 ± 0.02 39.8 ± 4.5 6.64 ± 0.42

CF2 13.57 82.5 ± 0.5 1.37 ± 0.01 44.6 ± 4.3 5.62 ± 0.24

CF3 12.92 70.2 ± 2.9 1.45 ± 0.06 51.6 ± 1.6 4.13 ± 0.30

TOCNs film 12.72 61.1 ± 0.7 1.52 ± 0.02 149.9 ± 13.8 2.21 ± 0.47
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Fig. 3 FT-IR spectra of HPG, CF2, and TOCNs films

HPG CF1

CF2 CF3

TOCNs

Fig. 4 SEM images of the cross-sections of pure HPG, pure TOCN, and composite films
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contacting time. The surface roughness and chemical

composition of a substrate can significantly affect its

surface wettability (Rodionova et al. 2012a). The

initial water contact angle of pure TOCNs film was

46.2�, consistent with the high hydrophilicity of the

TOCNs film reported elsewhere (Fukuzumi et al.

2009). Otherwise, it was noticed that the pure HPG

film had an initial water-contact angle of 94.4�. The
water CAs of the composite films indicated that the

incorporation of HPG significantly improved the

surface water resistance of the composite films.

Nevertheless, the different CAs of the composite films

might also be partially attributed to their different

surface roughness (Rodionova et al. 2012a; Wu et al.

2014). The CAs of the composite films decreased with

the increase of contacting time due to the partial

penetration of water into the films. For example, the

CA of CF2 dropped to about 52.4� in 4 s. High

water/moisture resistance is highly required for the

application of TOCNs film as an oxygen-barrier

packaging material (Kato et al. 2005). Therefore, the

introduction of HPG can expand the application of

TOCNs.

Oxygen-barrier and water vapor-barrier properties

All films including HPG, CF1, CF2, CF3 and TOCNs

films were subjected to oxygen permeability measure-

ments at 23 �C and 40 ± 1 % RH. The results are

present in Fig. 6. The TOCNs film showed the lowest

oxygen permeability of 4.76 cm3 m-2 day-1-

0.1 MPa-1. The regular chemical structures of the

cellouronic acids in TOCNs film without bulky

substituents or additives could contribute to its high

oxygen-barrier level (Kato et al. 2005). Moreover, the

high crystallinity and highly self-aligned elements in

TOCNs filmwere also partially contribute to its superb

oxygen-barrier property (Fukuzumi et al. 2013b;

Rodionova et al. 2012c; Wu et al. 2012). The loose

and cracked structure of pure HPG film diminished its

oxygen barrier property. However, the oxygen per-

meability of TOCNs/HPG composite films was in the

range of 5.67–7.62 cm3 m-2 day-1�0.1 MPa-1

(Fig. 6). The large amount of sodium carboxyl and

hydroxyl groups in TOCNs could form denser aggre-

gates alone or with HPG through strong intra- and

inter-molecular hydrogen bond, which increased the

oxygen barrier of the composite films (Kato et al.

2005). Moreover, water can act as a permeation

medium for gases. Therefore, the reduced moisture

content caused by the introduction of TOCNs to the

composite films also improved their oxygen barrier

(Sharma et al. 2014). In all, the HPG/TOCNs

composite films still showed excellent oxygen-barrier

properties and could be used as an oxygen sensitive

food packaging.

The WVP of all films is given in Fig. 7. The WVP

values of TOCNs and HPG films were 1.17 9 10-5

g m/(m2 day Pa) and 0.53 9 10-5 g m/(m2 day Pa),

respectively. As discussed above, HPG has higher

water affinity than cellulose fibers. However, it has

been reported that guar gum can effectively trap and

retain the water molecules within a matrix (Rosiaux

et al. 2013; Poinot et al. 2014). Guar gum film shows

Fig. 5 Change in the contact angle with time of a water droplet

on films

Fig. 6 Oxygen permeability of the films
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pronounced desorption hysteresis in equilibrium

moisture content and can act as barrier to air and

moisture (Keating et al. 2013; Shetty et al. 1996). The

composite films showed lower WVP than TOCNs

film, indicating that the introduction of HPG effec-

tively reduced the WVP of the composite films.

Mueller et al. (2009) found that the water vapor barrier

of starch/cellulose films was improved as the film

density reduced from 2.41 9 106 to 1.31 9 106 g/m3.

Therefore, the lower density of the composite film

might also partially contribute to its decreased WVP.

Thermal stability of the films

The thermal behaviors of HPG, TOCNs and HPG/

TOCNs composite films were investigated by ther-

mogravimetric analysis (TGA). All films subjected to

a weight loss in the temperature range of 50–110 �C,
which was attributed to their moisture contents

(Fig. 8). The second weight loss of HPG film was

observed at 240 �C where the polymer decomposition

occurred (Nayak and Singh 2001). Further increasing

the temperature to 330 �C led to increased weight loss

rate. Thermal degradation of TOCNs film appeared at

200 �C where the crystalline phase of TOCNs was

destroyed and the amorphous phase was decomposed

into mono-D-glucopyranose (Rodionova et al. 2012b;

Jradi et al. 2012). The third weight loss at 360–600 �C
was attributed to the carbonation (Wang et al. 2014a).

The decomposition temperature for the composite

films, i.e., CF1, CF2 and CF3 were 223, 217 and

210 �C, respectively, indicating that the thermal

stability of the composite films was increased with

the increase of HPG content. The high thermal

stability of composites could be attributed to the

hydrogen bonds formed between the –OH and –COO-

groups of TOCNs and the –OH groups of HPG (Xiao

et al. 2003).

Conclusions

A new transparent high gas-barrier composite film was

prepared from hydroxypropyl guar (HPG) and

TEMPO-oxidized cellulose nanofibrils (TOCNs) by

a solution casting method. The morphologies, tensile

strength, water resistance, oxygen permeability, water

vapor permeability and thermal stability were inves-

tigated. The results indicate that the composite films

have excellent mechanical property, as well as high

oxygen and water vapor barrier properties. The

bendingmass ratio of HPG to TOCNs can significantly

affect their properties. The HPG/TOCNs composite

films can be used as wholly biomass-sourced films for

the food and medicine packaging.
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