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Abstract Bayesian inference was used to test the

powdered cellulose pyrolysis, under the isothermal

experimental conditions. A completely new procedure

that was based on obtaining the reliable distribution

functions of the effective (apparent) activation energy

(Ea) values by the statistical derivation of prior and

posterior functions was introduced. It has been found

that the pyrolysis of the powdered cellulose can be

described by the kinetics, which differs from the first-

order model. It was established that the apparent

activation energy value presented as average magni-

tude in the conversion fraction range of

0.20 B a B 0.65 does not represent the ‘‘lumped’’

kinetic parameter, so in indicated conversion range,

the pyrolysis process can be described through single-

step reaction model with six-eighths-order

(n* = 0.75) kinetics. Based on the presented Bayesian

inference results, it was assumed that mechanism of

pyrolysis takes place through the decomposition

reactions which start from the cellulose chains. From

the main characteristics of the prior distribution,

relationship between the ingredients of Bayesian

inference and the cellulose characteristic energy

constant (c) [which is related to the rigidity angle

(w) as a measure of tenseness of the cellulose chains]

has been established in this paper. Based on evaluated

prior and posterior distributions and their characteris-

tics, it was found that the pyrolysis process of

powdered cellulose takes place probably through

formation of levoglucosan, where depolymerization

represents the primary reaction path. Bayesian ap-

proach can be applied to highly structured reaction

systems and complex physico-chemical processes,

which include the reactivity distribution of various

energy counterparts, which has been often un-tractable

by traditional statistical access.

Keywords Cellulose � Isothermal pyrolysis � Non-

integer kinetics � Bayesian inference � Posterior

distribution

Introduction

Cellulose is the most abundant natural polymer and

becomes part of all plants. This biopolymer in the

plant world, only in the cotton fibers occurs in almost

pure form. Native cellulose is a product of photosyn-

thesis, which takes place in plants by two low-energy

potential substances, CO2 and H2O, under the influ-

ence of electromagnetic radiation of the sun, when a

substance of high chemical potential occurs. It is

believed that in this process, the enzyme systems

participate (which can be found in the cell walls)

whereby the glycoprotein molecules are primary.
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Cellulose is the first polymer on which the structural

organizations were studied (Jovanović 1989). Cellu-

lose makes about 40–50 % of the dry weight of the

wood. It is a polysaccharide composed of molecules

with b-D-glucopyranose linked by (1,4)-glycosidic

connections. Cellulose molecules are linear, while the

degree of polymerization varies from one to the other

raw materials.

Studying the cellulose pyrolysis is significant in

terms of better understanding of mechanism of the

process related to biomass systems and application of

biomass in obtaining the fuels and chemicals.

On-line pyrolysis is directly correlated to the solid

mass loss versus temperature or time and kinetic

models, usually applying isothermal and dynamic

(non-isothermal) thermogravimetric analysis (TGA)

coupled with or without Fourier transformation in-

frared spectrometry (FTIR) or mass spectrometry

(MS). On the other hand, off-line pyrolysis refers to

carrying out the yield of main products [such as gases,

liquids and solids (bio-chars)], variation of the com-

positions in gaseous or liquid products influenced by

intrinsic characteristics and experimental conditions,

in order to improve the pyrolysis process optimization

for the energy or chemicals productions.

The current work is linked to the use of on-line

pyrolysis of powder cellulose samples (as an »isolat-

ed« reaction system), conducted through the imple-

mentation of the thermogravimetry (TG). Bearing in

mind that dry biomass fuels are comprised of about

50 % cellulose by weight, the study of pyrolysis

kinetics of cellulose is essential to the chemical design

of biomass pyrolysis.

A large number of researchers have studied the

cellulose pyrolysis kinetics. The power law kinetic

equation with a reaction order of one has been adopted

as the reaction model function of cellulose pyrolysis

without confirmation (Agrawal 1988a, b; Antal and

Varhegyi 1995; Bigger et al. 1998; Blasi 1994;

Bradbury et al. 1979; Conesa et al. 1995; Diebold

1994; Grønli et al. 1999; Varhegyi and Antal 1989). In

the similar type of paper (Eom et al. 2006), we could

check whether or not the first-order reaction would be

proper to represent the cellulose pyrolysis kinetics. In

the current case, the reaction order was estimated to be

about 1.50, without constraint on the reaction order.

Also, the disparities of the kinetic parameters were

apparent. Owing to correlation among the kinetic

parameters, fixation of reaction order forces the kinetic

parameters to deviate from the real ones. Also, the

differences in apparent activation energy (Ea) values

between model-fitting and model-free kinetic methods

(Vyazovkin and Wight 1999) were noted (Liu et al.

2013; Cabrales and Abidi 2010; Arora et al. 2011;

Poletto et al. 2012). Likewise, the disagreements

regarding to reaction mechanisms were also found

(Liao et al. 2004; Mettler et al. 2012; Capart et al.

2004; Sánchez-Jiménez et al. 2011, 2013; Emsley and

Stevens 1994; Ding and Wang 2008). Because of all

above-mentioned, it is essential to derive the exact or

correct form of the reaction model for cellulose

pyrolysis, where the investigated samples are present

in the powder form.

In this paper, the results obtained by kinetic

analysis based on isothermal thermogravimetric data

were compared with a new approach, which involves

the estimation of the distribution of reactivity assum-

ing the distribution of the apparent (effective) activa-

tion energy values in the complex pyrolysis process of

the powdered cellulose, and which represents the

intrinsic (associated and inseparable) characteristic of

the structural changes of cellulose during the py-

rolysis. The current distribution has been carried out

using the Bayesian inference approach.

Decision theory as the name suggests, deals with

the problem of making decisions. The statistical

decision theory deals with making decisions using

the knowledge of mathematical statistics.

Classical statistics uses information from the

observed statistical sample for the purpose of deter-

mining the value of the unknown parameter, h. On the

other hand, the decision theory combines information

obtained from the observed statistical sample with

various relevant aspects of the problem in order to

make the best decisions. Two common aspects of the

problem which, in decision theory are further dis-

cussed represent the following items: i) the possible

consequences of decisions and ii) a priori information.

Unknown h value that affects the decision-making

process is called state. The set of all states is marked

with X. When information about h is obtained through

the experiments, it is common that they are planning in

the sense that designation has distribution which is

attributed to an unknown parameter. Then h is called

the parameter, and X is the parameter space.

Bayesian analysis is a combination of a priori

information [marked by p(h)] and information from

the observed statistical sample (usually marked by
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‘‘x’’) to obtain the posterior distribution for a given

‘‘x’’, based on which the decisions and conclusions are

make.

It should be mentioned that Bayesian methods

allow incorporation the scientific hypothesis in current

analysis (by means of prior distribution) and can be

applied to problems whose structure is too complex for

conventional statistical methods. Thus, one of the

serious problems that it is worth to consider by

applying the Bayesian statistical methods is the

cellulose pyrolysis, which represents the complex

physico-chemical process, consisting of the entire set

of decomposition reactions, which originate from the

basic molecules. Our goal is to get the reliable

distribution functions of effective (apparent) activa-

tion energy (Ea) values by the statistical derivation of

prior and posterior functions (Martz and Waller 1985;

Robert 2001; Lee 2012). For this purpose, it was

exploited the most frequently used distribution from

the conventional statistical analysis, and its selection

is based on the statistical characteristics of the

experimental distribution of Ea values.

A central element of this paper is the specification

of a probability model which is assumed to describe

the cellulose pyrolysis reaction mechanism, which has

generated the observed data (marked by ‘‘D’’) w as a

function of a (possibly multidimensional) parameter

space X. All conclusions were statistically conditioned

by characteristics of assumed probability model for

the investigated cellulose pyrolysis process.

Experimental

Material

The material studied was cellulose powder (Sigma-

Aldrich) with a particle size of 50 lm. The cellulose

powder samples were directly used for thermogravi-

metric (TG) measurements under isothermal condi-

tions, at various operating temperatures. In this paper,

the ultimate analysis was carried out which gives us the

actual chemical composition of the used samples. The

results of this analysis are expressed as dry ash free

basis (dafb). The corresponding analysis was per-

formed according to the recommendations of current

standards (Milne et al. 1990). Results of the ultimate

analysis were as follows: C = 43.65 %, H = 6.57 %,

O = 49.68 % and N = 0.10 % [dafb]. The current

O/C and H/C ratios (through percent relationships)

were found as: 1.14 and 0.15, respectively.

Thermo-analytical (TA) measurements

The isothermal (static) investigations were carried out

on a thermogravimetric (TG) analyzer (TA Instru-

ments SDT 2960, TA Instruments, 159 Lukens Drive,

New Castle, UK, DE 19720) device capable of the

simultaneous thermal analysis measurements. For all

cellulose samples, the value of the heating rate used to

achieve the desired operating temperature was

b = 100 �C min-1. All thermogravimetric ex-

periments were carried out in the atmosphere of the

flowing nitrogen (flow rate of u = 50 mL min-1).

The powder samples (towards the particle sizes of

50 lm) with the initial mass of 6–8 mg were taken in

an open platinum crucible, where the crucible weight

was calibrated to zero. The isothermal thermogravi-

metric (TG) measurements were carried out at the four

different operating temperatures [Ti = 300, 320, 330

and 340 �C (i = 4)]. All measurements were repeated

at these operating temperatures until the consistency

of the experimental data that has been identified.

Theoretical background

Isoconversional (‘‘model-free’’) methods

The concepts of solid-state kinetics were established

(Hedwall 1938) on the basis of experiments carried out

under isothermal conditions. This was long before the

first instruments for non-isothermal measurements

became commercially available. The governing ki-

netic equation:

da
dt

¼ A � exp � Ea

RT

� �
� f að Þ; ð1Þ

where t is the time [min], A is the pre-exponential

factor [min-1], Ea is the apparent activation energy

([J mol-1] or [kJ mol-1]), R is the universal gas

constant [8.314 J mol-1 K-1], T is the absolute

temperature [K], makes the implicit assumption that

the temperature dependence of the rate constant,

k(T) = A�exp(-Ea/RT) [Eq. (1)], can be separated

from reaction model function, f(a). Several examples

of reaction model functions are given in literature
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(Bamford and Tipper 1980). Extent of conversion or

the conversion fraction (a), 0 B a B 1, is a global

parameter typically evaluated from mass loss or

reaction heat (a determined from TGA runs as a

fractional mass loss: a = (mo - mt)/(mo - mf),

where mo is the initial mass of the sample measured

in TGA experiments, mt is mass of the sample in time t,

and mf is the final mass of the sample, measured at the

end of considered TGA run).

Isoconversional methods, also referred as ‘‘model-

free’’ methods, were developed to extract the kinetic

information without the need of the reaction model by

comparing the measurements made a common extent

of conversion under two or more sets of different

conditions.

Under the isothermal conditions, a standard integral

isoconversional method (Vyazovkin and Wight 1997),

can be readily derived from logarithmic form of the

integral rate-law equation [Eq. (1)] as

g(a) = A�exp(-Ea/RT)�t (where g(a) is integral form

of reaction model function), with k(T) substituted by

the Arrhenius equation:

� ln ta;i ¼ ln
A

g að Þ

� �
� Ea;a

RTi
; ð2Þ

where i is the ordinal number of two or more

isothermal experiments. At each a, Ea,a is evaluated

from the slope of –ln ta,i versus 1/Ti plot, while in this

case the A (the pre-exponential) cannot be directly

computed without acquiring the exact form of g(a).

The Friedman’s differential isoconversional

method (Friedman 1963) does not involve solving

the temperature integral (Flynn 1997). It is applicable

for isothermal as well as non-isothermal conditions.

By taking the natural logarithm of Eq. (1), we have the

isothermal form of the Friedman equation, as:

ln
da
dt

� �
a;i

¼ ln Aa � f að Þ½ � � Ea;a

RTi
: ð3Þ

A dependence of Ea,a on a, can be obtained by

evaluating the Ea over a full range of a, from 0 to 1.

Although, the Friedman’s isoconversional method

does not make any mathematical approximation, it is

usually very sensitive to the experimental perturba-

tions related to the measurements of the reaction rates

(da/dt). Additional uncertainties may be introduced,

especially when the numerical smoothing of ex-

perimental data is applied.

Solid state reactions often undergo self-heating

processes that lead to distorted linear heating program.

In such cases, the heating rate can be hardly

maintained as a constant during a prescribed linear

heating experiment. To address this issue, Vyazovk-

in’s (1997a) extended the non-linear isoconversional

method to deal with arbitrary heating programs,

including isothermal conditions. So, Eq. (1) can be

expressed in its integral form:

g að Þ ¼ Aa

Zta
0

exp � Ea

RT tð Þ

� �
dt ¼ Aa � J Ea;a; T tað Þ

� �
:

ð4Þ

By assuming the reaction model is independent of

temperature and heating rate, we have:

g að Þ ¼ Aa � J Ea; Ti tað Þ½ � ¼ const:; i ¼ 1; . . .; n

ð5Þ

The Ea values are then determined at any given a by

finding anEa,a such that it minimizes the functionU(Ea):

U Eað Þ ¼
Xn
i¼1

Xn
j 6¼i

J Ea;a; Ti tað Þ
� �

J Ea;a; Tj tað Þ
� � ¼ min: ð6Þ

The temperature integral, J[Ea,a, T(ta)], is evaluated

by the numerical integration with all available discrete

experimental measurements at T = const., and

a = const., at the corresponding time values. As one

would notice, the Ea,a evaluated by all these isocon-

versional methods mentioned above, regardless of

their accuracy, is an average over the full region from

0 to a. Identifying the variations in the apparent

activation energy is a characteristic advantage of

isoconversional methods. However, the magnitude of

such variations may be gradually flattened out as a

reaction approaches its end. In this respect, Vyazovkin

(1997b, 2001) further proposed a modification to the

non-linear isoconversional method (modified non-

linear isoconversional method) to overcome this issue.

In Eq. (4), the regular integral from 0 to ta is replaced

with an integral over a small time interval:

J Ea;a; T tað Þ
� �

¼
Zta

ta�Da

exp � Ea

RT tð Þ

� �
� dt: ð7Þ

Integral in Eq. (7) is evaluated by numerical

integration for various heating programs or the
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isothermal temperatures and then plugged into

Eq. (6). Minimization procedure is performed to find

the optimal Ea,a for a given a. In the current method,

Ea,a is assumed to be constant only within a small

segment of Da. Dependence of the apparent activation

energy on the entire conversion fraction (a) can be

derived by repeating the procedure for each a as it

steps by Da from 0 to 1.

By varying the Ea,a, then we are able to find an

optimal Ea,a,min that minimizes the variance and gives:

vmin
2 = v2(Ea,a,min). A statistic can be constructed as:

W Ea;a

� 	
¼

v2 Ea;a
� 	
v2

min

; ð8Þ

and it should follow F-distribution. Hence, we can

evaluate the lower and upper confidence bounds for

Ea,a based on F-test, within 95 % of confidence limits.

Any value of Ea,a that satisfies W(Ea,a)\ F1-p,n-1,n-1

is considered statistically equivalent to Ea,a,min with

(1 - p)�100 % confidence probability (where n is the

total number of experiments, (n - 1) is the total

number of terms in a single summation, p represents

the probability of success, while (1 - p) is the

complement of the event).

Theory of Bayesian inference

Suppose the data X = (x1,…, xn) : (ea,1, …, ea,n)

(where x1,…, xn actually correspond to ea,1, …, ea,n)

(where the scalar x corresponds to energy counterpart

ea) represent the realizations of a random variable with

a density from the parametric family F = {f(ea; h):h e
X} (where h is unknown parameter, which belongs to

the parameter vector x 2 X within parameter space,

which depends on the number of unknown parameters

h; the functional form of f is fully specified up to a

parameter h).

Based on Bayes theorem (Aven and Kvalǿy 2002),

the un-observable parameters in a statistical model can

be treated as random. When no data are available, a

prior distribution is used to quantify our knowledge

about the parameter. When data are available, we can

update our prior information using conditional distri-

bution of parameters, given by the data. Transition

from the prior to posterior is possible through Bayes

theorem (Lester et al. 2003; Langston et al. 2001).

If we assume that before a given experiment, our

prior distribution describing parameter h is p(h). The

data are accompanied by superior model (the likeli-

hood), which depends on the parameter and is usually

celebrated with f(ea|h). Bayes theorem updates prior

p(h) to posterior by accounting for the data ea in the

form:

p h eajð Þ ¼ f ea hjð Þp hð Þ
m eað Þ ; ð9Þ

where m(ea) is a normalized constant, m(ea) =
$x f(ea|h)�p(h) dh.

Once the data ea available to us, h is only unknown

quantity and posterior distribution p(h|ea) completely

describes the uncertainty. There are two key advan-

tages of Bayesian approach: [A] once the uncertainty

is expressed via the probability distribution and

statistical inference can be automated, it follows a

conceptually simple recipe, and [B] available prior

information is coherently incorporated into the statis-

tical model.

The corresponding model for observation

X (:Ea) conditioned by unknown parameter h is

density function f(h|ea). As a function of h,

f(h|ea) = L(h) is usually called likelihood. According

to likelihood principle (Royall 1997; Mayo 2010),

all experimental information about the data must be

contained in likelihood function. The parameter h
with the values in the parameter space X are taken

as random variables. The random variable h has a

distribution p(h) called the prior distribution. Prior

describes uncertainty about the parameter before the

data are observed. If prior for h is specified up to a

parameter s, p(h|s), for that matter, s is called as

hyperparameter.

The aim is to start with this prior information and

update it using the data to make the best possible

estimator of h. This can be achieved using likelihood

function to get p(h|ea), what is called posterior

distribution, for a given Ea = ea. The name ‘‘posterior

distribution’’ hints role p(h|ea). As a prior distribution

reflects certificate about h before experiment, thus

p(h|ea) reflects certificate about h after obtaining an

(ea,1, …, ea,n) pattern. In other words, the posterior

distribution combines a priori beliefs of h and

information about h contained in the realized data

‘sample’, in order to obtain the final ‘‘image’’ of h.

Thus, implicitly assumes that there is a principle of

credibility or, in other words, it is assumed that all

sampling information about h contained in f(ea|h) (for
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a given ea). In search of p(h|ea), we benefit the Bayes

rule that would delimit the joint distribution for Ea and

h [h(ea,h) = f(ea|h)p(h)] for marginal distribution

m(ea), whereby this can be obtained by integrating

out parameter h from joint distribution h(ea,h) such as:

m eað Þ ¼
Z
x

h ea; hð Þdh ¼
Z
x

f ea hjð Þp hð Þdh: ð10Þ

Marginal distribution is often called the prior

predictive distribution. Finally, we can get the expres-

sion for posterior distribution, p(h|ea):

p h eajð Þ ¼ h ea; hð Þ
m eað Þ ¼ f ea hjð Þp hð Þ

m eað Þ ¼ f ea hjð Þp hð ÞR
x
f ea hjð Þp hð Þdh :

ð11Þ

Table 1 summarizes the ingredients of Bayesian

inference (notation) used in this paper.

In addition, if p(h) is uniform—that is, the same for

all h, then expression on the final right-hand side of

Eq. (11) simplifies to

f ea hjð ÞR
x
f ea hjð Þdh : ð12Þ

The above ratio is called the standardized or the

normalized likelihood function (Karabatsos and Walk-

er 2006; Myung et al. 2006), provided that $x f(ea|h)dh
is finite.

The main starting point for setting the calculation

procedure in order to obtain all Bayesian ingredients

for investigated process is based on the following:

Since the distribution type of the pyrolysis process is

unknown, we have to make a initial assumption about

the possible shape of the function f(h|ea), with

›unknown‹ or maybe ‘‘virtual’’ parameters h. This

‘‘estimation’’ can be obtained from isoconversional

analysis [primarily from the modified non-linear

Vyazovkin’s method, keeping in mind that this

approach uses a larger number of conversion fraction

(a) values and therefore we have a greater number of

calculated Ea values, where the sample size is equal to

100 (hundred ea counterparts); also, this approach

severely reduces the systematic error observed in other

integral/differential isoconversional methods (see

above)]. After receiving the isoconversional depen-

dency Ea,a = Ea,a(a), then differentiating the depen-

dence a = a(Ea,a) in respect to Ea (da(Ea,a)/dEa,a) we

can obtain the initial form of f(h|ea), with generally

unknown h. Based on the shape of the curve which was

evaluated, we then assume the type of distribution. The

strategy is to select those which can provide a more

conservative estimates, accompanied with maximum

likelihood estimates (MLE) (states the model) (Aldrich

1997), and then the calculations which occur in the

completion of the distributions within the Bayesian

inference (Table 1), and which will be presented in the

next section of this paper. The advantage of this

approach is that the Bayesian inference estimates a full

probability model, which can directly assist in the

interpretation of the exact mechanistic scheme of the

pyrolytic process. The Bayesian inference framework

allows us to improving the important parameters

estimation (Tang and Zhuang 2009), which reflects

the kinetic behavior of the cellulose molecules during

isothermal pyrolysis, wherein determining the course

of a comprehensive mechanism of the process, i.e. the

prediction of the same.

In this paper, it is preferably assumed that

probability distributions may be described through

their probability density functions, and no distinction

is made between a random quantity and the particular

values that it may take. Moreover, the standard

mathematical convention of referring to functions,

pronounce f of ea 2 Ea will be used in this work.

Density functions of specific distributions are denoted

by appropriate names. Thus, if ea is a random quantity

with a normal distribution of mean l and standard

deviation r, its probability density function will be

denoted by N eajl; rð Þ.

Table 1 The defined ingredients of Bayesian inference (no-

tation) used in the current research

Bayesian inference

Name Notation Equal to

Likelihood f(ea|h)a

Prior distribution p(h)

Joint distribution h(ea,h) f(ea|h)�p(h)

Marginal distribution m(ea) $x f(ea|h)�p(h)dh

Posterior distribution p(h|ea) f(ea|h)�p(h)/m(ea)

a Likelihood is based on the likelihood function. Since, it is not

a probability density, then it may decide that it is the best

estimator of the parameter is the value that has the highest

value of the likelihood function
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Results and discussion

Thermo-kinetic characteristics of the pyrolysis rate

curves

Figure 1 shows the experimentally obtained rate-time

curves for the powdered cellulose pyrolysis, at various

operating temperatures (300, 320, 330 and 340 �C).

From Fig. 1 we can see that all recorded rate-time

curves at all observed operating temperatures show

decreasing behavior with time, according to nearly

exponentially decay laws. For all operating tem-

peratures, the maximum rate (vmax) reaches its value

v = vmax at t = 0. It should be noted that various types

of kinetic models are conventionally placed into two

main groups: a - t relationships that give either

(i) sigmoid or (ii) deceleratory curves (Khawam and

Flanagan 2006). These expressions, g(a) = k�t, may

be differentiated to give the expressions f(a) = v/

k (where v : da/dt; k is the rate constant), and by

suitable substitution, these may be expressed as

functions of time, v = h(t). Within the deceleratory

group of kinetic models (including the first-order (F1)

and ‘‘n th’’ order (reaction order different from the

unity) (Fn) reaction models, geometrical contraction

[R2 (contracting area) and R3 (contracting volume)]

reaction models, and diffusion (D1, D2, D3 and D4)

reaction models) (Khawam and Flanagan 2006) have

v = vmax at t = 0. This characteristic feature exhibits

all the rate-time curves in Fig. 1. A secondary feature,

analogous to half-life (t1/2), in the conventional kinetic

analysis, is the time value, tm/2, taken for the rate to

drop to half its maximum value (i.e., vmax/2). The rate-

time features, such as vmax, vmax/2 and tm/2, may be

determined from experimental pyrolysis data, without

knowledge of the particular kinetic model that applies

to the data, other than the visually obvious classifica-

tion into one or the other of the two main groups.

Based on the shapes and specific properties of the rate-

time curves shown in Fig. 1, we can unambiguously

conclude that the mechanism of powdered cellulose

pyrolysis process follows the deceleratory kinetic

behavior.

The essential difference between the rate-time

curves shown in Fig. 1 is reflected in their slopes,

which directly affect values of pyrolysis rates in

certain parts of the rate curves at various operating

temperatures, and also on the values of tm/2. Table 2

lists the values of the rate-time features (vmax, vmax/2

and tm/2) at the different operating temperatures for the

pyrolysis of powdered cellulose samples.

It can be seen from Table 2 that the values of vmax
and vmax/2 increase with an increasing of operating

temperature, where the absolute maximum rate of

pyrolysis (vmax) is achieved at the highest value of the

operating temperature (at 340 �C). On the other hand,

the value of tm/2 decreases with an increasing of the

operating temperature, in respect to the exponential

decay process, which is typical for the rates of certain

types of chemical reactions depend on the concentra-

tion of one reactant. Reactions whose rate depends

only on the concentration of one reactant (known

as first-order reactions) consequently follow exponen-

tial decay. Deviation from the mechanism of the

process being modeled by reaction of the first order

going to a non-integer reaction orders may indicates a

Fig. 1 The experimentally obtained rate-time curves for the

powdered cellulose pyrolysis, at various operating temperatures

(300, 320, 330 and 340 �C)

Table 2 The rate-time curve features (vmax, vmax/2 and tm/2) at

different operating temperatures (300, 320, 330 and 340 �C),

for the isothermal pyrolysis of the powdered cellulose samples

Powdered cellulose

T (oC) vmax (min-1) vmax/2 (min-1) tm/2 (min)

300 0.01198 0.00544 78.20

320 0.02514 0.01098 37.69

330 0.04486 0.01610 23.52

340 0.05623 0.02162 18.23

Average 0.03455 0.01353 39.41
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more complex reaction mechanism, that may involves

a concentrations of more than one reaction species.

The results presented in Table 2 have been validat-

ed through the application of the first-order kinetic

model (F1), where tm/2 = (ln d2)/k : t1/2 whereby we

get a = 1 - exp(-k � t) [k is the rate constant in

(min-1)] (the above expression represents the relation

for estimation of conversion fraction (a) values, which

belongs to the first-order reaction mechanism).

Figure 2 shows the comparison between the ex-

perimentally obtained and calculated [taking into

account the relation a = 1 - exp(-k � t)] conversion

(a - t) curves for the pyrolysis process of powdered

cellulose at the different operating temperatures,

where it is assumed validity of the first-order (F1)

reaction mechanism. At the same figure, the corre-

sponding rate constant (k) values calculated for F1

kinetic model are also presented.

From Fig. 2 we can see that there is quite a large

discrepancy between the experimental and calculated

conversion curves, related to the first-order kinetics.

The presented results clearly indicate that the first-

order kinetics does not hold for the pyrolysis process

attached to powdered cellulose. Based on these results,

we can conclude that the kinetics of cellulose pyrolysis

is much more complicated than can be described by

the first-order (F1) kinetic model.

It should be noted that the reciprocal of the tm/2

value (i.e., tm/2
-1 ) is usually used to describe the overall

rate of the isothermal pyrolysis process. From the

linear dependence such as ln(1/tm/2) = const.

- Ea,cellulose/RTi, we can calculate the overall apparent

activation energy value for pyrolysis process of

powdered cellulose samples (designated by

Ea,cellulose). The corresponding linear plot of the

above-stated linear relationship, with appropriate

95 % confidence limits for powdered cellulose py-

rolysis is illustrated in Fig. 3.

It can be seen from Fig. 3 that fairly good linear

correlation exists, where all data are contained within

the predetermined 95 % confidence limits. The result-

ing error in the Ea,cellulose value (Fig. 3) is in the limits

of the experimental errors. The obtained value of the

overall apparent activation energy for the investigated

pyrolysis process amounts Ea,cellulose = 108.9 ± 0.7

kJ mol-1 (Fig. 3).

Table 3 summarizes the results of apparent activa-

tion energies and reaction orders for cellulose py-

rolysis process, obtained under non-isothermal and

isothermal experimental conditions. Results were

sublimed from a variety of available literatures and

these results are compared with the results reported in

this work.

It can be found that the apparent activation energies

for cellulose pyrolysis are typically ranged from

Ea = 93.0 kJ mol-1 up to Ea = 278.5 kJ mol-1,

Fig. 2 The comparison between the experimentally obtained

and calculated [taking into account the relation a = 1 - exp

(-k � t)] conversion (a - t) curves for the pyrolysis process of

the powdered cellulose at the different operating temperatures

(300, 320, 330 and 340 �C), where it is assumed validity of the

first-order (F1) reaction mechanism. At the same figure, the

corresponding rate constant (k) values, calculated for the first-

order kinetic model are also presented

Fig. 3 The linear dependence of ln(1/tm/2) versus 1/Ti for the

isothermal pyrolysis process of the powdered cellulose. The

corresponding overall apparent activation energy value

(Ea,cellulose) is also indicated
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which greatly depends on the specific experimental

conditions, the range of used (dynamic/static) tem-

peratures, the gas partial pressures etc. Generally

speaking, the obtained result in the present work is in

reasonable ranges when compared to other studies

(Table 3). However, it should be emphasized that the

chemical kinetics in other studies was developed

mainly on the non-isothermal (dynamic) thermal

decomposition, whereas the currently obtained result

pertains to isothermal kinetics. However, if we only

look at the results related to the isothermal kinetics, the

value of Ea obtained here for the considered cellulose

samples is completely logical and totally acceptable.

Isoconversional analysis

Figure 4 shows the isoconversional dependence of the

apparent (effective) activation energy values (Ea,a) on

the conversion fraction (a) for the isothermal pyrolysis

of powdered cellulose. The observed isoconversional

dependencies are estimated from the standard (inte-

gral) (symbol square) and Friedman’s (differential)

(symbol circle) isoconversional methods [Eqs. (2, 3)].

In addition, Fig. 5 shows the isoconversional

dependence Ea = Ea(a) evaluated by the advanced

Vyazovkin’s modified non-linear isoconversional ap-

proach, for the pyrolysis process of powdered cellu-

lose. The calculation procedure was conducted with

steps by Da = 0.01 from 0.05 to 0.95 of the total

conversion values. In the current figure, the corre-

sponding 95 % confidence limits, with lower and

upper bounds are clearly marked.

It can be seen from Fig. 4 that the course of the

apparent activation energy values depends on the

conversion fraction. Curves that show the apparent

activation energies, obtained by two different isocon-

versional methods have a similar course (Fig. 4). In

the initial stage of pyrolysis process (up to a = 0.10),

an increase in Ea values in both curves occurs. After

their short consolidation, there is a slow decrease in Ea

values (from a = 0.10 to a = 0.30) and then short

‘‘stabilization’’ at a = 0.35 (Fig. 4). Starting from

a = 0.45, a significant decrease in Ea values can be

observed [valid for both considered methods (Fig. 4)].

For a conversion fraction values in the range of

a = 0.05–0.10, an increasing dependence of Ea on a

Table 3 Summary of the reaction orders (plus additional kinetic models) and apparent activation energies for cellulose pyrolysis

process under isothermal and non-isothermal experimental conditions

Material T (oC) Reaction order (n)c Ea (kJ mol-1) References

Cellulose 200–270a 0.80 93.0 Muller-Hagedorn et al. (2003)

253–394a 1.00 278.5 Mui et al. (2010)

230–380a 1.00 185.0 Sonobe and Worasuwannarak

(2008)

300–340a 1.00 227.0 Yang et al. (2004)

200–300b 1.00 124.4 Chen and Kuo (2011)

280–400a 1.00 124.6 Poletto et al. (2012)

50–650a 1.00 203.0 Shaik et al. (2013)

30–700a Non-reaction order/autocatalytic Prout-Tompkins

model

200.0 Capart et al. (2004)

280–320b Non-reaction order/autocatalytic Prout-Tompkins

model

203.0 Capart et al. (2004)

260–275b Non-reaction order/Chain scission model (L2) 191.0 Sánchez-Jiménez et al. (2013)

360–370b Non-reaction order/Nucleation and growth

model (Avrami-Erofeev) (A3.69)

193.0 Kim and Eom (2006)

300–340b n = 1 108.9 Present study

a Non-isothermal kinetics
b Isothermal kinetics
c (‘‘n’’) models that include reaction orders, but same table also incorporates and other types of identified kinetic models
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obviously can be observed. This behavior is charac-

teristic of competing reactions (Vyazovkin 1996).

This segment corresponds to the start of cellulose

pyrolysis. It is affected by competition among the

decomposition of individual macromolecules and the

inter-molecular associates. In addition, it should be

noted that the later decrease in Ea with a (with lower

conversions) can be attributed to the ongoing depoly-

merization of cellulose molecules.

It should be noted that for the values of conversion

fraction above a C 0.70, the slightly lower values of

Adj. R-Square (R2) attached to isoconversional plots

were obtained (not shown here). For these values of R2

and given a’s, the decline in Ea values with a were

identified, which is particularly evident in the case of

differential (Friedman’s) method (Fig. 4). Regarding

the mentioned facts related to the lower values of the

R2, these parts of the curves (a C 0.70) do not provide

sufficient evidence, and it would be confusing to

consider them as accurate. It should be noted that in the

case of both applied methods, the minimal variations of

Ea with a were observed in the range of conversions

from a = 0.20 to a = 0.65, where in a given a range,

the average value of the difference in Ea values

calculated by considered methods is only

4.5 kJ mol-1, which is quite acceptable for any errors

that may occur when applying these methods. In the

considered range of conversions, the apparent activa-

tion energy value may be taken as constant. The

following values of Ea were obtained:\Ea[
Int =

115.2 ± 2.7 kJ mol-1 and\Ea[
Friedman = 110.7 ±

3.0 kJ mol-1 (where ‘‘Int’’ and ‘‘Friedman’’ are

attached to the integral and differential (Friedman’s)

isoconversional methods). The value of Ea calculated

by the Friedman’s method (110.7 kJ mol-1) is in quite

good agreement with the value of Ea,cellulose

(108.9 kJ mol-1; see above). We also need to say that

the values of Ea, which are calculated using the

advanced Vyazovkin’s modified non-linear isoconver-

sional method (Fig. 5) are in excellent agreement with

the values of Ea calculated by the previous two

isoconversional methods, where Ea = Ea(a) depen-

dence has almost identical trend as the ones in Fig. 4.

There are often higher values of the apparent activation

energy of cellulose pyrolysis in the literature (Table 3).

It may be a consequence of various conditions during

the measurement, mainly the different weights of the

samples and different nature and flow velocities of the

atmosphere, in which the test takes place.

The apparent activation energies obtained by

isoconversional methods at lower conversions

(a\ 0.20) and higher conversions (a[ 0.70) were

found to be noticeably different from the apparent

activation energies (almost constant) obtained in the

range a = 0.20–0.65. This indicates the different

Fig. 4 The isoconversional dependence of the apparent (effec-

tive) activation energy values (Ea,a) on the conversion fraction

(a) for the isothermal pyrolysis of the powdered cellulose. The

observed isoconversional dependencies are estimated from the

standard (integral) (symbol square) and Friedman’s (differen-

tial) (symbol circle) isoconversional methods

Fig. 5 The isoconversional dependence Ea = Ea(a) evaluated

by the advanced Vyazovkin’s modified non-linear isoconver-

sional approach, for the isothermal pyrolysis process of the

powdered cellulose. The calculation procedure was conducted

with steps by Da = 0.01 from 0.05 to 0.95 of the total

conversion values. In the current figure, the corresponding

95 % confidence limits, with lower and upper bounds are clearly

marked
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mechanisms of cellulose decomposition at lower

conversion (dehydration and depolymerization), mod-

erate conversion (decomposition of cellulose and

competition between formation of volatile compounds

and char) and higher conversion (cross-linking and

aromatic cyclization of char residue). In the conver-

sion ranges, where nearly constant values of Ea were

identified (Figs. 4, 5), we can expect that a similar

mechanism is operating in these ranges

(a = 0.20–0.65). Many researchers (Liau and Hsieh

2005; Khachani et al. 2014) have reported an average

value of Ea, but we must bear in mind that due to the

occurrence of many different elementary steps and

complex mechanisms of thermal decomposition of

cellulose, it is not appropriate to give an average value

of Ea. The variation in Ea is justified because of the

different elementary steps and complex mechanisms

of thermal decomposition process. In the present

study, the above established average values of Ea

(\Ea[
Int and\Ea[

Friedman) should be understood as

the ‘‘lumped’’ kinetic parameters. However, it is

necessary to prove whether derived average values

of Ea in the observed range of conversion fraction

values are really ‘‘lumped’’ kinetic parameters, or they

may with reasonable grounds taken as real (‘true’)

kinetic parameters that can be joined correctly to the

evaluated reaction mechanism function, which can

realistically describe the tested pyrolysis process.

The exact analytical form of the reaction mechan-

ism function can not be determined solely on the basis

of isoconversional analysis, but this requires an

additional considerations.

Searching for the real form of the reaction

mechanism function

Since we have proved that the pyrolysis process of

powdered cellulose can not be described with first

order kinetics, then we are obliged to carry out the

checking procedure, whether the process is subject to

the kinetics which obeys a mechanism that involves

reactions that deviate from the first-order. If the order

of reaction is not unity, the integration of basic rate law

equation, da/dt = k�(1 - a)n* (where n* represents

the apparent reaction order) becomes

1 � að Þ1�n��1 ¼ n� � 1ð Þk � t: ð13Þ

The plot of [(1 - a)1-n* -1] versus t gives a

straight line with a slope equal to (n* - 1)�k. Accord-

ingly, the rate constants at various operating tem-

peratures (Ti) can be calculated. From the logarithmic

form of the Arrhenius equation, ln(k) = ln A - Ea/

RTi, the kinetic parameters, ln A or A (the pre-

exponential factor) and the apparent activation energy

Ea can be calculated, from the plot of ln(k) versus Ti
-1,

which gives a straight line (the slope of the line is

equal to -Ea/R, and the intercept is equal to ln A).

These kinetic parameters may then be compared with

the results of the analysis carried out by means of

isoconversional approach, for the purpose of compar-

ing the values of Ea.

Table 4 lists the results obtained from the applica-

tion of [(1 - a)1-n* - 1] versus t plots analyses, for a

various values of the apparent reaction orders (n*),

ranged from 0.25 to 4.00, in the case of the tested

pyrolysis process. Same table also shows the results of

statistical analysis, which includes the Adj. R-Square

(R2) and Fisher (F)-test values. All results are

presented for all considered operating temperatures.

We can see from Table 4 that is undoubtedly the

best model was the one that has a apparent reaction

order which is less than unity (n*\ 1), and which is

equal exactly to n* = 0.75 (n* = 6/8). This result

clearly confirms that the mechanism of powdered

cellulose pyrolysis can be best described with reaction

order mechanism different from the unity (n* = 1,

i.e., for n*\ 1). In addition, Table 5 lists the values of

calculated rate constant (k) values, which were

estimated from the results presented in the Table 4,

for all considered operating temperatures (300, 320,

330 and 340 �C).

In the current table, the best selected rate constant

(k) value at every considered operating temperature,

for n* = 0.75, is clearly marked, with bold tags.

Figure 6 shows the dependence of ln(k) versus 1/Ti for

the values of k which correspond to the selected

apparent reaction order (n* = 0.75) (see Table 5). In

Fig. 6, only the roughly dependence, without estab-

lishing a linear-regression analysis to a given ex-

perimental points was shown.

From Fig. 6 we can see the effect of n* at the rate

constant (k) with a change in operating temperature

values. Namely, in our considered case, it is important

to note that the value of n* less than unity tends to

introduce a ‘‘new’’, the ‘reverse’ curvature in the

Cellulose (2015) 22:2283–2303 2293
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current ‘‘plot’’ at the high operating temperatures

(Ti C 330 �C [603.15 K]; Fig. 6). The actual value of

n* which is less than unity [but not significantly below

of n* = 1.00 (where n* will not fall below 0.50)]

slightly increases the overall downward curvature, as

can be seen in Fig. 6. Now we can ask whether the

effect of n* in respect to its magnitude can affects the

quality of the linear regression and in the error sizes of

the calculated kinetic parameters, from the logarith-

mic form of the Arrhenius equation.

Figure 7 shows the plot of ln(k) versus 1/Ti, with the

applied linear-regression analysis on the experimental

points. We can clearly see that there is a more than

satisfactory quality of the linear fit, where all points lie

within 95 % confidence limits (Fig. 7), and where

detected (not much) curvature does not affect the

subsequent calculated values of the kinetic parameters

(A and Ea). From presented results, we may conclude

that 0.75 is the most appropriate value for n* kinetic

parameter, and that the detected curvature in Fig. 6 is

fundamental. However, this phenomenon can be

eventually attributed to the change in the fundamental

nature of the reaction. Meanwhile, such curvature

(Fig. 6) is an expected outcome of the temperature-

induced transition from an energy—to a time-depen-

dent realm, but the goal of this paper is not to check the

assumptions outlined above.

On the other hand, we can also see that in the

current case, we get a very realistic values of the

kinetic parameters [A = 1.357 9 108 min-1 and

Ea = 110.4 kJ mol-1 (Fig. 7)], where all the errors

Table 5 The rate constant (k) values at various operating

temperatures (300, 320, 330 and 340 �C), calculated for every

observed apparent reaction order (n*) value, for isothermal

pyrolysis process of the powdered cellulose

Temperature, T (oC)

n* 300 320 330 340

k (min-1) k (min-1) k (min-1) k (min-1)

0.25 0.00875 0.01805 0.02937 0.03788

0.50 0.01016 0.02100 0.03424 0.04424

0.75a 0.01184 0.02448 0.04004 0.05176

1.15 0.01520 0.03140 0.05160 0.06693

1.25 0.01616 0.03348 0.05504 0.07140

1.50 0.01894 0.03926 0.06480 0.08416

1.75 0.02225 0.04617 0.07644 0.09940

2.00 0.02620 0.05443 0.09039 0.11769

2.25 0.03092 0.06430 0.10713 0.13965

2.50 0.03657 0.07612 0.12727 0.16608

2.75 0.04333 0.09031 0.15154 0.19795

3.00 0.05147 0.10739 0.18085 0.23647

3.25 0.06125 0.12796 0.21631 0.28310

3.50 0.07305 0.15280 0.25929 0.33965

3.75 0.08729 0.18283 0.31148 0.40836

4.00 0.10453 0.21921 0.37496 0.49198

a The best rate constant values for investigated pyrolysis

process, at different Ti’s, for appropriate value of n*

Fig. 6 The dependence of ln(k) versus 1/Ti for the values of

k which correspond to the selected apparent reaction order

(n* = 0.75) (results for k from Table 5). In the current figure,

only the roughly dependence, without establishing a linear-

regression analysis to a given experimental points was shown

Fig. 7 The Arrhenius plot of ln(k) versus 1/Ti, with the applied

linear-regression analysis on the experimental points. The

corresponding 95 % confidence limits, with lower and upper

bounds are clearly marked
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meet the expected condition of their entry into the

range of the experimental errors. If we compare this

value of Ea which was obtained using the procedure

presented in Fig. 7, with the value of Ea calculated by

the Friedman’s isoconversional method

(110.7 kJ mol-1), we can notice almost perfect agree-

ment between them. This means that the average value

of Ea calculated using the isoconversional approach is

not the ‘‘lumped’’ kinetic parameter, so in the

observed a’s, the pyrolysis process of the powdered

cellulose can be described through the single-step

reaction model.

Using the obtained values of kinetic parameters

(A = 1.357 9 108 min-1; Ea = 110.4 kJ mol-1) we

performed a corresponding numerical calculations of

the conversion (a - t) curves, based on the relation

a(t) = 1 - [A�exp(-Ea/RTi)�t�(n* - 1) ? 1]1/(1-n*),

which is valid for n* = 1. For all calculations, the

apparent reaction order of n* = 0.75 was used.

Figure 8 shows the comparison between the ex-

perimentally obtained and calculated (taking into

account the relation a(t) = 1 - [A�exp(-Ea/RTi)-

t�(n* - 1) ? 1]1/(1-n*) for n* = 0.75) conversion

(a - t) curves, for the pyrolysis process of the

powdered cellulose at the different operating tem-

peratures (300, 320, 330 and 340 �C).

Comparing the experimental and calculated con-

version [a(t)] curves at all operating temperatures

where the pyrolysis process developing (Fig. 8), we

can conclude that the isothermal pyrolysis of the

powdered cellulose unequivocally follows the reaction

mechanism which obeys to non-integer kinetics

(n* = 1).

However, in order to test accuracy and precision of

certain kinetic parameters using classical kinetic

approach, the Bayesian inference framework was

used.

Discussion of the results obtained from Bayesian

inference

Based on the obtained isoconversional dependence

estimated using the Vyazovkin’s modified non-linear

isoconversional approach (Fig. 5), we can calculate

the experimental distribution function of Ea values,

resulting from a = a(Ea,a) dependence and the pro-

cedure of differentiation, such as da(Ea,a)/dEa,a. By

using this procedure, we obtained the experimental

(the initial form of f(ea; h), with unknown h)

distribution of Ea values. The shape of the estimated

curve is presented in Fig. 9.

We can notice that the experimental distribution

function for powdered cellulose pyrolysis process is

characterized by single-peak f(ea; h) curve (Fig. 9). By

using a flexible fitting procedure (OriginLab 2014), it

was found that f(ea; h) curve is most closely corre-

sponds to the Normal (Gauss) distribution function.

The peak of the current curve corresponds to the value

of the apparent activation energy equal to Ea(-

peak) = 106.8 kJ mol-1 (Fig. 9). From Fig. 9, we

can see that the Ea values around the peak at higher

f(ea; h) values, are distributed almost symmetrically,

while at lower f(ea; h) values, there is some small

asymmetry that pulls toward the lower values of the

apparent activation energy. The value of apparent

activation energy equal to 106.8 kJ mol-1 corre-

sponds to the later stage of pyrolysis process, but this

value is even higher than some of the values reported

in the literature, and which are less than 100 kJ mol-1

(Table 3). This could be associated to the less volatile

matter during the first devolatilisation stage, in which

the kinetic parameter was considered. The variations

in particle sizes and origin sources of celluloses may

have an impact on devolatilisation characteristics

(Akinrinola et al. 2014; Balogun et al. 2014). Based on

the derived f(ea; h), we can apply the Bayesian

inference framework, which will includes normal

Fig. 8 The comparison between the experimentally obtained

and calculated (taking into account the relation a(t) = 1 -

[A�exp(-Ea/RTi)�t�(n* - 1) ? 1]1/(1 - n*) for n* = 0.75) con-

version (a - t) curves, for the pyrolysis process of the

powdered cellulose at the different operating temperatures

(300, 320, 330 and 340 �C)
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prior and normal posterior estimations, together with

searching for unknown parameters, attached to the

normal distribution.

Let’s assume that we have a normal population of

the apparent activation energy counterparts (ea,i, with

i = 1,…,100), with an unknown mean and a known

variance. We will take for our analysis, the case with

normal likelihood and normal prior combinations,

where such a system is the most commonly taken in

practice (Lesaffre and Lawson 2012). Assume that an

observation ea,i 2 Ea is normally distributed with mean

h and known variance r2 [r2 = 1.96 (kJ mol-1)2;

r = 1.4 kJ mol-1]. The parameter of interest, h, has

normal distribution as well with hyperparametersl and

s2. Starting with an Bayesian model ofEajh�N h; r2ð Þ
and h�N h; s2ð Þ , we will find the marginal and

posterior distributions. The exponent n (Iyer et al.

2002) in the joint distribution h(ea,h) is:

n ¼ � 1

2r2
ea;i � h
� 	2� 1

2s
h� lð Þ2: ð14Þ

After some mathematical transformations, n can be

expressed as:

n ¼ � 1

2q
h� q

ea;i
r2

þ l
s2


 �h i2

� 1

2 r2 þ s2ð Þ ea;i � l
� 	2

;

ð15Þ

where

q ¼ r2s2

r2 þ s2ð Þ : ð16Þ

Recall that h(ea,h) = f(ea|h)�p(h) = p(h|ea)�m(ea),
so the marginal distribution simply resolves to

Ea �N l; r2 þ s2ð Þ and posterior distribution

becomes:

h Eaj �N s2

r2 þ s2ð ÞEa þ
r2

r2 þ s2ð Þ l;
r2s2

r2 þ s2ð Þ

� �
:

ð17Þ

If Ea1, Ea2,…, Ean are observed instead of a single

observation Ea, then the sufficiency of Ea implies that

the Bayesian model for h is the same as for Ea with r2/

n (n = 100) in place of r2. In other words, the

Bayesian model can be expressed as:

Ea hj �N h;
r2

n

� �
; ð18Þ

and

h�N l; s2
� 	

; ð18aÞ

producing

h Ea

�� �N s2

r2

n
þ s2

� 	Ea þ
r2

n
r2

n
þ s2

� 	 l; r2

n
s2

r2

n
þ s2

� 	
 !

:

ð19Þ

Then there would be recorded that the posterior

mean (l*) is equal to

l� ¼ s2

r2

n
þ s2

� 	Ea þ
r2

n
r2

n
þ s2

� 	 l; ð20Þ

which is weighted linear combination of the maximum

likelihood estimates (Rohde 2014) Ea, and prior mean

l with weights k = n�s2/(r2 ? n�s2) and (1 - k) =

r2/(r2 ? n�s2). When the sample size has a tendency

to increase, k ? 1, afterwards the influence of the

prior mean diminishes. On the other hand, when n is

relatively small, and when the prior about l becomes

meaningful (i.e., s2 is quite small), in that case, the

posterior mean is close to the prior mean l. From

Eq. (20) we can see that a common Bayesian estimator

is the posterior mean, while (r2/n)�s2/(r2/n ? s2)

represents the posterior variance marked with r*2. In

addition, the uncertainty bounds can be found from the

Fig. 9 The experimental density distribution function of Ea

values, resulting from a = a(Ea,a) dependence and the proce-

dure of differentiation throughout da(Ea,a)/dEa,a, for the

isothermal pyrolysis of the powdered cellulose; The peak of

the current distribution corresponds to the value of the apparent

activation energy equal to 106.8 kJ mol-1
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percentiles of posterior distribution. A 95 % credible

interval (CI) for h can be calculated from the relation

as:

CI ¼ l� � 1:96 � r�; ð21Þ

where r* is posterior dispersion.

Figure 10 shows the comparison between estimated

likelihood function f(ea|h) and the experimentally

evaluated density distribution function (Fig. 9), for

the investigated isothermal pyrolysis process of the

powdered cellulose. In addition to the label attached to

likelihood function on the black-line inset in Fig. 10,

the likelihood function is Ea jh�N h; r2=n ¼ð
1:96=100Þ; where r = 1.40 kJ mol-1). The numerical

calculations were performed in MATLAB� codes

(MATLAB� codes 2014).

We can see that the likelihood function with respect

to experimental density function is shifted to the right

on the side of higher ea counterparts, where f(ea|h)

unlike to f(ea; h) is narrow drastically, so that the

placed Bayesian model shows the definition of

reliability in Ea values in the direction of slightly

higher values of the apparent activation energy in

relation to Ea(peak) = 106.8 kJ mol-1, which has been

detected in Fig. 9. Also, f(ea|h) function in comparison

with f(ea; h) shows no occurrence of the asymmetry

(Fig. 10), which, however, was registered in a small

‘‘portions’’ for the experimental density function

(Fig. 9).

Figure 11 shows the estimated prior and posterior

distributions, under monitored experimental conditions.

From Fig. 11 we can see that the posterior distri-

bution is almost identical to the model (the likelihood)

function, while the prior distribution is positioned at

the same location as an experimental density function

(Fig. 10), showing a nearly perfect symmetrical shape,

compared to f(ea; h) function, which was not the case.

In fact, prior distribution shows ‘‘realistic’’ shape of

experimental distribution of the apparent activation

energies, eliminating the appearance of any errors,

which would occur during the process of differen-

tiation of a = a(Ea,a) dependence. This distribution is

the inherent characteristics of the pyrolysis process.

Table 6 lists the values of all monitored model

parameters, attached to the ingredients of Bayesian

inference, which were estimated by the numerical

computations.

It can be seen from Table 6 that for our data, the

mean of the posterior distribution is a very close to the

prior mean. Namely, in the current case, the latter will

cause that the dispersion (and therefore variance) of

the posterior distribution shrinks (Table 6). This effect

is a direct consequence of the real appearance of the

posterior distribution, which is shown in Fig. 11. On

the other hand, there is 95 % chance that unknown

parameter h is between 112.5 and 113.1 kJ mol-1, and

as has been unequivocally confirmed by the results

shown in Table 6. The observed h parameter is in good

agreement with the value of Ea (110.4 kJ mol-1)

calculated by logarithmic form of Arrhenius equation

(Fig. 7).

Fig. 10 The comparison between estimated likelihood function

f(ea|h) and the experimentally evaluated density distribution

function (Fig. 9), for the isothermal pyrolysis process of the

powdered cellulose

Fig. 11 Estimated prior and posterior distributions whose

origins come from the Bayesian inference framework, in the

case of pyrolysis process of the powdered cellulose, under

isothermal experimental conditions; The full width at half

maximum (FWHM) of prior distribution is a clearly marked,

where a 95 % credible interval (CI) for h is also indicated
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In Fig. 11, the full width at half maximum

(FWHM) of the prior distribution is a clearly marked.

The FWHM is a very important feature, and can be

associated with the mean of posterior distribution (l*)
and hyperparameter (s) through the following

equation:

l� ¼ c � FWHM

s
; ð22Þ

where l* is posterior mean, FWHM is the full width at

half maximum attached to the prior distribution

[FWHM = 2.95 kJ mol-1 (Fig. 11)], while c repre-

sents cellulose characteristic energy constant

[kJ mol-1], which can be related with rigidity angle

(w) as a measure of tenseness of the cellulose chains

(2mer, 4mer, 6mer), where\cos(w)[ is a function of

temperature. The last mentioned magnitude exists in

the freely rotating chain model (Burchard 1971; Lee

et al. 2004; Mazeau and Wyszomirski 2012; Klocz-

kowski and Kolinski 2007). New term\cos(w)[ is

equal to the magnitude c/RTi, where R is the gas

constant, and Ti is the i th monitored operating

temperature.

Table 7 lists the values of c, FWHM and s which

were calculated for the posterior mean, in the consid-

ered pyrolysis process of the powdered cellulose

samples, under the isothermal conditions.

Value associated with cellulose characteristic en-

ergy constant (47.8 kJ mol-1, Table 7) corresponds to

formation of pyranoses from the cellulose chain

(Włodarczyk 2012), while the value of l* -

= 112.8 kJ mol-1 (Table 6) corresponds to formation

of D-fructose (Włodarczyk 2012; Sanders et al. 2002;

Garcı́a Barneto et al. 2011). Furthermore these

molecules are involved in the pyrolysis of cellulose,

where clearly follows that the main decomposition

reactions start from the cellulose chains, where we can

assume that the molecule chain decomposes from both

sides to the middle gradually. Hydroxyl (–OH) of

inside unit will break earlier than the ring of two-

terminals. In addition, from D-fructose structures

including additional dehydration steps (Seshadri and

Westmoreland 2012), the levoglucosan molecules can

be formed.

Assumption that the main decomposition reactions

proceed from cellulose chain points, can be confirmed

by the change of the values of angle w with the

increase in operating temperature (Ti), and these

results are presented in Table 8.

It can be seen from Table 8 that the value of the

angle w increases with an increasing of the operating

temperature, suggesting that rigidity of cellulose

chains decreases and their flexibility are increased.

From the above presented results, we can conclude

that despite a wide variety of organic components

which arises from the pyrolysis process of cellulose,

the formation of lower molecular weight products

(such as conversion reactions which lead to D-glucose

and D-fructose structures) (Luo et al. 2007) plays a

significant role in investigated powdered cellulose

pyrolysis.

Therefore, we can reasonably assume with a great

certainty, that the pyrolysis process of powdered

cellulose takes place probably through the formation

of levoglucosan, where depolymerization is pre-

dominant pathway of breakdown. However, identified

six-eighths-order (n* = 0.75) kinetics model may

indicates the occurrence of a number of unzipping

reactions, which may arise from terminal group of the

chain (Belgacem and Gandini 2005). Also, the

Table 6 Values of the model parameters, attached to the ingredients of Bayesian inference, for investigated isothermal pyrolysis of

the powdered cellulose samples

Model parameters related to ingredients of Bayesian inference for pyrolysis of the powdered cellulose

r (kJ mol-1)a l (kJ mol-1)b s2 (kJ mol-1)2 CIc h

l* (kJ mol-1)d r* (kJ mol-1)e

1.40 112.9 1.56 (112.5, 113.1) 112.8 0.14

a Known parameter
b Prior mean
c Credible interval [in (kJ mol-1)]
d Posterior mean
e Posterior dispersion
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appearance of the apparent reaction order less than

unity can be due to an increase of the active surface

with the reaction extension, so it is possible that in

current pyrolysis process, the active surface increases

more intensively than in other pyrolysis processes,

which have been reported in Table 3 by a variety of

researchers, which largely depends on the applied

experimental conditions and of initial ‘‘form’’ of

cellulose samples. The latter opens the possibility for

enactment of radical reactions within the pyrolytic

process at higher operating temperatures. The ini-

tiation reaction can represents cleavage of C–OH

bonds. OH radicals abstract hydrogen atom from a

cellulose molecule forming water (which leaves the

observed system) and a propagating radical. A

successive b-scission can form a double bond inside

the polymer chain and release another OH radical,

which rapidly propagates the chain. It should be noted

that obtained posterior mean (112.8 kJ mol-1,

Table 6) exceeds the average value for water-anion

hydrogen bond strength (about 52.0 kJ mol-1) as the

isolated system in the gas phase.

In addition to the above-mentioned pathway, the

second pathway probably represents the decomposi-

tion or fragmentation in which the cellulose ring opens

up and breaks down into two or three carbon

oxygenated compounds. In this case, we can expect

that the predominant products are hydroxyacetalde-

hyde, formaldehyde, acetol, methyl glyoxal and

glyoxal (Chundawat et al. 2011; Zhang et al. 2014;

Lédé 2012).

It should be noted that at higher operating tem-

peratures (beyond 300 �C), the depolymerization of

the cellulose chain and formation of anhydroglucose

derivatives, volatile organic materials and tars can

probably be achieved in observed experimental

conditions.

However, it should be noted that low molecular

weight compounds, including glycolaldehyde, could

be produced from the cellulose pyrolysis under the

conditions of the minimal levoglucosan degradation,

which may suggests the existence of competitive

nature of the primary pyrolysis reactions (Lédé 2012).

This just may be assumed, if we take into account the

resulting range of ea counterparts and value of FWHM

(Fig. 11; Table 7).

It should be noted that the kinetic treatment of

pyrolytic behavior of cellulose in wood biomass (as in

the softwood and hardwood species) systems (Janko-

vić 2014) and as an isolated reaction system (consid-

ered over Bayesian statistics procedure) is obviously

not the same, and shows significantly different results,

related to different kinetics ascribed to the cellulose

decompositions. Also, it should be noted that the

volatilization rate is more temperature-sensitive, i.e.,

has the higher apparent activation energy, than the

charring rate (Williams and Besler 1996).

Bayesian statistical approach provides a much

‘‘clearer’’ picture of the cellulose pyrolytic process

as an isolated reaction system, than in the case when

the pyrolysis of cellulose is considered in the context

of the thermal degradation of biomass (Janković

2014), which is a much more complex reaction

system, and that takes into account all possible

decomposition reactions arising from three main

pseudo-components (cellulose, hemicelluloses and

lignin).

Conclusions

Bayesian inherence was used to test the powdered

cellulose pyrolysis, under the isothermal (static) ex-

perimental conditions. In general, this approach was

firstly applied in the kinetic treatment of the pyrolysis

process for lignocellulosic materials. A completely new

procedure that was based on obtaining the reliable

distribution functions of effective activation energy

Table 7 Values of c, FWHM (full width at half maximum at

prior) and s (hyperparameter) calculated for posterior mean

(l*), for the isothermal pyrolysis of the powdered cellulose

Isothermal pyrolysis of the powdered cellulose

c (kJ mol-1) FWHM (kJ mol-1) s (kJ mol-1)

47.8 2.95 1.25

Table 8 Changes in the value of the angle w [angle is given in

radians (rad) and in degrees (o)], with the increase of operating

temperature (Ti) during the isothermal pyrolysis of the pow-

dered cellulose

Ti (oC) \cos(w)[ w (rad) w (o)

300 10.03112 -0.82174 0.98471

320 9.69289 -0.96427 0.98572

330 9.53219 -0.99424 0.98619

340 9.37672 -0.99885 0.98665
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(Ea) values by the statistical derivation of prior and

posterior functions was introduced. It should be noted

that as an important conclusion justified in the current

paper was as follows: the kinetic treatment of pyrolytic

behavior of cellulose in wood biomass (such as

softwood and hardwood species) (compared to the

earlier reported results) and as an isolated (independent)

molecular system using the Bayesian inference frame-

work, is obviously not the same and shows significantly

different results related to the different kinetics of

cellulose decomposition reactions.

It has been found that the pyrolysis of the powdered

cellulose can be described by the kinetics, which

differs from the first-order model. Also, it was

established that the apparent activation energy value

presented as the average magnitude in the conversion

fraction range of 0.20 B a B 0.65 does not represent

‘‘lumped’’ kinetic parameter, so in indicated a’s range,

the pyrolysis process can be described through the

single-step reaction model with six-eighths-order

(n* = 0.75) kinetics. Based on the presented Bayesian

inference results, it was assumed that the mechanism

of pyrolysis takes place through the decomposition

reactions which start from the cellulose chains.

On the basis of the discussed mechanism, and

perceived characteristics of prior and posterior distri-

butions, it was found that the pyrolysis process of

powdered cellulose takes place probably through the

formation of levoglucosan, where depolymerization is

predominant reaction pathway.
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terials produced from plant biomass. Part II: evaluation of

crystallinity and degradation kinetics of cellulose. Mater

Res 15:421–427

Robert C (2001) The Bayesian choice: from decision-theoretic

motivations to computational implementation, 2nd edn.

Springer, New York, pp 38–43

Rohde CA (2014) Introductory statistical inference with the

likelihood function, Chapter 14. Bayesian inference.

Springer, New York, pp 167–181. ISBN 978-3-319-10460-7

Royall R (1997) Statistical evidence: a likelihood paradigm.

Chapman & Hall/CRC, New York, pp 1–31
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